Preparation and properties of porous silicon carbide ceramics through coat mix and composite additives process

Similar documents
Influence of sintering atmosphere on the performance of porous silicon carbide ceramics

Structural and mechanical properties of CuZr/AlN nanocomposites

Effect of particle size distribution on properties of zirconia ceramic mould for TiAl investment casting

Interfacial structure and mechanical properties of hot-roll bonded joints between titanium alloy and stainless steel using niobium interlayer

Effect of Residual Phase and Grain Size on Corrosion Resistance of SiC Ceramics in Mixed HF-HNO 3 Acid Solution

Recrystallization behavior of cold rolled Al Zn Mg Cu fabricated by twin roll casting

Effects of heat treatment on microstructure and mechanical properties of Mg 3Sn 1Mn magnesium alloy

Anti-oxidation properties of ZrB 2 modified silicon-based multilayer coating for carbon/carbon composites at high temperatures

Metastable phase of β-eucryptite and thermal expansion behavior of eucryptite particles reinforced aluminum matrix composite

Preparation of closed-cell Mg foams using SiO 2 -coated CaCO 3 as blowing agent in atmosphere

Effects of welding current on properties of A-TIG welded AZ31 magnesium alloy joints with TiO 2 coating

Bimodal-grained Ti fabricated by high-energy ball milling and spark plasma sintering

Effect of wet shot peening on Ti 6Al 4V alloy treated by ceramic beads

压水堆燃料包壳新锆合金的发展 DEVELOPMENT OF NEW ZIRCONIUM ALLOYS FOR PWR FUEL ROD CLADDINGS

Texture evolution and its simulation of cold drawing copper wires produced by continuous casting

Boron removal from metallurgical silicon using CaO SiO 2 CaF 2 slags

Effect of copper on precipitation and baking hardening behavior of Al Mg Si alloys

Microstructure and mechanical properties of Mg-Gd-Y-Zr alloy cast by metal mould and lost foam casting

Utilization of nickel slag using selective reduction followed by magnetic separation

Microstructure and mechanical properties of WC Co, WC Co Cr 3 C 2 and WC Co TaC cermets fabricated by spark plasma sintering

Influences of aging temperature and time on microstructure and mechanical properties of 6005A aluminum alloy extrusions

Microstructure and mechanical properties of Mg, Ag and Zn multi microalloyed Al ( )Cu ( )Li alloys

Microstructure and properties of CuCr contact materials with different Cr content

Interfacial reactions between Ti 1100 alloy and ceramic mould during investment casting

Microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy by micro-arc oxidation

Application of pre-alloyed powders for diamond tools by ultrahigh pressure water atomization

Oxidation process of low-grade vanadium slag in presence of Na 2 CO 3

X-ray Inspection of MIM 418 Superalloy Turbine Wheels and Defects Analysis

Preparation of cerium oxide based environment-friendly chemical conversion coating on magnesium alloy with additives

Effect of flame rectification on corrosion property of Al Zn Mg alloy

Modelization and comparison of Norton-Hoff and Arrhenius constitutive laws to predict hot tensile behavior of Ti 6Al 4V alloy

Mechanism of debismuthizing with calcium and magnesium

Analysis of deformation characteristic in multi-way loading forming process of aluminum alloy cross valve based on finite element model

Low temperature mechanical property of AZ91D magnesium alloy fabricated by solid recycling process from recycled scraps

Wear behavior of SiC/PyC composite materials prepared by electromagnetic-field-assisted CVI

Effect of electromagnetic field on microstructure and macrosegregation of flat ingot of 2524 aluminium alloy

Mechanical properties of strengthened surface layer in Ti 6Al 4V alloy induced by wet peening treatment

Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation

Thermodynamics and kinetics of carbothermal reduction of zinc ferrite by microwave heating

Boron doped nanocrystalline silicon film characterization for solar cell application

Beam Dump Window Design for CSNS

Microstructure and mechanical properties of TC21 titanium alloy after heat treatment

Preparation of Ti-rich material from titanium slag by activation roasting followed by acid leaching

Dynamic recrystallization rules in needle piercing extrusion for AISI304 stainless steel pipe

Damping capacity of high strength-damping aluminum alloys prepared by rapid solidification and powder metallurgy process

Effect of vacuum degree in VIM furnace on mechanical properties of Ni Fe Cr based alloy

Recovery of cobalt from converter slag of Chambishi Copper Smelter using reduction smelting process

Effect of cooling condition on microstructure of semi solid AZ91 slurry produced via ultrasonic vibration process

Thermal properties of glass-ceramic bonded thermal barrier coating system

Influence of aging on microstructure and mechanical properties of AZ80 and ZK60 magnesium alloys

Microstructural evolution of ultra-high strength Al-Zn-Cu-Mg-Zr alloy containing Sc during homogenization

Effect of Sb content on properties of Sn Bi solders

Synthesis of high-capacity LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode by transition metal acetates

Influence of deformation passes on interface of SiC p /Al composites consolidated by equal channel angular pressing and torsion

Removal of phosphorus from metallurgical grade silicon by Ar H 2 O gas mixtures

Formability and microstructure of AA6061 Al alloy tube for hot metal gas forming at elevated temperature

Segregation and diffusion behavior of niobium in a highly alloyed nickel-base superalloy

Influence of drawing process parameters on forming of micro copper tube with straight grooves

Leaching behavior of metals from limonitic laterite ore by high pressure acid leaching

Microstructures and high temperature mechanical properties of electron beam welded Inconel 718 superalloy thick plate

Effects of high-energy ball milling oxide-doped and varistor ceramic powder on ZnO varistor

Effects of laser beam welding parameters on mechanical properties and microstructure of AZ31B magnesium alloy

SYNTHESIS OF NANOSIZE SILICON CARBIDE POWDER BY CARBOTHERMAL REDUCTION OF SiO 2

Effects of rotating electromagnetic on flow corrosion of copper in seawater

Microstructure evolution of 3003/4004 clad ingots under diverse physical fields

Extraction of molybdenum and nickel from roasted Ni Mo ore by hydrochloric acid leaching, sulphation roasting and water leaching

Leaching kinetics of antimony-bearing complex sulfides ore in hydrochloric acid solution with ozone

A new method of testing frother performance

Microstructures and mechanical properties of pure magnesium bars by high ratio extrusion and its subsequent annealing treatment

Comparison of microstructural stability of IN939 superalloy with two different manufacturing routes during long-time aging

Multi-stage heat treatment of aluminum alloy AA7049

Effect of surfactants on dispersion property and morphology of nano-sized nickel powders

Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy

Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires

Microstructure refining and property improvement of ZK60 magnesium alloy by hot rolling

Influence of quench-induced precipitation on aging behavior of Al Zn Mg Cu alloy

氮化硅陶瓷 Silicon Nitride Ceramics.

Sol gel synthesis of Y 2 O 3 doped ZnO thin films varistors and their electrical properties

Effects of Hg and Ga on microstructures and electrochemical corrosion behaviors of Mg anode alloys

EFFECT OF SiC NANO SIZING ON SELF-CRACK- HEALING DURING SERVICE

Enhanced thermal and electrical properties of poly (D,L-lactide)/ multi-walled carbon nanotubes composites by in-situ polymerization

Nanogrinding of SiC wafers with high flatness and low subsurface damage

Preparation of High Purity Rare Earth Metals of Samarium, Ytterbium and Thulium

Effects of boric acid on microstructure and corrosion resistance of boric/sulfuric acid anodic film on 7050 aluminum alloy

Effects of Y addition on microstructure and properties of Al Zr alloys

Causes and control of welding cracks in electron-beam-welded superalloy GH4169 joints

Microstructure and superelasticity of porous NiTi alloy *

available at journal homepage:

Mechanical properties of 7475 aluminum alloy sheets with fine subgrain structure by warm rolling

Novel multilayer Mg Al intermetallic coating for corrosion protection of magnesium alloy by molten salts treatment

Electrodeposition of multi-layer Pd Ni coatings on 316L stainless steel and their corrosion resistance in hot sulfuric acid solution

Influence of surfactant addition on rheological behaviors of injection-molded ultrafine 98W 1Ni 1Fe suspension

Effect of WS 2 particle size on mechanical properties and tribological behaviors of Cu WS 2 composites sintered by SPS

Enhanced plasticity of Fe-based bulk metallic glass by tailoring microstructure

Rate equation theory of gas-solid reaction kinetics for calcium looping and chemical looping

Shear hydro-bending of 5A02 aluminum alloys rectangular tubes

水肥一体化系统在农业生产中的应用. 北京派得伟业科技发展有限公司 Beijing PAIDE Science and Technology Development Co. Ltd. 吴建伟 WU Jianwei

Design of new biomedical titanium alloy based on d-electron alloy design theory and JMatPro software

A method for prediction of unstable deformation in hot forging process by simulation

Effect of MoSi 2 content on dielectric and mechanical properties of MoSi 2 /Al 2 O 3 composite coatings

Transcription:

Preparation and properties of porous silicon carbide ceramics through coat mix and composite additives process ZHAO Hong sheng, LIU Zhong guo, YANG Yang, LIU Xiao xue, ZHANG Kai hong, LI Zi qiang Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China Received 18 October 2010; accepted 29 November 2010 Abstract: The core shell structure silicon resin precursor powders were synthesized through coat mix process and addition of Al 2 O 3 SiO 2 Y 2 O 3 composite additives. A series of porous silicon carbide ceramics were produced after molding, carbonization and sintering. The phase, morphology, porosity, thermal conductivity, thermal expansion coefficient, and thermal shock resistance were analyzed. The results show that porous silicon carbide ceramics can be produced at low temperature. The grain size of porous silicon carbide ceramic is small, and the thermal conductivity is enhanced significantly. Composite additives also improve the thermal shock resistance of porous ceramics. The bending strength loss rate after 30 times of thermal shock test of the porous ceramics which were added Al 2 O 3 SiO 2 Y 2 O 3 and sintered at 1 650 C is only 6.5%. Moreover, the pore inside of the sample is smooth, and the pore size distribution is uniform. Composite additives make little effect on the thermal expansion coefficient of the porous silicon carbide ceramics. Key words: silicon carbide; porous ceramic; coat mix; composite additives 1 Introduction Porous silicon carbide ceramics are important materials, which exhibit lots of excellent properties of both porous ceramics and silicon carbide. Due to possessing a set of attractive properties, porous silicon carbide ceramics have been widely employed in many application fields, involving aerospace, energy, machinery, metallurgy, chemistry, environmental, biological and medical fields, using as filters, membranes, heat exchangers, thermal insulators, capacitors, sound absorbing material, damping buffers, various sensors, catalysts and catalyst carriers, etc [1 3]. Porous silicon carbide ceramics have been synthesized using various methods [4], including oxidation bonding method [5], combustion synthesis, chemical vapor reaction, sol gel [6] and carbothermal reduction reaction [7 8], preceramic foam processing [9], and coat mix method. Coat mix method has an extensive application prospect due to the advantages of simple technology, energy saving, high efficiency, controllable process and environmental compatibility. The product of coat mix technology possesses controllable pore size, narrow pore size distribution and high purity [10 11]. Researches show that the porosity, strength and thermal shock resistance of porous silicon carbide ceramics could be improved by adding sintering additives such as Al 2 O 3, Y 2 O 3, MgO, K 2 O and SiO 2 [12 13]. In this work, the silicon resin precursor powders with core shell structure were synthesized through coat mix process, and Al 2 O 3, Al 2 O 3 SiO 2 and Al 2 O 3 SiO 2 Y 2 O 3 were introduced as sintering additives, respectively. Then porous silicon carbide ceramics were produced after molding, carbonization and sintering. The phase, surface morphology, porosity, thermal conductivity, thermal expansion coefficient, bending strength and thermal shock resistance of porous silicon carbide ceramics were analyzed. 2 Experimental 2.1 Sample preparation The silicon resin precursor powders with core shell structure were synthesized through coat mix process from industrial grade silicon powder and barium phenolic resin. Additives were chemically pure neutral Al 2 O 3 with particle size of 75 150 μm, chemically pure Foundation item: Project (50802052) supported by the National Natural Science Foundation of China Corresponding author: ZHAO Hong sheng; Tel: +86 10 89796090; E mail: hshzhao@tsinghua.edu.cn DOI: 10.1016/S1003 6326(11)60861 3

1330 ZHAO Hong sheng et al/trans. Nonferrous Met. Soc. China 21(2011) 1329 1334 Y 2 O 3 and analytically pure SiO 2, respectively. Taking the total mass of precursor powders of 100 g, the sample batch and sintering temperature of porous silicon carbide ceramics are shown in Table 1. Table 1 Batch and sintering temperature of porous silicon carbide ceramics Sample m(powder)/ m(al 2 O 3 )/ m(sio 2 )/ m(y 2 O 3 )/ Temperature/ No. g g g g C S1 100 3 1 0.71 1 450 S2 100 3 1 0.71 1 550 S3 100 3 1 0.71 1 650 S4 100 3 1 0.71 1 750 S5 100 0 0 0 1 650 S6 100 3 0 0 1 650 S7 100 3 1 0 1 650 After mixing, the precursor powder and additives were pressure molded at 50 140 C and 0.5 50 MPa for 20 120 min,. Then the materials were carbonized at 600 1 000 C for 1 4 h under argon atmosphere. After that the samples were treated by high temperature vacuum sintering at 1 450 1 750 C for 2 h, with heating rate of 5 10 C/min. 3 Results and discussion 3.1 Effect of sintering temperature Figure 1 shows the XRD patterns of porous silicon carbide ceramics with Al 2 O 3 SiO 2 Y 2 O 3 additives at different sintering temperatures. In Fig. 1, the peaks at 2θ =36, 41, 60, 72 and 76 are assigned to (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes of cubic SiC according to the standard JCPDS cards (29 1129). It is found that no carbon peaks and silicon peaks can be observed in these patterns. The pattern of sample S1 shows that only β SiC diffraction peaks appear at the sintering temperature of 1 450 C. It is indicated that SiC ceramic is already obtained at 1 450 C. Figure 2 shows the surface SEM images of the samples sintered at different temperatures. It can be seen from Fig. 2 that the microstructure of sample S1 is uniform and dense, indicating that the composite additives decrease the formation temperature of porous silicon ceramics. 2.2 Characterization of samples The morphology and phase of porous silicon carbide ceramics were analyzed by S 3000N type scanning electron microscope and Bruker P4 type X ray diffraction instrument, respectively. The porosity of the sample was measured by Autopore IV 9510 mercury porosimeter. LFA 427 type laser flash apparatus, DIL 402C type thermal dilatometer and STA 449 type simultaneous thermal analyzer were used to measure the thermal diffusivity (α), linear expansion coefficient and specific heat capacity (c p ). The density of the sample was obtained through drainage method, and the thermal conductivity was calculated using the formula λ=αρc p. The products were processed to be samples of 3 mm 4 mm 40 mm by diamond surface grinding machine. Then three point bending strength measurement of 30 mm span was taken on the samples by Zwickz005 type material detection equipment. The samples were heated to 800 ºC and heat shock 30 times under air atmosphere. Thermal shock resistance was performed by bending strength loss rate of materials [14]: σ 0 σ 1 η = 100 % (1) σ 0 where η is bending strength loss rate; σ 0 is bending strength before thermal shock; σ 1 is bending strength after thermal shock. Fig. 1 XRD patterns of porous silicon carbide ceramics at different sintering temperatures Figure 3 shows the bending strength and bending strength loss rate of samples, which were taken Al 2 O 3 SiO 2 Y 2 O 3 as additive, and sintered at different temperatures. It can be seen from the curves that the bending strengths of all the samples before and after thermal shock gradually decrease along with increasing the sintering temperature from 1 450 C up to 1 650 C. While the strength of the samples before and after thermal shock decreases rapidly from 1 650 C to 1 750 C. The bending strength loss rate of the sample sintered at 1 650 C (S3) is only 6.5%, which is the lowest among all samples. When the temperature is below 1 650 C, the bending strength loss rate of the samples gradually decreases as the sintering temperature increases. The bending strength loss rate of the sample sintered at 1 750 C (S4) reaches 52.8%. The results show that the high

ZHAO Hong sheng et al/trans. Nonferrous Met. Soc. China 21(2011) 1329 1334 1331 Fig. 2 Surface SEM images of porous silicon carbide ceramics at different sintering temperatures: (a) S1 (b) S2 (c) S3 (d) S4 Fig. 3 Thermal shock resistance of porous silicon carbide ceramics sintered at different temperatures sintering temperature would lead to the decrease of the thermal shock resistance. Figure 4 shows the effect of sintering temperature on the thermal conductivity of the samples. The results show that the sample sintered at 1 650 C has the highest thermal conductivity. It is corresponding to the data of the bending strength before and after thermal shock at 1 650 C (Fig. 3). Figure 5 shows the effect of sintering temperature on the linear expansion coefficient (α) of porous silicon carbide. As shown in Fig. 5, the sintering temperature has no obvious influence on linear expansion of samples. The linear expansion coefficient of the sample S1 Fig. 4 Thermal conductivity at RT and 800 C for porous silicon carbide ceramics sintered at different temperatures sintered at 1 450 C is lower at the low temperatures. While the linear expansion coefficient of sample S3 sintered at 1 650 C is higher at the high temperatures. Figure 6 shows the effect of sintering temperature on porosity of the samples. As shown in Fig. 6, the bending strength and thermal shock resistance of sample S3 are very good, and the porosity of sample S3 is the highest. From the surface morphology of sample S3 shown in Fig. 2, it can be seen that sample S3 has uniform pore size distribution, which can disperse thermal elastic strain energy. Besides, sample S3 has smooth pore wall, which can relax the stress. Therefore,

1332 ZHAO Hong sheng et al/trans. Nonferrous Met. Soc. China 21(2011) 1329 1334 Fig. 5 Thermal expansion coefficient of porous silicon carbide ceramics sintered at different temperatures highest bending strength both before and after the thermal shock. Besides, the bending strength loss rate of sample S3 after thermal shock is the lowest, and far lower than those of samples with other additives. As shown in XRD patterns (see Fig. 7), both samples S3 and S7 with composite additives perform the peaks of mullite phase (3Al 2 O 3 2SiO 2 ), which has better thermal shock resistance and mechanical characteristics [15]. As shown in Fig. 7, sample S3 has more mullite phases because of the addition of Y 2 O 3, which may promote liquid phase sintering and then result in more mullite phases. It also can be found that the additives of the other two compounds reduce the bending strength before thermal shock. Particularly, the bending strength of sample S6 obtained by adding Al 2 O 3 before thermal shock is only 1.9 MPa, which is far lower than that of other samples. Fig. 6 Porosity of porous silicon carbide ceramics sintered at different temperatures the thermal shock resistance of sample S3 is improved. 3.2 Effect of different additives The bending strength and bending strength loss rate of porous silicon carbide ceramics with different additives before and after thermal shock at 800 C are shown in Table 2. As shown in Table 2, sample S3 (Al 2 O 3 SiO 2 Y 2 O 3 as the composite additive, sintered at 1650 C) has the Table 2 Thermal shock resistance of porous silicon carbide ceramics with different additives Sample No. Thermal shock resistance/mpa Before thermal shock After thermal shock Loss rate/ % S3 13.8 12.9 6.5 S5 11.1 3.8 65.8 S6 1.9 1 47.4 S7 9.1 3.7 59.3 Fig. 7 XRD patterns of samples S3 and S7 Therefore, the formation of mullite phase is beneficial to enhance the bending strength before thermal shock and thermal shock resistance of porous silicon carbide ceramics. The addition of Y 2 O 3 decreases the formation temperature of mullite, while the liquid phase sintering makes the grain refinement. Table 3 exhibits the effect of additives on the thermal conductivity of the porous silicon carbide ceramics. As shown in Table 3, Al 2 O 3 SiO 2 Y 2 O 3 composite additive increases the thermal conductivity obviously. It is ascribed to the second phase mullite distributed continuously around matrix grains in this system, while no continuous distribution of mullite phase appeared for the samples with the other two additives. As shown in Table 4, porous silicon carbide products keep the characteristics of high porosity after composite additives. The sample S3 (Al 2 O 3 SiO 2 Y 2 O 3 as additive), which has the best thermal shock resistance, remains nearly 70% porosity. The sample with Al 2 O 3 SiO 2 additive has higher porosity, but its bending strength and thermal shock resistance are not ideal.

ZHAO Hong sheng et al/trans. Nonferrous Met. Soc. China 21(2011) 1329 1334 1333 Table 3 Thermal conductivity of porous silicon carbide ceramics with different additives Sample Thermal conductivity/(w m 1 K 1 ) No. Room temperature 800 C S5 43 21 S6 30 17 S7 38 14 S3 160 65 Table 4 Porosity of porous silicon carbide ceramics with different additives Sample No. Porosity/% S5 67.9 S6 65.0 S7 73.7 S3 69.8 Figure 8 shows the thermal expansion coefficient of samples with different additives and sintered at different temperatures. At low temperature, the sample with Al 2 O 3 SiO 2 Y 2 O 3 composite additive has the lowest linear expansion coefficient, while the sample with Al 2 O 3 SiO 2 composite additive has the lowest linear expansion coefficient at high temperature. Whereas, as shown in Fig. 8, composite additives make no remarkable influence on linear expansion coefficient of ceramics. Fig. 9 SEM images of porous silicon carbide ceramics: (a) Without additives (S5); (b) With Al 2 O 3 SiO 2 Y 2 O 3 additive (S3) silicon carbide ceramics with Al 2 O 3 SiO 2 Y 2 O 3 additive is enhanced. 4 Conclusions Fig. 8 Thermal expansion coefficient of porous silicon carbide ceramics with different additives Figure 9 shows the SEM images of porous silicon carbide ceramics without additive and with Al 2 O 3 SiO 2 Y 2 O 3 additives. As shown in Fig. 9, the grains of samples with Al 2 O 3 SiO 2 Y 2 O 3 additives are refined. Fine grained materials generally have better strength and thermal stress resistance than coarse grain. Therefore, the thermal shock resistance of porous 1) Based on the fabrication of core shell structure silicon resin precursor powders by coat mix method, porous silicon carbide ceramics were prepared at lower temperature by adding a small amount of Al 2 O 3 SiO 2 Y 2 O 3. 2) By adding Al 2 O 3 SiO 2 Y 2 O 3, more mullite phases in the porous silicon carbide ceramics generate, the silicon carbide grains are refined, and the wall of the pores becomes smoother. 3) Porous silicon carbide ceramics synthesized through composite additive have high porosity; both the thermal shock resistance and the thermal conductivity are enhanced. While the composite additive performs less impact on the linear expansion coefficient of the samples.

1334 ZHAO Hong sheng et al/trans. Nonferrous Met. Soc. China 21(2011) 1329 1334 4) Porous silicon carbide ceramics with the highest thermal conductivity, the highest porosity, and the best thermal shock resistance were synthesized by adding a proper amount of Al 2 O 3 SiO 2 Y 2 O 3 and sintering at 1 650 C. References [1] MOENE R, MAKKEE M, MOULIJN J A. High surface area silicon carbide as catalyst support characterization and stability [J]. Applied Catalysis A, 1998, 167(2): 321 330. [2] MIMURA H, MATSUMOTO T, KANEMITSU Y. Light emitting devices using porous silicon and porous silicon carbide [J]. Solid State Electronics, 1996, 40: 501 504. [3] CIORA R J, FAYYAZ B, LIU P K T, SUWANMETHANOND V, MALLADA R, SAHIMI M, TSOTSIS T T. Preparation and reactive applications of nanoporous silicon carbide membranes [J]. Chemical Engineering Science, 2004, 59: 4957 4965. [4] ZHANG Lin, QU Xuan hui, DUAN Bo hua, HE Xin bo. Progress in research on porous silicon carbide [J]. Powder Metallurgy Technology, 2007, 25(2): 139 144. (in Chinese) [5] SHE J H, YANG J F, KONDO N, OHJI T, KANZAKI S, DENG Z Y. High strength porous silicon carbide ceramics by an oxidation bonding technique [J]. Journal of the American Ceramic Society, 2002, 85(11): 2852 2854. [6] VERDENELL I M, PAAROLA S, CHASSAGNEUX F, LETOFFE J M, VINCENT H, SCHARFF J P, BOUIX J. Sol gel preparation and thermo mechanical properties of porous xal 2O 3 ysio 2 coatings on SiC Hi Nicalon fibres [J]. Journal of the European Ceramic Society, 2003, 23(8): 1207 1213. [7] EOM J H, KIM Y W, SONG I H, Kim H D. Microstructure and properties of porous silicon carbide ceramics fabricated by carbothermal reduction and subsequent sintering process [J]. Materials Science and Engineering A, 2007, 464: 129 134. [8] QIAN J M, WANGJ P, QIAO GJ, JIN Z H. Preparation of porous SiC ceramic with a woodlike microstructure by sol gel and carbothermal reduction processing [J]. Journal of the European Ceramic Society, 2004, 24(10 11): 3251 3259. [9] WANG C, WANG J, PARK C B, KIM Y W. Cross linking behavior of a polysiloxane in preceramic foam processing [J]. Journal of Materials Science, 2004, 39(15): 4913 4915. [10] SHI L M, ZHAO H S, YAN Y H, TANG C H. Fabrication of high purity porous SiC ceramics using coat mix process [J]. Materials Science and Engineering A, 2007, 460: 645 647. [11] SHI L M, ZHAO H S, YAN Y H, LI Z Q, TANG C H. High specific surface area porous SiC ceramics coated with reticulated amorphous SiC nanowires [J]. Physica E, 2008, 40: 2540 2544. [12] DING S Q, ZENG Y P, JIANG D L. In situ reaction bonding of porous SiC ceramics [J]. Materials Characterization, 2008, 59: 140 143. [13] DING S Q, ZENG Y P, JIANG D L. Thermal shock behaviour of mullite bonded porous silicon carbide ceramics with yttria addition [J]. Journal of Physics D, 2007, 40: 2138 2142. [14] JIA De chang, SONG Gui ming. Properties of inorganic nonmetal materials [M]. Beijing: Science Press, 2008. (in Chinese) [15] LIN Y, TSANG C. Fabrication of mullite/sic and mullite/zirconia/ SiC composites by dual in situ reaction syntheses [J]. Materials Science and Engineering A, 2003, 344: 168 174. 基于包混和复合添加工艺的多孔碳化硅陶瓷的制备和性能 赵宏生, 刘中国, 杨阳, 刘小雪, 张凯红, 李自强 清华大学核能与新能源技术研究院, 北京 100084 摘要 : 采用包混工艺合成核 壳结构的硅 树脂先驱体粉体, 引入 Al 2 O 3 SiO 2 Y 2 O 3 复合添加剂, 通过成型 炭化和烧结工艺制备多孔碳化硅陶瓷 分析多孔碳化硅陶瓷样品的物相 形貌 孔隙率 热导率 热膨胀系数和抗热震性能 结果表明 : 复合添加能够在较低的温度下制得多孔碳化硅陶瓷 ; 陶瓷样品的晶粒较小, 明显增强了多孔碳化硅陶瓷的导热性能 ; 复合添加提高了碳化硅陶瓷的抗热震性能, 添加 Al 2 O 3 SiO 2 Y 2 O 3 并且在 1 650 C 下烧结制备的多孔碳化硅陶瓷经过 30 次热震后的抗弯强度损失率为 6.5%; 陶瓷样品的孔壁更加光滑, 孔分布更均匀 ; 复合添加对多孔碳化硅陶瓷热膨胀系数的影响较小 关键词 : 碳化硅 ; 多孔陶瓷 ; 包混 ; 复合添加剂 (Edited by LI Xiang qun)