LED Equipment Evaluation. PHASE V: 400W HPS Equivalent

Similar documents
LED Equipment Evaluation. PHASE V: 100W HPS Equivalent

University City MO Street Lighting Study SUMMARY. Funded by the Energy Efficiency and Conservation Block Grant. Authored by.

Seattle City Light LED Streetlight Program Case Study

STATE OF NEW JERSEY DEPARTMENT OF TRANSPORTATION TRENTON, NEW JERSEY SPECIFICATIONS FOR HIGH PRESSURE SODIUM LUMINAIRES, CUTOFF TYPE

IDA-Criteria for Community-Friendly Outdoor Sports Lighting v1.0

How Photometric Design Enhances Energy Savings and Asset Management

Purchasing Department 530 Water Street Oakland, CA ADDENDUM No. 1. Bid No /03 LED Street Light Conversion Project

Special Specification 6244 LED High Mast Illumination Assemblies

City of Dallas Dan Koss, PE, LC 8/23/2016

Special Specification 6156 LED High Mast Illumination Assemblies

POLICY TRAILS LIGHTING

ILLUMINATING NEIGHBORHOODS

Road Safety Engineering Award 2010

EXHIBITION PLACE Field Testing of LED Exterior lighting FINAL REPORT January 27, 2012 Background:

GARFIELD COUNTY, COLORADO

STATE OF NEW JERSEY DEPARTMENT OF TRANSPORTATION TRENTON, NEW JERSEY METRIC SPECIFICATIONS FOR HIGH PRESSURE SODIUM LUMINAIRES OFFSET TYPE

LUMINAIRE: ORNAMENTAL, RESIDENTIAL MID-MOUNT, ACORN, LED, I.E.S. TYPE II/III DISTRIBUTION

APEC SOLLIA Street and Outdoor LED Lighting Initiative - Asia Survey Findings

Exterior and Public LED Lighting Solutions

STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENT 1114 LUMINAIRES, SOLID-STATE (LED) APPROVED LIST QUALIFICATION PROCEDURE.

Streetlight P-Line / HP-Line. LED Lighting tools for cost-efficient, environmentally friendly and future proof road lighting.

Emerging Technologies Study Lifecycle:

LED applications in street and interior lighting. Bryan Yang Application Design Center Asia 9 th Apr. 2010

How to Submit Your Question

DMS HIGH MAST LIGHT FIXTURES

SPECIFICATION FREELANDER SERIES

LIGHT EMITTING DIODE (LED) LUMINAIRE SPECIFICATION. Date of Issue: January 2016 Last Updated: September 2017

NYSERDA How-to Guide to Effective Energy-Efficient Street Lighting for Planners and Engineers

Streetlight and Outdoor School LED Retrofit Lighting

15-06 Morlot Avenue, Fair Lawn, NJ USA Tel: (201) Fax: (201)

DMS-11010, Roadway Illumination Light Fixtures

5-1 Street Lights Required Street Lights on Private Roadways Developer s Responsibility...5-1

1.05 Quality Assurance A. Manufacturers Qualifications: Page 1 of 5 Rev

APPENDIX 2 EXP LIGHTING REPORT

ADDENDUM D January 31, 2014

MATERIAL SPECIFICATION FOR HIGH PRESSURE SODIUM LUMINAIRES FOR HIGHWAY LIGHTING

SECTION SPORTS FIELD LIGHTING

FEATURES & SPECIFICATIONS USA

REQUEST FOR PRE-QUALIFICATION FOR LED STREETLIGHT LUMINAIRES RFPQ N Closing: August 17, 2012 at 2:00 pm local time

SMALL, efficient AND BRIKA

Demonstration Assessment of LED Roadway Lighting

Parking Lot 6 LED Lighting Retrofit

Driver Info. Construction Thermal Management: Superior thermal management with die-cast aluminum heatsink. Ambient Temperature:

Street Lighting and Public Safety: New Nighttime Lighting Documentation Method

SECTION EXTERIOR ATHLETIC LIGHTING

RLS Recessed Linear Series

Technical Requirements Table, V3.1 Technical Requirements: Luminaires

FEATURES & SPECIFICATIONS USA

SECTION FLUORESCENT LUMINAIRES. The publications listed below form a part of this section to the extent referenced:

1.0 Background and Purpose

Brightek (Europe) Limited

CONSTRUCTION SPECIFICATION FOR INSTALLATION OF ROADWAY LUMINAIRES

Technical Requirements Table, V4.0 Technical Requirements: Luminaires

Parking Lot 5A & Cedar Circle LED Lighting Retrofit

LM Test Report

CONSTRUCTION SPECIFICATION FOR INSTALLATION OF ROADWAY LUMINAIRES

Chapter XXX. Outdoor Lighting Standards.

BBE LU2 High Power LED Streetlight. Benefits

EXCELLENT PERFORMANCE GUARANTEED OVER TIME, WITH MINIMUM INVESTMENT

MarQuee LED TM. Quick Install Guide. Safety Notices and Warnings. Cleaning of Outside of Unit

S90. LED Street Light. Brief:

Saving Energy For The World High Quality LED Lights Energy Saving Revolution Long Lifespan Eco-friendly

MATERIAL SPECIFICATION FOR HIGH PRESSURE SODIUM LUMINAIRES FOR UNDERPASS LIGHTING

Saving Energy For The World High Quality LED Lights Energy Saving Revolution Long Lifespan Eco-friendly

CITY OF GOODLETTSVILLE PARKS AND RECREATION DEPARTMENT

OUTDOOR LIGHTING MODULE. The LED Replacement for the High Pressure Sodium Lamp

Reproduction or publication of the content in any manner, without express permission of the publisher, is prohibited.

EXHIBIT "A" SCOPE OF SERVICES FOR DISTRICT 7 AREAWIDE LIGHTING DATABASE & ASSESSMENT CONTINUING SERVICES FINANCIAL PROJECT NO.

LED POOL LIGHTING CRITERIA

Advanced Street Lighting Technologies Assessment Project - City of San Diego

Kirium. Key advantages. Applications

Solano Community College District Lighting Standards

B. Prismatic acrylic diffusers for fluorescent fixtures shall be A12 pattern and at least 1/8 thick. Do not use styrene lenses.

CLEVEO. Smart street luminaire

LED Street Light. Tel: Estate 212 Sysie road. Mail: LED LIGHTING AND SOLAR SOLUTIONS

LiteBLOCK TM LED LIGHTING SPECIFICATION For 20KLM (2,600µmol/m 2 /s) 17 Inch Hi-Bay Universal Hydroponic Lighting Model No: IYWI-15B/L50-80VMD

Bylaw 3847, 2016 Adopted Mar 21, 2016 SCHEDULE G - REGULATIONS, STANDARDS AND SPECIFICATIONS FOR THE INSTALLATION OF STREET LIGHTING

ASSIST recommends: Striving for Application-specific Evaluation Methods. N. Narendran, Jean Paul Freyssinier, Yutao Zhou, and Jennifer Taylor

ARLINGTON COUNTY, VIRGINIA

LED LIGHTING FOR PARKING FACILITIES A LIGHTSAVERS PRIMER DATE ISSUED:

P855. Next Generation High Mast LED Luminaire with variable geometry STAR-optic

ARP 035: UPDATE AND GENERATING COST COMPARISONS

CITY OF STRATFORD STREET LIGHTING STUDY

new Saturno LED - suspension

STREET LIGHT MODULAR SPECIFICATION

National Trends LED STREET LIGHTING LATEST DEVELOPMENTS 2/23/2010. LED Streetlights Why all the Hype?

Towards LED Roadway Lighting: State Transportation Agency Guidelines

IV ENGINEERING OF ENVIRONMENTAL ENERGY ANALYSIS OF GHG REDUCTION POSSIBILITIES IN LATVIA BY IMPLEMENTING LED STREET LIGHTING TECHNOLOGIES

Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting on Residential and Commercial Streets

8.6 EXTERIOR LIGHTING

options key advantages friza

teceo 2 THE GREEN LIGHT

Create Meaningful Performance Metrics for LED Systems

LED Lighting - Phase 2, Irvine Parking Lot

Saving Money with Other White Light Sources

UNRIVALED. green technology. the STERNBERG advantage

Ports & Rail. Lighting & Controls Solutions

Introduction to LED Lighting

Ivins City Standard Specifications for Design and Construction Part 2 Engineering and Design Standards

3 WALL ASYMMETRIC W W W. L U M E N W E R X. C O M

Transcription:

LED Equipment Evaluation PHASE V: 400W HPS Equivalent Prepared by: Bureau of Street Lighting City of Los Angeles Disclaimer This report was prepared by the City of Los Angeles for the sole purpose of promoting energy efficiency through the use of new technologies. It does not recommend the use of any specific LED equipment nor does it recommend the use of a specific supplier. The City of Los Angeles assumes no legal liability or responsibility for the accuracy, completeness, or usefulness of this report. Date of test: 4/1/2011 to 7/30/2011

TABLE OF CONTENTS Introduction... 2 Background... 2 Purpose of the Report... 2 Section 1: Luminaire Testing and Evaluation... 4 1.1 Mechanical Build Quality... 4 1.2 Electrical Build Quality... 6 1.3 Maintenance and Life Expectancy... 8 1.4 Ease of Installation... 8 1.5 Driver Controls... 9 1.6 Driver Access... 9 1.7 Illuminance Light Level (Street)... 10 1.8 Illuminance Uniformity Ratio (Street)... 12 1.9 Illuminance Light Level (Sidewalk East)... 12 1.10 Illuminance Uniformity (Sidewalk East)... 13 1.11 Illuminance Light Level (Sidewalk West)... 14 1.12 Illuminance Uniformity Ratio (Sidewalk West)... 15 1.13 Photometric Data Reliability... 15 1.14 Photometric Spacing Performance... 16 1.15 Light Trespass... 16 1.16 Power Saving... 17 1.17 Discomfort Glare... 18 1.18 Light Patterns on Street... 19 1.19 Packaging... 19 Section 2: Conclusion... 20 Conclusion... 20 Appendix... 23 LED Test Location Map... 23 LED Field Installations... 24 Remote Monitoring System Sample... 25 1

Introduction Background For several decades the high pressure sodium lamp has been considered a standard for roadway lighting around the world. However, recently there have been major technological advances in solid state lighting for street lighting purposes. The new solid state fixtures use LEDs to produce a high quality white light, while using substantially less energy than the HPS fixtures currently being used by BSL. The LED fixtures have the potential to reduce maintenance and operation costs for the City s lighting district. As a result, the City of Los Angeles has committed itself to the long-term testing and evaluation of new LED street lighting technology. The Energy Efficiency Division of the Bureau of Street Lighting will evaluate new LED fixtures as they become commercially available. The fixtures that show the most potential will be chosen to participate in the City s LED Pilot Project and subjected to field testing for a period of 90 days. Manufacturers that have participated in the LED Pilot Project and meet the Bureau s most recent LED specifications will be eligible to bid on City contracts. Purpose of the Report During this phase of testing there were three manufacturers who submitted products which passed our preliminary review. Those products were then given a complete evaluation to determine if it can be used to replace a 400W HPS cobra-head luminaire on a major, medium pedestrian street. The fixture was evaluated based on BSL mechanical, electrical and lighting standards, as well as, newly introduced and accepted LED standards from the SSL industry. In 2

addition, power consumption, voltage, and on/off cycles were monitored on a daily basis using a Remote Monitoring System. The results of these evaluations are presented in this report and will be a major factor in determining whether BSL will use this fixture in future street lighting projects. Manufacturer A Manufacturer B Manufacturer C 3

Section 1: Luminaire Testing and Evaluation 1.1 Mechanical Build Quality The fixture was visually inspected by BSL engineers. Criteria included material durability, quality manufacturing, weather proofing, etc. The mechanical evaluation of this unit was based on luminaire mechanical requirements specified on page 40 of Special Specifications for the Construction of Street Lighting Systems ( The Blue Book ), as well as, criteria developed by BSL specifically for LED luminaires. The evaluation was carried out in a controlled lab environment. These requirements are specified to ensure fixture durability, safety and ease of maintenance. The requirements are additional to any/all of those specified in The Blue Book. Luminaire must be clearly labeled with the full catalog number in accordance with ANSI C136.22. Passed: ALL Failed: NONE 4

There shall be no sharp edges or corners near serviceable parts. Passed: ALL Failed: NONE All access doors shall have the ability to remain in a fully open position during maintenance without manual assistance. Passed: ALL Failed: NONE All components shall be securely fastened so it will not become a dropping hazard. Passed: ALL Failed: NONE Drivers shall be easily assessable and removable for ease of maintenance. Quick Disconnects are required. Passed: A, B Failed: C - Quick Disconnects there, but needs screwdriver to remove driver All solid-state electronic components shall be sealed to IP 66. This may be accomplished either through component or luminaire housing design. Passed: ALL Failed: NONE All capacitors must have a minimum temperature rating of 90 degrees Celsius. N/A: No capacitors outside sealed driver All internal wiring shall be rated for 105 C and routed away from heat generating components of the driver assembly and LED panels. Wire shall not interfere with light distribution. Passed: ALL Failed: NONE Neither housing nor lens shall be constructed with poly carbonate/plastic that will discolor over time. Passed: ALL Failed: NONE All access doors shall have rubber (non-foam) gaskets. Gaskets shall be securely fastened. N/A: No gasket necessary since door is for access to driver which is fully sealed Adhesive compounds shall not degrade when subjected to normal operating temperatures. Passed: ALL Failed: NONE 5

Optical assemblies that can be installed in different positions shall be labeled so that field crews do not need supplemental instructions. N/A: All units can not be changed The reflector shall be sturdy and not easily bent. N/A: No units have a reflector Screws on the luminaire housing shall be captive and all the same type. Passed: ALL Failed: NONE Mechanical Build Quality Score 1 2 3 4 5 6 7 8 9 10 Bad Very Good C A, B 1.2 Electrical Build Quality The electrical evaluation of this unit was based on a test procedure developed by BSL/EED. The evaluation was carried out in a controlled lab environment. Ambient temperature: 25ºC Input voltage 120 VAC, 50-60 HZ Passed (ALL) 6

Power (W) Power factor: >0.9 Passed (ALL) Total harmonic distortion: <15% Passed (ALL) Rated (lamp/led) life in hours: 50,000 Passed based on manufacturer s claims/warranty (ALL) Power consumption: The power was measured for approximately 2 hours in our lab until it was determined that the test unit s power consumption had steadied (shown below). The fixtures were then moved to standard street lighting pole on a major street. Power readings were taken daily with the use of a Remote Monitoring System (RMS). The RMS readings showed the luminaire continued to function normally for its duration at the test site. Lab Power Test 300 280 260 240 220 200 Manufacturer A Manufacturer B Manufacturer C 180 160 140 120 100 1 10 20 30 40 50 60 70 80 90 100 110 120 Time (min) 7

Electrical Build Quality Score 1 2 3 4 5 6 7 8 9 10 Bad Very Good B A, C 1.3 Maintenance and Life Expectancy The fixture was scored based on manufacture s projected useful life. The end of useful life is generally considered to be when the fixture reaches 30% lumen depreciation. N/A Maintenance/Life (Hours) 1 2 3 4 5 6 7 8 9 10 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k A C B 1.4 Ease of Installation The fixture was scored on a scale 1 to 10 based on time and effort needed for installation. Electrician field notes were considered. The evaluation was carried out in the lab as well as the uncontrolled field site. 8

Ease of Installation 1 2 3 4 5 6 7 8 9 10 Difficult Easy A,B,C 1.5 Driver Controls The fixture was scored on a scale of 1 to 10 as to driver control functionality. The ability to easily adjust operating current would be considered most desirable. The evaluation was carried out in a controlled lab environment. Driver Controls 1 2 3 4 5 6 7 8 9 10 Difficult Easy C A, B 1.6 Driver Access The fixture was scored on a scale of 1 to 10 as to ease of driver access. The evaluation was carried out in a controlled lab environment. Driver Access 1 2 3 4 5 6 7 8 9 10 Difficult Easy C A, B 9

1.7 Illuminance Light Level (Street) The fixture was scored on a scale from 1 to 10, based on the amount of light produced compared to an existing typical 400WHPS streetlight installed in the City of Los Angeles. For this evaluation, light readings were taken from a grid representing one half the existing pole spacing. Grid Characteristics: Roadway - 10 foot increments parallel to curb for 80 feet Roadway 10 foot increments perpendicular to curb for 80 feet Illumination readings were recorded using a Solar Light PMA2100 scotopic/photopic meter. Scotopic readings were taken for possible use in the future to calculate S/P ratios. The illumination readings were taken between May 23 rd 2011 and July 21 st 2011. The readings were taken at our test site location (see map and pictures in appendix). Field conditions fairly similar each night. The street was open to traffic, and there was some ambient light pollution from local businesses. Illuminance Light Level (Street) 0 0 0 4 5 6 7 8 9 10 <60% 50% 60% 70% 80% 90% HPS 110% 120% B A C 10

Ratio to 1 Foot Candles Photopic/Scotopic Illumination 2.5 2 1.5 HPS Manufacturer A 1 Manufacturer B Manufacturer C 0.5 0 Average Illuminance: Roadway Average Illuminance: Sidewalk Average Illuminance: Roadway Average Illuminance: Sidewalk Photopic Scotopic Photopic Uniformity 14 12 10 8 6 4 HPS Manufacturer A Manufacturer B Manufacturer C 2 0 Roadway Uniformity (Ave./Min.) Roadway Uniformity (Max./Min.) Sidewalk Uniformity (Ave./Min.) Sidewalk Uniformity (Max./Min.) 11

1.8 Illuminance Uniformity Ratio (Street) This fixture was scored on a scale from 1 to 10 based on how uniform the illumination was. An average to minimum uniformity ratio of 2:1 would receive a 10. For this evaluation, light readings were taken from a grid representing one half the existing pole spacing. Grid Characteristics: (Same as illumination grid 1.7) (Same as evaluation conditions for 1.7) Illuminance Uniformity Ratio (Street) 1 2 3 4 5 6 7 8 9 10 11:1 10:1 9:1 8:1 7:1 6:1 5:1 4:1 3:1 2:1 C A, B 1.9 Illuminance Light Level (Sidewalk East) The fixture was scored on a scale from 1 to 10, based on the amount of light produced compared to an existing 400WHPS streetlight. For this evaluation, light readings were taken from a grid representing one half the existing pole spacing. Grid Characteristics: Sidewalk 10 foot increments parallel to curb for 80 feet 12

Sidewalk 5 foot increments perpendicular to curb for 10 feet Illumination readings were recorded using a Solar Light PMA2100 scotopic/photopic meter. Scotopic readings were taken for possible use in the future to calculate S/P ratios. (Same as evaluation conditions for 1.7) Illuminance Light Level (Sidewalk East) 0 0 3 4 5 6 7 8 9 10 <50% 50% 60% 70% 80% 90% HPS 110% 120% B A, C 1.10 Illuminance Uniformity (Sidewalk East) The fixture was scored on a scale from 1 to 10, based on the amount of light produced compared to an existing 400WHPS streetlight. For this evaluation, light readings were taken from a grid representing one half the existing pole spacing. Grid Characteristics: Sidewalk 10 foot increments parallel to curb for 80 feet Sidewalk 5 foot increments perpendicular to curb for 15 feet Illumination readings were recorded using a Solar Light PMA2100 scotopic/photopic meter. Scotopic readings were taken for possible use in the future to calculate S/P ratios. (Same as evaluation conditions for 1.7) 13

Illuminance Uniformity Ratio (Sidewalk East) 1 2 3 4 5 6 7 8 9 10 11:1 10:1 9:1 8:1 7:1 6:1 5:1 4:1 3:1 2:1 C A, B 1.11 Illuminance Light Level (Sidewalk West) The fixture was scored on a scale from 1 to 10, based on the amount of light produced compared to an existing 400WHPS streetlight. For this evaluation, light readings were taken from a grid representing one half the existing pole spacing. Grid Characteristics: Sidewalk 10 foot increments parallel to curb for 80 feet Sidewalk 5 foot increments perpendicular to curb for 15 feet Illumination readings were recorded using a Solar Light PMA2100 scotopic/photopic meter. Scotopic readings were taken for possible use in the future to calculate S/P ratios. (Same as evaluation conditions for 1.7) Illuminance Light Level (Sidewalk West) 0 0 3 4 5 6 7 8 9 10 <50% 50% 60% 70% 80% 90% HPS 110% 120% B C A 14

1.12 Illuminance Uniformity Ratio (Sidewalk West) The fixture was scored on a scale from 1 to 10, based on the amount of light produced compared to an existing 400WHPS streetlight. For this evaluation, light readings were taken from a grid representing one half the existing pole spacing. Grid Characteristics: Sidewalk 10 foot increments parallel to curb for 80 feet Sidewalk 5 foot increments perpendicular to curb for 15 feet Illumination readings were recorded using a Solar Light PMA2100 scotopic/photopic meter. Scotopic readings were taken for possible use in the future to calculate S/P ratios. (Same as evaluation conditions for 1.7) Illuminance Uniformity Ratio (Sidewalk Far) 1 2 3 4 5 6 7 8 9 10 11:1 10:1 9:1 8:1 7:1 6:1 5:1 4:1 3:1 2:1 C A, B 1.13 Photometric Data Reliability The LED fixture field measurements were compared to the LM-79 compliant IES photometric file. A score was based on how accurate a computer model can be designed to match our field readings. 15

The evaluation was carried out in a controlled lab environment and an uncontrolled field environment. LM-79 and Photometric Data (% Difference Files Vs. Field) 0 1.5 2 3 4.5 5 6 7.5 9 10 No Files >25% 20-25% 15-20% 10-15% 5-10% 0%-5% A B C 1.14 Photometric Spacing Performance The fixture was scored on a scale of 1 to 10 based on predicted illumination performance at various pole spacings. LM-79 IES photometric files provided by the manufacturer were used to model performance. The evaluation was carried out in a controlled lab environment. Photometric Spacing Performance 0 0 0 4 5 6 7 8 9 10 115' 120' 125' 130' 135' 140' 145' 150' 155' 160' B C A 1.15 Light Trespass The fixture was scored on a scale of 1 to 10 based on the amount light trespass compared to the 400W HPS fixture. The readings were taken with a light meter along the property line 16

on both sides of the street. The meter was held vertically to take illuminance readings at approximately 5 from the ground. Readings were taken at 10 increments to correspond with the illumination grid readings. (Same as evaluation conditions for 1.7) Light Trespass 1 2 3 4 5 6 7 8 9 10 110% HPS 90% 80% 70% 60% 50% 40% 30% 20% A B C 1.16 Power Saving The fixture was scored on a scale of 5 to 10 based on power savings when compared to a 400W HPS fixture. A score of 10 would indicate a savings of over 65%. A power savings of less than 40% would result in a score of 0. The evaluation was based on official manufacturer specifications and verified in a controlled lab environment. Power Savings 0 0 0 0 5 6 7 8 9 10 <40% 40-45% 45-50% 50-55% 55-60% 60-65% >65% C A B 17

CD/M² 1.17 Discomfort Glare Light readings were taken from twenty one various locations where it was determined that glare sensitivity may exist and create a significant negative impact to drivers and pedestrians. Luminance readings were recorded using a Minolta Luminance Meter LS-100 at an average eye level, aimed at our target luminaire. (Same as evaluation conditions for 1.7 Discomfort Glare 1 2 3 4 5 6 7 8 9 10 200% 180% 160% 140% 120% HPS 80% 60% 40% 20% A B, C Glare (13 point averages) 20,000 18,000 16,000 14,000 12,000 10,000 8,000 6,000 HPS Manufacturer A Manufacturer B Manufacturer C 4,000 2,000 0 18

1.18 Light Patterns on Street The fixture was scored from a scale of 1 to 10 based on the existence and severity of any light pattern anomalies. A score of 10 would indicate no noticeable light patterns. Evaluation Condition The evaluation was carried out in an uncontrolled field environment. Light Patterns 1 2 3 4 5 6 7 8 9 10 Distinct None ALL 1.19 Packaging This fixture was scored on a scale of 1 to 10 based on the quality of the packaging. In addition to protecting the fixture, the packaging must be easy to handle and have a minimal impact on the environment in order to achieve a high score. The evaluation was carried out in a controlled lab environment. Packaging 1 2 3 4 5 6 7 8 9 10 Excessive Minimal C A B 19

Section 2: Conclusion Conclusion The solid state industry of streetlights has advanced tremendously in the past couple years. Our last published testing phase was just over two years ago, and the positive advancements that we have seen in this short time with LED streetlights has been exceptional. As with every phase of testing that we have completed here, the products continue to surpass each other in performance; Phase V was no different. The preliminary screening process used, narrowed our testing field down to three potential products. Based on photometric files and published documents, the three products were thought to meet the standards of the Bureau of Street Lighting. In order to verify we put the luminaires through a full evaluation. The first evaluation was the mechanical review. Aesthetically, all three units were similar in design, low profile with an optical distribution lens over each LED. One of the units was longer and weighted approximately seven pounds more. Two of the three units passed all the mechanical questions, but it was determined that even though some of the third product did not pass all the criteria, the issues of concern were easily fixable. For those reasons, all three units continued to our electrical and field testing. During our electrical testing it was noticed that the test units ranged in power consumption from as low as 192W, to as high as 266W. When compared to the 400W HPS unit which realistically uses 465W, the test units are saving from approximately 42% to 58%. When all aspects were factored in, the units that saved about 54% power scored highest in our evaluation. 20

Installation played a key roll in equipment approval. There was little disparity in the different units. Issues of concern ranged from terminal block location to weight and size of the fixture, and even packaging was taken into account. We also considered how much space the unit with the packaging takes up on the installation truck. This is because we want to minimize the time consumed back and forth re-stocking the installation truck. During this phase of testing all three of our subjects were all fairly similar in packaging and installation. The results from our field testing were acceptable even though our measurements did not meet the existing HPS field conditions. The illumination measured from manufacturer A came very close to the IES recommended value for a major roadway with medium pedestrian characteristics, and manufacturer B was close behind. Manufacturer C on the other hand was much higher than the recommended value. Roadway uniform ratio (average/minimum) is another determining factor of the test fixtures, and manufacturer A and B were better than the HPS and while manufacturer C was equal with HPS, it was still higher than the recommended value set by IES. The max/min ratio had similar results. Manufacturer C was similar to HPS, while manufacturer A and B were much better with a ratio of about half that of HPS. Another measurement we compared to the HPS lights was the sidewalk illumination. The existing HPS lighting was very high and our test units could not mimic the high level, but for good reason. The existing lighting level on the sidewalks was much higher than the recommended practice, but all three of our test units were able to produce enough lights on the sidewalks to meet IES recommendations. The next field measurement had to do with distribution control. Our street lights are only supposed to illuminate the public roadways and sidewalks. Light spilling onto private property can be a nuisance and all of our test subjects performed better than the existing HPS luminaire. Our final field test was to see how much glare passing motorists and pedestrians 21

would incur in comparison to the existing HPS fixture. The variations in results were very minimal but all three of the test units produced less glare than the existing HPS lights did. When we compiled all of our test results and observations, it was obvious how much the technology and products have improved over the last two years. Having power savings now close to 60% while illumination levels near IES recommendations highlights this phase. At the conclusion of our last phase of testing larger luminaires, we felt two units we tested met our standards. After we completed Phase V, we approved two of the three units we put through a full evaluation for city wide HPS replacement. Below are the final scores for each of the three products we evaluated in Phase V. Each of the 19 scoring categories were weighted based on what we felt was more relevant in choosing luminaires for city wide replacement. When added all together this was the final result. Manufacturer A Manufacturer B Manufacturer C LED Equipment Rating Summary 0 100 200 300 400 500 600 700 800 Total Score LM79 and Photometric Data Photometric Spacing Performance Build Quality/Electrical Build Quality/Mechanical Maintenance/Life Ease of Installation Driver Controls Driver Access Illuminance Light Level (Street) Illuminance Uniform Ratio (Street) Illuminance Light Level (Sidewalk near) Illuminance Uniform Ratio (Sidewalk near) Illuminance Light Level (Sidewalk far) Illuminance Uniform Ratio (Sidewalk far) Light Trespass Power Saving Discomfort Glare Light Patterns on Street Packaging 22

Appendix LED Test Location Map 23

LED Field Installations Manufacturer A Manufacturer B Manufacturer C 24

Remote Monitoring System Sample 25