Paper No. CORROSION MODELING OF CO 2 CORROSION OF MILD STEEL AT HIGH PRESSURES OF CO 2 AND IN THE PRESENCE OF ACETIC ACID

Similar documents
HIGH PRESSURE CO 2 CORROSION ELECTROCHEMISTRY AND THE EFFECT OF ACETIC ACID

The Effect of Cl - and Acetic Acid on Localized CO 2 Corrosion in Wet Gas Flow

Top of Line Corrosion and Water Condensation Rates in Wet Gas Pipelines

THE EFFECT OF ACETIC ACID ON THE INTEGRITY OF PROTECTIVE IRON CARBONATE LAYERS IN CO 2 CORROSION OF MILD STEEL

Key issues related to modelling of internal corrosion of oil and gas pipelines A review

Combined Effect of CO 2, H 2 S and Acetic Acid on Bottom of the Line Corrosion

FREECORP TM 2.0 THEORETICAL BACKGROUND AND VERIFICATION. Prepared by: Srdjan Nesic Yougui Zheng Ning Jing Saba Navabzadeh Esmaeely Zheng Ma

Solubility of iron in carbonic acid solutions

ROLES OF PASSIVATION AND GALVANIC EFFECTS IN LOCALIZED CO 2 CORROSION OF MILD STEEL

A STUDY OF PROTECTIVE IRON CARBONATE SCALE FORMATION IN CO 2 CORROSION

Rolf Nyborg and Arne Dugstad Institute for Energy Technology P.O. Box 40, N-2027 Kjeller, Norway

IRON CARBONATE SCALE GROWTH AND THE EFFECT OF INHIBITION IN CO 2 CORROSION OF MILD STEEL

MECHANISTIC MODEL FOR THE PREDICTION OF TOP-OF-THE- LINE CORROSION RISK

Paper No Top of the Line Corrosion in H 2 S/CO 2 Environments

Corrosion Rates. OLI model basics Polarization curves

Paper No. CORROSION CO 2 CORROSION IN THE PRESENCE OF TRACE AMOUNTS OF H 2 S

Effect of Incorporation of Calcium into Iron Carbonate Protective Layers in CO 2 Corrosion of Mild Steel

Jin Huang, Bruce Brown, Yoon-Seok Choi and Srdjan Nešić

Effect of Alloying Elements on the Corrosion Behavior of Carbon Steel in CO 2 Environments

A. Mohammed Nor, M.F. Suhor, M.F. Mohamed, M. Singer and S. Nesic

Corrosion Mechanism of Carbon steel in MDEA-Based CO 2 Capture Plants ABSTRACT INTRODUCTION

Investigation of Pseudo-Passivation of Mild Steel in CO 2 Corrosion

ADVANCEMENT IN P REDICTIVE MODELING OF MILD STEEL CORROSION IN CO₂ AND H₂S CONTAINING ENVIRONMENTS

ABSTRACT INTRODUCTION

Effect of Chloride on Localized Corrosion Initiation of Carbon Steel in a CO 2 Aqueous Environment Xin Gao, Bruce Brown, Srdjan Nesic

Aria Kahyarian, Bruce Brown, and Srdjan Nesic Ohio University 342 W. State St. Athens, OH USA ABSTRACT

Development and Application of a Downhole Corrosion Prediction Model. Sonja Richter, Mohsen Achour ConocoPhillips Bartlesville, OK USA

A quasi 2-D localized corrosion model

Effect of Alloying Elements on the Corrosion Behavior of Carbon Steel in CO 2 Environments

PRESENCE OF H 2 S. A dissertation presented to. the faculty of the

Paper No. ABSTRACT. KEY WORDS: mechanistic model, galvanic, corrosion prediction, CO 2 corrosion, localized

Paper No. CORROSION

Integrity of Corrosion Inhibitor Films in Multiphase Flow

Top of Line Corrosion Testing for a Gas Field with Acetic Acid and Low CO 2

Effect of Solution ph on Corrosion Product Layer Formation in a Controlled Water Chemistry System

Technical Note: Electrochemistry of CO 2 Corrosion of Mild Steel: Effect of CO 2 on Cathodic Currents

EROSION-CORROSION IN DISTURBED LIQUID/PARTICLE FLOW. A thesis presented to. the faculty of

XII-EROSION-CORROSION MODELING AND EXPERIMENTS. Introduction

COMPARISON OF OXIDATION POWER SENSOR WITH COUPLED MULTIELECTRODE ARRAY SENSOR FOR MONITORING GENERAL CORROSION

Paper No LOCALIZED CORROSION IN AN H2S / CO2 ENVIRONMENT

Influence of Hydrogen Sulfide on CO 2 Corrosion in Pipeline Steel

A Novel Method to Mitigate the Top of the Line Corrosion in Wet Gas Pipelines by Corrosion Inhibitor within a Foam Matrix

MODELLING THE ROLE OF ACIDIC SPECIES ON CO 2 CORROSION PREDICTION MOHAMAD AZWAN BIN MOHD GHAZALI

Cathodic Reaction Mechanism of 3Cr Low Alloy Steel Corroded in CO 2 -Saturated High Salinity Solutions

ABSTRACT INTRODUCTION

Module 5 : Electrochemistry Lecture 25 : Corrosion

Effect of Oxygen on CO 2 Corrosion of Mild Steel. A thesis presented to. the faculty of

Verification of an Electrochemical Model for Aqueous Corrosion of Mild Steel for H 2 S Partial Pressures up to 0.1 MPa

A thesis presented to. the faculty of. In partial fulfillment. of the requirements for the degree. Master of Science. Vanessa Fajardo Niño de Rivera

Effect of Precorrosion and Temperature on the Formation Rate of Iron Carbonate Film

Paper No. Key words: CO 2 corrosion, carbide, iron carbonate, steel microstructure

Study of the Solubility of Iron Carbonate in the Presence of Acetic Acid using an EQCM

PRED1 CTIVE MODEL FOR SWEET CORROSION IN HORIZONTAL MULTIPHASE SLUG FLOW

Journal of Natural Gas Science and Engineering

Hydrogen Generation During the Corrosion of Carbon Steel in Oxalic Acid (U) B. J. Wiersma WSRC-TR (U)

Localized Corrosion in the Presence of Corrosion Inhibitors at High Flow Velocities in CO 2 Environments

A STUDY OF FACTORS AFFECTING CO2 CORROSION AND INHIBITOR EFFECTIVENESS USING A MULTI-PHASE FLOWLOOP

ABSTRACT INTRODUCTION

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected

ABSTRACT INTRODUCTION

Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment.

KINETICS OF IRON SULFIDE AND MIXED IRON SULFIDE/CARBONATE SCALE PRECIPITATION IN CO 2 /H 2 S CORROSION

EIS INVESTIGATION OF CARBON DIOXIDE AND HYDROGEN SULFIDE CORROSION UNDER FILM FORMING CONDITIONS

THE EFFECTS OF OIL VISCOSITY ON SWEET CORROSION IN MULTIPHASE OIL, WATER/GAS HORIZONTAL PIPELINES

Corrosion of Electrical Submersible Pumps (ESP) In South Rumaila Oil Field

Mixed potential theory

Advancement in Predictive Modeling of Mild Steel Corrosion in CO 2 - and H 2 S-Containing Environments

Top-of-the-Line Corrosion in The Presence of Hydrocarbon Co-Condensation in Flowing Condition

Environments. A dissertation presented to. the faculty of. In partial fulfillment. of the requirements for the degree. Doctor of Philosophy

CORROSION. Corrosion: Is the deterioration of metal due to its interaction with the surrounding environment. Electrochemical Nature of Corrosion.

Effect of Fe ion concentration on corrosion of carbon steel in CO2 environment

Effect of Incorporation of Calcium into Iron Carbonate Protective Layers in CO 2 Corrosion of Mild Steel

T H E U N I V E R S I T Y O F T U L S A THE GRADUATE SCHOOL EROSION-CORROSION MODELING FOR SCALE FORMING CONDITIONS IN CO 2 ENVIRONMENT

A thesis presented to the faculty of the. Fritz. J. and Dolores H.Russ College of Engineering and Technology of. Ohio University

Mat E 272 Lecture 26: Oxidation and Corrosion

MATHEMATICAL MODELS FOR UNDER-DEPOSIT CORROSION IN AERATED AND DE-AERATED SOLUTIONS

Electrochemical Corrosion Behavior of X52 and X60 Steels in Carbon Dioxide Containing Saltwater Solution

Calculation of the Amount of Hydrogen Absorbed by Steel During the Mechanical Plating Operation

Chapter 7a- Interpreting Polarization Curves

2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate

Erosion corrosion of mild steel in hot caustic. Part II: The evect of acid cleaning

Environmental Degradation Fundamentals

Comparison of the Rotating Cylinder and Pipe Flow Tests for Flow-Sensitive Carbon Dioxide Corrosion

Effect of Carbon Steel Composition and Microstructure on CO 2 Corrosion. A dissertation presented to. the faculty of. In partial fulfillment

Predicting Effects of Corrosion Erosion of High Strength Steel Pipelines Elbow on CO 2

The Effect of Temperature in Sweet Corrosion of Horizontal Multiphase Carbon Steel Pipelines

Probabilistic Model for Internal Uniform/Pitting Corrosion of Gas pipelines

THE USE OF GALVANOSTATIC PULSE MEASUREMENTS TO DETERMINE CORROSION PARAMETERS Galvanostatic Pulse Measurement of Corrosion

Water Chemistry and Corrosion Inhibition in High Pressure CO2 Corrosion of Mild Steel. A thesis presented to. the faculty of

Effect of Flow and Steel Microstructure on the Formation of Iron Carbonate

Among the known options in carbon. capture and storage, the injection. and storage of carbon dioxide (CO 2

Development of Corrosion Inhibitors for Prevention of Top of the Line Corrosion (TLC)

IX. INHIBITOR EFFECTIVENESS ON CO 2 CORROSION WITH SAND. Introduction

APPLICATION OF ELECTROCHEMICAL NOISE TECHNIQUE IN MULTIPHASE FLOW

THE EFFECT OF SLUG FREQUENCY ON CORROSION IN HIGH PRESSURE, INCLINED PIPELINES C. KANG, R. WILKENS, AND W. P. JEPSON

Measurements. A thesis presented to. the faculty of. In partial fulfillment. of the requirements for the degree. Master of Science.

Localized Top of the Line Corrosion in Marginally Sour Environments

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy.

Corrosion Rate Measurement on C-Steel

Laboratory Experiments in Corrosion Engineering II

Transcription:

Paper No. CORROSION 200 0623 MODELING OF CO 2 CORROSION OF MILD STEEL AT HIGH PRESSURES OF CO 2 AND IN THE PRESENCE OF ACETIC ACID Keith George, Shihuai Wang, Srdjan Nesic and Kees de Waard Institute for Corrosion and Multiphase Technology Ohio University, Athens, OH 701 ABSTRACT Recently, experiments have been performed to determine the electrochemistry of mild steel at high pressures of carbon dioxide (CO 2 ) and in the presence of acetic acid (HAc). An electrochemical model which has been validated with data collected in glass cells will be compared to the new data which has been gathered in a high pressure flow loop Furthermore, the de Waard corrosion model has been modified to account for the presence of acetic acid and the predicted corrosion rated from the de Waard model will also be compared to the experimental corrosion rate data found by using linear polarization resistance (LPR) and weight loss measurements. Key words: acetic acid, potentiodynamic sweeps, corrosion modeling, electrochemical modeling. INTRODUCTION Numerous corrosion prediction models have been developed throughout the years in an attempt at quantifying the risk of CO 2 corrosion. 1-8 These models are largely empirical or semi-empirical correlations from either field data, laboratory data or a combination of the two. A limitation to these models appears when additional data about existing or new phenomena become available (such as the effect of organic acids discussed below) and then cannot easily be incorporated into the models without recalibration of the entire model. This can be difficult and often a time consuming exercise with an uncertain outcome. Another approach to CO 2 corrosion modeling is exemplified by the so called mechanistic models 9-10 which are developed on solid engineering/scientific grounds. Mechanistic models also include unknown constants, which must be estimated by comparison to experimental data, however these constants have clear physical meaning and usually do not need as frequent adjustments whenever new data emerge or new phenomena are incorporated into the model. The main drawback with mechanistic models is that they cannot be formulated successfully unless there is sufficient understanding about the phenomena Copyright 200 by NACE International. Requests for permission to publish this manuscript in any form, in part or in whole must be in writing to NACE International, Publications Division, 10 South Creek Drive, Houston, Texas 7708-906. The material presented and the views expressed in this paper are solely those of the author(s) and not necessarily endorsed by the Association. Printed in U.S.A. 1

being modeled, a problem not encountered by the purely empirical models. semi-empirical models are somewhere in between. As the name suggests, A limitation of all existing CO 2 corrosion models is that they are predominantly based on laboratory data, generated in glass cell or small diameter flow loop experiments. While a wide range of experimental parameters can be covered in such equipment (temperatures, ph, flow rates) most in depth electrochemical studies have been limited to glass cells and low partial pressures of CO 2. (typically 1 bar). Since limited experimental data exist at high CO 2 partial pressures, the models based on low pressure data have to extrapolate to these conditions. Their application to complex field conditions is an even more uncertain exercise. Recently, new experimental data have been generated which offer an insight into the mild steel corrosion mechanisms and rates at high partial pressures of CO 2 and in the presence of HAc. 11 These data were generated with the primary intention of verifying and adjusting the existing mechanistic models for better corrosion rate prediction under these conditions. The experimental procedures and discussion of the results are described in the original publication 11 and will not be repeated here. The details of the electrochemical model and the modified de Waard (GDN) model has also been given elsewhere 12 and only the outline of the models will be shown below followed by the predictions and the discussion. Electrochemical model MODELS In the model briefly described below it has been assumed that the main cathodic reaction is H + reduction and that H 2 CO 3 and HAc act primarily as additional sources of H + ions (through dissociation). The only anodic reaction considered below is iron dissolution. Hence one can write the current density vs. voltage equation for H + reduction as: 1 1 d d r i i i i H a H H lim( HAc) i ( ) ( ) lim( ) lim( H 2CO3 ) 1 (1) where i a(h+) is the charge transfer current density in A/m 2, i d lim(h+) is the mass transfer limiting current density for H + ions in A/m 2 d, i is the mass transfer limiting current density arising from the lim(hac) r presence of HAc in A/m 2, and is the chemical reaction limiting current density arising from the presence of H2CO 3 in A/m 2. i lim( H2CO 3 ) The charge transfer current density in Equation (1) is given by the Tafel relationship: i a i b c 10 (2) ( H ) 0( H ) where i 0(H+) is the exchange current density in A/m 2, is the overvoltage in V, and b c is the cathodic Tafel slope in V/dec. The H + mass transfer limiting current density in Equation (1) is calculated by: 2

d i k H mf[ H ] lim( ) b (3) where k m is the H + mass transfer coefficient in m/s, F is Faraday s constant and [H + ] b is the bulk concentration of H + ions in kmol/m 3. Similarly the HAc mass transfer limiting current density in Equation (1) is given by: i ] d lim( HAc) kmf[ HAc b () where k m is the HAc mass transfer coefficient in m/s, [HAc] b is the bulk concentration of HAc in kmol/m 3. The H 2 CO 3 chemical reaction current limiting current density in Equation (1) is found as: r f i F[ CO ] lim( ) 2 D K k f () H 2CO3 b H 2CO3 hyd hyd where [CO 2 ] b is the bulk concentration of carbon dioxide in kmol/m 3, is the diffusion coefficient D H2 CO 3 of H2CO 3 in m 2 /s, K hyd is the equilibrium constant for carbon dioxide hydration s -1, k f hyd is the rate of hydration of carbon dioxide in s -1 and f is the flow multiplier. The only anodic reaction considered, iron dissolution, was assumed to be under activation control and hence pure Tafel behavior was modeled. The current density vs. voltage equation is then: i b i 10 a (6) ( Fe) 0( Fe) where i 0(Fe) is the exchange current density in A/m 2, is the overvoltage in V, and b a is the anodic Tafel slope in V/dec. The corrosion potential then is found by solving the charge balance equation at the metal surface: i (7) Fe) i( H ( ) Direct reduction of water was neglected here. Once the corrosion potential is obtained from Equation (7), the corrosion current is found from the anodic current density (Equation 6) at the corrosion potential. More details about this model and its origins can be found elsewhere. 12 George, de Waard, Nesic (GDN) model The well-known de Waard model modified recently 12, for the presence of HAc, takes the following form: 1 V corr 1 1 (8) V V V r m H m ( 2CO 3) ( HAc ) 3

where V corr is the corrosion rate in mm/yr, V r is the reaction rate in mm/yr, V m(h2co3) is the mass transfer rate of H 2 CO 3 in mm/y, and V m(hac) is the mass transfer rate of HAc in mm/yr. The reaction rate in Equation (8) is: c2 log( Vr ) c1 c3 log( pco2 ) c ( ph actual ph CO ) (9) 2 T where pco 2 is the partial pressure of CO 2 in bar, ph actual is the actual system ph in the presence of cations such as Ca 2+, Fe 2+, Mg 2+, etc., ph CO2 is the pure ph of the system arising from CO 2 dissolution only and the c 1 to c are constants. The H 2 CO 3 mass transfer component of the corrosion rate in Equation (8) can be found as: 0.8 v V [ ] m c ( 2 3) pco H CO 2 d (10) where is kinematic viscosity in m 2 /s, d is pipe diameter in m and c is a constant. Finally the HAc mass transfer component of the corrosion rate in Equation (8) Vm( HAc) km[ HAc] (11) More details about this model and its history can be found elsewhere. 12 Corrosion mechanisms RESULTS AND DISCUSSION While both models described above can predict the corrosion rate, the electrochemical model offers additional insight into the corrosion mechanisms. Potentiodynamic sweeps predicted by the electrochemical model, shown in the figures below, have been broken down according to the three individual sources of hydrogen ions driving the cathodic reaction: (1) transport of hydrogen ions from the bulk, (2) transport and dissociation of carbonic acid and (3) transport and dissociation acetic acid. This was done in order to highlight the effect of the dominant corrosion mechanism. An example of a predicted potentiodynamic sweep is shown in Figure 1. It is clear that under these conditions HAc is the major source of hydrogen ions and is overshadowing the CO 2 corrosion process. In this and all other cases reported below, the role of ph, i.e. the free H + ions, is negligible. Also shown in Figure 1 is the sum of the cathodic currents (labeled: total cathodic). This figure will serve as a template for the comparison of the predicted and the experimental results given in subsequent figures. Unless otherwise specified all the results reported below were obtained for 60 o C and at ph. 3 bar CO 2 The comparisons between the electrochemical model predictions and the experimental potentiodynamic sweeps at 3 bar CO 2, without HAc, at velocities of m/s, 1.0 m/s and 2.0 m/s are shown in Figures 2-. At all three velocities, the potentiodynamic sweeps predicted by the electrochemical model were

found to be in good agreement with the experimental data. It is worth noting that in these figures only the H + reduction rate is significantly affected by the velocity. For example, at m/s the limiting current is 8 A/m 2 but at 2.0 m/s, the limiting current shifts to A/m 2 due to increased mass transfer of H + to the metal surface. The carbonic acid contribution to the limiting current is limited by CO 2 hydration kinetics and is not affected by the change in flow velocity. The anodic dissolution of iron is predicted well even if the experimental sweeps show evidence of prepassivation at higher overpotentials. This effect has not been modeled as it is suspected to be an artifact of the experimental technique used. 10 bar CO 2 For 10 bar CO 2, without HAc, the comparison between the electrochemical model and the experimental potentiodynamic sweeps at and 2.0 m/s liquid velocities are shown in Figures and 6. The electrochemical model and the experimental potentiodynamic sweeps are in remarkably good agreement given that this model was calibrated only with low pressure data making the predictions shown in Figure and Figure 6 an extrapolation. It is worth noting that similar agreement was obtained at an intermediate liquid velocity of 1.0 m/s but is not shown here for brevity. At a partial pressure of 10 bar CO 2, the total limiting current shows no velocity dependence as it is dominated by a slow CO 2 hydration step. 20 bar CO 2 At 20 bar CO 2 and no HAc, the comparison between the electrochemical model and the experimental potentiodynamic sweeps at and 2.0 m/s liquid velocity are shown in Figures 7 and 8. The electrochemical model predicts the corrosion behavior very well at all velocities studied (including 1 m/s experiment not shown). The discrepancy seen for the cathodic limiting current is probably due to an experimental artifact i.e. due to a rapid iron carbonate film formation on the working electrode during the cathodic sweeps. 10 ppm HAc The comparison between the experimental data and the electrochemical model at 1 m/s, 10 bar CO 2 when 10 ppm HAc is present is shown in Figure 9. The corrosion process is dominated by H 2 CO 3 i.e. by the high partial pressure of CO 2 while the 10 ppm of HAc make little difference in the corrosion mechanisms or rate. It is evident that the electrochemical model predicts the corrosion potential and cathodic limiting current very well. In all cases the electrochemical model predicts the charge-transfer region of the anodic region very well until prepassivation occurs at higher over-potentials. 100 ppm HAc In the case of solutions containing 100 ppm HAc at 1m/s and 10 bar CO 2 (shown in Figure 10), the corrosion process seems to be still dominated by CO 2 (i.e. H 2 CO 3 ) with HAc playing a larger role, contributing to approximately 1-20% of the total cathodic current. The model predicts the corrosion potential very well while the limiting current is slightly under-predicted when compared to the experimental data.

1000 ppm HAc The comparison between the experimental data and the electrochemical model for solutions containing 1000 ppm HAc at 1 m/s and 10 bar CO 2 is shown in Figure 11. Again, the corrosion potential is predicted very well, but in this case, the experimental limiting current is not in good agreement with the electrochemical model. It is believed that the experimental potentiodynamic sweeps are faulty in these conditions due to the working electrode being rapidly filmed during the cathodic sweep. The corrosion process appears to be under mixed H 2 CO 3 -HAc control with HAc playing a somewhat more important role. Under the same conditions and for liquid velocities of and 2.0 m/s the comparisons are shown in Figures 12 and 13. As in the case of 1.0 m/s, the corrosion potentials are predicted very well but the limiting currents are not in agreement due to filming of the working electrode. It is worth remembering that the HAc limiting current is mass transfer controlled and is therefore sensitive to the liquid velocity while the one arising from H 2 CO 3 is not. Therefore HAc which is a minor source of H + ions at m/s actually becomes the main source of H + at 2.0 m/s. Corrosion rates Effects of velocity and CO 2 partial pressure The comparison between the experimental data (LPR and weight loss) and the electrochemical and de Waard corrosion model at a partial pressure of 3 bar CO 2 is shown Figure 1. Since no HAc was present during the experiments, the data from experiments is compared to the de Waard corrosion model from 199. The average value of the experimental data set is presented there, with the error bars representing the maximum and minimum experimental values. The number of independent experimental data points used to calculate the average is given above the error bar. It is evident that the experimental LPR and weight loss measurements are in good agreement with each other. It is also evident that only a slight velocity dependence can be seen in the experimentally corrosion rates. Both models predict the corrosion rate rather well particularly at the higher velocities. The de Waard corrosion model predicts too rapid a change in the corrosion rate with velocity and under-estimates the corrosion rate at m/s. The electrochemical model shows the opposite trend, having virtually no velocity dependence and overpredicts the corrosion rates at m/s. The comparisons between the experimental data (LPR and weight loss) and the electrochemical and de Waard models at partial pressures of 10 and 20 bar CO 2 are shown in Figures 1 and 16. The de Waard model again shows a higher velocity dependence on the corrosion rate than experimentally observed while the electrochemical model again shows virtually no velocity dependence but is in good agreement with the experimental results. Effects of HAc and velocity The comparison between the experimental data (LPR and weight loss) and the electrochemical and GDN models as a function of HAc concentration are shown in Figure 17. Both models predict well the effect of HAc on the corrosion rate which becomes significant at 10 bar CO 2 only when HAc concentration exceeds 100 ppm. At all concentrations of HAc, both models slightly underpredict the experimental values, with the GDN model in slightly better agreement than the electrochemical model. 6

The effect of velocity on the corrosion rate of mild steel in the presence of 1000 ppm HAc is shown in Figure 18. Both models show the correct experimental trend i.e. the more significant velocity dependence of the corrosion rate when compared with the case of HAc-free CO 2 corrosion (shown in Figure 1). Interestingly, the strong velocity dependence is undepredicted by both models. CONCLUSIONS Weight loss and LPR measurements have been used to verify the basic effect of HAc on the anodic and cathodic reactions present in CO 2 corrosion found from potentiodynamic sweeps. The potentiodynamic sweeps were then compared with an electrochemical model. The agreement between the model and the experimental results is very good. A modification to the de Waard corrosion model has been made to account for the presence of HAc (GDN model). The experimental corrosion rates, measured using LPR and weight loss, were in agreement with the electrochemical and GDN models. REFERENCES 1. C. de Waard, U. Lotz, Prediction of CO 2 Corrosion in Carbon Steel, CORROSION/1993, Paper No. 69, (Houston, TX: NACE International 1993). 2. C. de Waard, U. Lotz, A. Dugstad, Influence of Liquid Flow Velocity on CO 2 Corrosion: A Semi-Empirical Model, CORROSION/199, Paper No. 128, (Houston, TX: NACE International, 199). 3. Y.M. Gunaltun, Combining Research and Field Data for Corrosion Rate Prediction, CORRODSION/1996, Paper No. 27, (Houston, TX: NACE International, 1996).. B.F.M. Pots, R.C. John, I.J. Rippon, M.J..S. Thomas, S.D. Kapusta, M.M. Girgis, T.Whitam, Improvements on de Waard-Milliams Corrosion Prediction an Applications to Corrosion Management, CORROSION/2002, Paper No. 0223, (Houston, TX: NACE International, 2002).. E. Dayalan, G. Vani, J.R. Shadley, S.A. Shirazi, E.F. Ryicki, CO 2 Corrosion of Carbon Steels in Pipe Flow, CORROSION/9, Paper No. 118, (Houston, TX: NACE International199). 6. R.C. John, K.G. Jordan, A.L. Young, S.D. Kapusta, W.T. Thompson, SweetCor: An Information System for the Analysis of Corosion of Steels by Water and Carbon Dioxide, CORROSION/98, Paper No. 20, (Houston, TX: NACE International, 1998). 7. W.P. Jepson, S. Stitzel, C. Kang, M. Gopal, Model for Sweet Corrosion in Horizontal Multiphase Slug Flow, CORROSINO/97, Paper No. 11, (Houston, TX: NACE International, 1997). 8. B.F.M.Pots, Mechanistic Models for the Prediction of CO 2 Corrosion Rates under Multiphase Flow Conditions, CORROSIN/9, Paper No. 137, (Houston, TX: NACE International, 199). 9. S. Nesic, J. Postlethwaite, S. Olsen, An Electrochemical Model for Prediction Of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions, Corrosion Science, Vol 2, No, April 1996, p 280. 10. S. Nesic, M. Nordsveen, R. Nyborg, A. Stangeland, A Mechanistic Model for CO 2 Corrosion with Protective Iron Carbonate Films, CORROSION/2001, Paper No. 0100, (Houston, TX: NACE International, 2001). 11. S. Wang, K. George, S. Nesic, High Pressure CO 2 Electrochemistry and the Effect of Acetic Acid, CORROSION/200, Paper No. 037, (Houston, TX: NACE International, 200). 12. K. George, S. Nesic, K. de Waard, Electrochemical Invesitgation of CO 2 Corrosion of Mild Steel in the Presence of Acetic Acid, CORROSION/200, Paper No. 0379, (Houston, TX: NACE International, 200). 7

0. Potential / V - -0. H + H 2 CO 3 HAc Figure 1. The predicted electrochemical reactions in pressurized solutions at a partial pressure of CO 2 of 3 bar containing 200 ppm HAc (60C, ph., 1.0m/s). Potential / V 0. - experimental data -0. H + H 2 CO 3 Figure 2. Comparison between the electrochemical model and experimental data at 3 bar CO 2 and a liquid velocity of m/s (60C, ph ). 8

Potential / V 0. - experimental data -0. H + H 2 CO 3 Figure 3. Comparison between the electrochemical model and experimental data at 3 bar CO 2 and a liquid velocity of 1.0 m/s (60C, ph ). Potential / V 0. - experimental data -0. H + H 2 CO 3 Figure. Comparison between the electrochemical model and experimental data at 3 bar CO 2 and a liquid velocity of 2.0 m/s (60C, ph ). 9

Potential / V 0. - experimental data -0. H + H 2 CO 3 Figure. Comparison between the electrochemical model and experimental data at 10 bar CO 2 and a liquid velocity of m/s (60C, ph ). Potential / V 0. - experimental data -0. H + H 2 CO 3 Figure 6. Comparison between the electrochemical model and experimental data at 10 bar CO 2 and a liquid velocity of 2.0 m/s (60C, ph ). 10

Potential / V 0. - experimental data -0. H + H 2 CO 3 Figure 7. Comparison between the electrochemical model and experimental data at 20 bar CO 2 and a liquid velocity of m/s (60C, ph ). Potential / V 0. - experimental data -0. H + H 2 CO 3 Figure 8. Comparison between the electrochemical model and experimental data at 20 bar CO 2 and a liquid velocity of 2.0 m/s (60C, ph ). 11

Potential / V 0. - Experimental Data -0. H + HAc H 2 CO 3 Figure 9. The comparison between the electrochemical model and the experimental data for 10 ppm HAc (60C, ph, 1 m/s, 10 bar CO 2 ). Potential / V 0. - Experimental Data -0. H + HAc H 2 CO 3 Figure 10. The comparison between the electrochemical model and the experimental data for 100 ppm HAc (60C, ph, 1 m/s, 10 bar CO 2 ). 12

Potential / V 0. - Experimental Data -0. H + H 2 CO 3 HAc Figure 11. The comparison between the electrochemical model and the experimental data for 1000 ppm HAc (60C, ph, 1 m/s, 10 bar CO 2 ). Potential / V 0. - Experimental Data -0. H + HAc H 2 CO 3 Figure 12. The comparison between the electrochemical model and the experimental data for 1000 ppm HAc at m/s (60C, ph, 10 bar CO 2 ). 13

Potential / V 0. - Experimental Data -0. H + H 2 CO 3 HAc Figure 13. The comparison between the electrochemical model and the experimental data for 1000 ppm HAc at 2.0 m/s (60C, ph, 10 bar CO 2 ). Corrosion Rate / mm/yr 16 1 12 10 8 6 LPR WL de Waard Electrochemical 2 0 1.0 2.0 Liquid Velocity / m/s Figure 1. Comparison between the experimental LPR and weight loss data with the electrochemical and de Waard corrosion models at 3 bar CO 2 partial pressure (60C, ph, - 2.0 m/s). Error bars represent maximum and minimum experimental values. 1

Corrosion Rate / mm/yr 3 30 2 20 1 10 LPR WL de Waard Electrochemical 0 1.0 2.0 Liquid Velocity / m/s Figure 1. Comparison between the experimental LPR and weight loss data with the electrochemical and de Waard corrosion models at 10 bar CO 2 partial pressure (60C, ph, - 2.0 m/s). Error bars represent maximum and minimum experimental values. Corrosion Rate / mm/yr 60 0 0 30 20 10 LPR WL de Waard Electrochemical 0 1.0 2.0 Liquid Velocity / m/s Figure 16. Comparison between the experimental LPR and weight loss data with the electrochemical and de Waard corrosion models at 20 bar CO 2 partial pressure (60C, ph, - 2.0 m/s). Error bars represent maximum and minimum experimental values. 1

Corrosion Rate / mm/yr 0 3 30 2 20 1 10 LPR WL GDN Electrochemical 0 0 10 100 1000 HAc Concentration / ppm Figure 17. The comparison between the experimental LPR and weight loss data with the GDN and electrochemical models (0-1000 ppm, 60C, ph, 1 m/s, 10 bar CO 2 ). Corrosion Rate / mm/yr 0 0 3 30 2 20 1 10 0 LPR WL GDN Electrochemical 1.0 2.0 Velocity / m/s Figure 18. The comparison between the experimental LPR and weight loss data with the GDN and electrochemical model (1000 ppm HAc, 60C, ph, -2.0 m/s, 10 bar CO 2 ). 16