to enable Lithium metal electrodes IBA2013, Barcelona, Spain

Similar documents
Supplementary Information.

Designing of Battery System and Study of Anode Alloy Materials for Improved Lithium Battery Performance

electrolytes Kristina Edström, Bertrand Philippe (Pau/Uppsala), Fredrik Lindgren, Remi Dedryvère, Håkan Rensmo and Danielle Ångström Lab.

Factors Governing Life of High-Energy Lithium-Ion Cells

Supporting Information for

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries

Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using Dual-Salt Electrolytes

Supplementary Figure 1:

Supplemental Information for:

Electrochemical properties of alkal. Citation Electrochimica Acta (2010), 55(3):

Highly Efficient Li 2 O 2 Oxidation System in Li-O 2 Batteries

Electrochemical Conversion of Carbon Dioxide to Oxygen in Ionic Liquid Media

How initial nucleation influences discharge capacities of Li-O 2 cells

Li-S S and Li-Air Systems: The Characterization Challenge

Electrochemical performance of lithium-rich layered oxides for

Supporting Information

Cycle life performance of lithium-ion pouch cells

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery

Towards Sustainable Electrochemical Energy Storage: Potassium-Based Dual-Graphite Batteries

Supporting Information

LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and. cycle stability for Li-S battery**

Supporting Information

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy.

Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with 3DOM Separator

Supporting Information

Extremely Stable Sodium Metal Batteries Enabled by Localized. High Concentration Electrolytes

The Use of Redox Mediators for Enhancing Utilization of Li 2 S cathodes for. Advanced Li-S Battery Systems

Re-building Daniell Cell with a Li-Ion exchange Film

Stability of Sodium Couple in Organic and Inorganic Molten Salt Electrolytes Investigated with Electrochemical Quartz Crystal Microbalance

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery

IBA Meeting, BARCELONA IN LIB FOR EV (HEV) Masaki YOSHIO ; Saga Univ. Yamagata Univ. Hideya YOSHITAKE : Yamagata Univ.

PERFORMANCE OF DIFFERENT COAL-TAR PITCH DERIVED CARBONS IN LI-ION BATTERIES

Lithium Batteries with Nearly Maximum Metal. Storage Supporting Information

Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells. Jennifer M. Pringle,* Vanessa Armel and Douglas R.

An Anode-Free Sodium Battery through In-Situ Plating of Sodium Metal

In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes

Effect of Concentrated Electrolyte on High Voltage Aqueous Sodium-ion Battery

IBM Almaden June 27, Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University

Power the future CIC March 21st 2012

Route to sustainable lithium-sulphur batteries with high practical capacity

Carbon Nanotubes for Li + Batteries. U.S. Government

Effect of electrolyte and additives on performance of LiNi 0.5 Mn 1.5 O 4

Supplementary Figure 1: Sketch of XRD-EIS pouch cell design with Titanium current collectors serving as XRD windows, parafilm, kapton tape made from

Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation

An Ultrafast Rechargeable Lithium Metal Battery

Promoting long-term cycling performance of high-voltage Li 2 CoPO 4 F by the stabilization of electrode/electrolyte interface

mixtures of alkali bis(fluorosulfon Author(s) Kubota, Keigo; Nohira, Toshiyuki; H Citation Electrochimica Acta (2012), 66: 320

The Effects of LaF 3 Coating on the Electrochemical Property of Li[Ni 0.3 Co 0.4 Mn 0.3 ]O 2 Cathode Material

Supplementary Figure 1 The lithium polysulfide distribution on the patterned electrode.

The below identified patent application is available for licensing. Requests for information should be addressed to:

Novel Materials for Lithium-Ion Batteries

Supplementary Information

Final Report for AOARD Grant AOARD Carbon-coated current collectors for high-power Li-ion secondary batteries /20

All-solid-state Li battery using a light-weight solid electrolyte

SUPPLEMENTARY INFORMATION

Simple Experiments Giving Deep Insights into Capacity Fade and Capacity Loss Mechanisms of Li Battery Materials

INSTITUTE OF INTEGRATED ELECTRICAL ENGINEERS OF THE PHILIPPINES, INC. (IIEE-ERCSA) First IIEE Accredited Foreign Chapter (Charter

A Quantum Leap Forward for Li-Ion Battery Cathodes

Supporting Information. Investigation of the Reversible Intercalation/Deintercalation of Al

The Li-O 2 Battery with a Dimethylformamide Electrolyte

Advanced Energy Storage and the Importance of Graphite Anode Materials

Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries

ELECTROCHEMICAL REDUCTION OF TITANIUM DIOXIDE THIN FILM IN LiCl-KCl-CaCl 2 EUTECTIC MELT

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide

Lower Cost Higher Performance Graphite for LIBs. Prepared by: Dr. Edward R. Buiel President and CEO Coulometrics, LLC. Date: March 23, 2017

Capacity fade study of lithium-ion batteries cycled at high discharge rates

State of Lithium Ion Battery Research

Batteries. Dry Cell (Flashlight Battery) Self contained electrochemical cell. ! Primary batteries (not rechargeable)

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries

Electrode and Molecular Architectures for Iron based Multivalent Systems

A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries

Thermal Management of Lithium-ion Batteries

THERMAL PROPAGATION IN LITHIUM-ION BATTERIES

Investigation of anode materials for lithium-ion batteries

THE UNIVERSITY OF QUEENSLAND

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin

Journal of Power Sources

Supporting Information

Nanocrystalline LiFePO4 as cathode material for lithium battery applications S.C SIAH

Insights into the reversibility of the aluminum graphite battery

ACCELERATED CORROSION TESTING OF GALVANIC COUPLES. James F. Dante, Josh Averett, Fritz Friedersdorf, and Christy Vestal

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4

Supplemental Information. A Low-Cost and High-Energy Hybrid. Iron-Aluminum Liquid Battery Achieved. by Deep Eutectic Solvents

Kuang-Che Hsiao. Supervisor: Prof. Tony West

Niobium Powder Production in Molten Salt by Electrochemical Pulverization

Supplementary Information for

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

Operando Electron Magnetic Measurements in Li-ion Batteries. Supporting Information

Electrochemistry at Haldor Topsøe SOEC and Battery Materials

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral

SUPPORTING INFORMATION. Lithium Metal Anodes with An Adaptive Solid-Liquid Interfacial Protective Layer

Investigation of anode materials for lithium-ion batteries

Supporting Information

Thermodynamics and Electrode Potential ME Dr. Zuhair M. Gasem

Application in High-Performance Lithium-

Polymer-Rich Composite Electrolytes for All Solid-State Li-S Cells

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14

FAILURE MECHANISMS OF NANO SILICON ANODES: AN ELECTRODE POROSITY EVOLUTION MODEL

Effects of Electrolyte Salts on the Performance of Li-O 2 Batteries

Transcription:

Fluorine free ionic liquid electrolytes to enable Lithium metal electrodes IBA2013, Barcelona, Spain A. S. Best, Martin (Hyun Gook) YOON, G. H. Lane, Y. Shekibi, P. C. Howlett, M. Forsyth & D. R. MacFarlane ENERGY TECHNOLOGY

Ionic Liquid Electrolyte vs. Conventional Organic Liquid id Electrolyte l t Ionic liquids are molten salts existing in the liquid phase at or around room temperature. Conventional Organic Liquids Ionic Liquids High conductivity Low viscosity High vapor pressure Low flash point Non volatile Non flammable Wide electrochemical window Designable unlimited combinations of organic ions Still relatively low conductivity and high viscosity Pros. Cons. High temp. applications High volt. applications Cons. Ohno, H., Importance and Possibility of Ionic Liquids. In Electrochemical Aspects of Ionic Liquids, Hiroyuki, O., Ed. 2005; A. S. Best, et al. Ch. 10 in Electrochemical properties p and applications of ionic liquids, eds. Angel A. J. Torriero and Muhammad J.A. Shiddiky, Nova Publishers 2011 pgs 299 324 Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 2

Way back in 2004 C 4 mpyr TFSI + 0.5 mol kg 1 LiTFSI Li(s) Li + + e W.E. Pt C.E. Li R.E. Li 100 mvs 11 50 C Li + + e Li(s) σ = ~1 x 10 33 Scm S.cm 11 P. C. Howlett, et al., ESSL, 7 (5) 2004 A97 & PCT/AU2004/000263 Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 3

Improved Li behaviour in 2008 C 3 mpyr FSI + 0.5 mol kg 1 LiFSI W.E. Pt C.E. Pt 50 mvs 1 25 C F S N S F O O O O Li(s) Li + + e Li + + e Li(s) J. Saint et al., JES, 2008,155, A172 A. I. Bhatt et al., JES 157 2010 A66 A. S. Best, et al, JES, 157 2010 A903, H. Yoon, et al, JES, submitted 2013 & PCT/AU2008/000950 / Li Li + reversibility AND FAST CHARGE! Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 4

High LiFSI Salt Concentrations 4.2 4.0 C 3 mpyr FSI + 3.2 mol kg 1 LiFSI (1:1 C 3 mpyr : Li) 5C 4C 3C 2C 1C 1.5C 0.5C 0.1C 01C 0.1C Voltag ge (V) 38 3.8 3.6 3.4 5C 4C 3C 0.5C 1.5C 1C 2C 01C 0.1C 0.1C 3.2 3.0 2.8 0 20 40 60 80 100 120 140 H. Yoon, et al, J. Electrochem. Soc., 2013 submitted Capacity (mah.g -1 ) LiCoO 2 90 wt% (C8G, Nippon Chemical Industrial) + Carbon Black 5 wt% (Shawinigan) + PVdF 5 wt%, 4.5 mg.cm 2 Lithium electrochemistry and cyclic behaviour of DCA Martin Yoon Page 5

It s the Economy stupid (apologies B. Clinton) Ionic Liquids are expensive*. Small orders of ionic liquids on the kg scale can cost close to US$2000 Fluorination of the anion contributes tib t hugely to the cost Purification and moisture How do we change this? (In part by) Avoiding Fluorination! C 4 mpyr D. R. MacFarlane, et al, Chem. Commun., 2001, 1430. DCA Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 6

Electrochemistry of Neat ILs * Measured at an ambient temperature in a Arglovebox, 20mV/sec, 0.009cm 0009 2 Pt disc WE, Pt wire CE, 10mmol/kg AgTf in P 14 NTf 2 RE C 4 mpyr DCA C 4 mpyr TCM C 4 mpyr TCB C 4 mpyr NTF 2 E. W. of neat ILs : C 4 mpyrtcm (~ LiFePO 4 ) < (LiCoO 2 )< C 4 mpyrdca < C 4 mpyrntf 2 H. Yoon, et al., Energy & Environmental Science, 6 2013 979 986. Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 7

Li Salt Solubility in Different Nitrile Moieties Dicyanamide (DCA or N(CN) 2- ) Max ~0.7 7mol kg 1 with LiDCA N-butyl-N-methylpyrrolidinium (C + 4 mpyr ) No dissolution with LiDCA, LiTFSI,LiBF LiBF 4, Tricyanomethanide (TCM or C(CN) 3 - ) Tetracyanoborate (TCB or B(CN) 4 - ) LiPF 6 over ~1.5 mol kg 1 with LiDCA We ll focus on DCA from here Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 8

Conductivity of Electrolytes C 05mol 4 mpyr DCA + 0.5 kg 1 LiX T (K) 400 380 360 340 320 300 280 260 240 m -1 ) Co onductivity (ms.c 10 1 0.1 [C 4 mpyr][dca] [C 4 mpyr][dca] + LiDCA [C 4 mpyr][dca] + LiTFSI [C 4 mpyr][dca] + LiFSI [C 4 mpyr][dca] + LiBF 4 H. Yoon, et al., manuscript in preparation, 2013. 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 1000 / T (1000 / K) Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 9

Viscosity (m mpa.s) 120 100 80 60 40 C 05 1 4 mpyr DCA + 0.5 mol kg 1 LiX Neat C 4 mpyr DCA LiDCA + C 4 mpyr DCA LiTFSI + C 4 mpyr DCA LiFSI + C 4 mpyr DCA LiBF 4 + C 4 mpyr DCA C 3 mpyr TFSI 3 C 3 mpyr FSI 20 20 30 40 50 60 T ( o C) H. Yoon, et al., manuscript in preparation, 2013. J. Saint et al., JES, 2008,155, A172 Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 10

NMR Diffusion C 05 1 4 mpyr DCA + 0.5 mol kg 1 LiX 7 Li NMR diffusion data 13 C NMR Diffusion (DCA) P. Bayley T/K T/K 330 320 310 300 330 320 310 300-1 fficient / m 2 s - Diffusion Coef [C 4 mpyr][dca] + LiDCA [C 4 mpyr][dca] + LiTFSA 10-10 [C mpyr][dca] + LiFSI 4 [C 4 mpyr][dca] + LiBF 4 10-11 1 Diffusion Coef fficient / m 2 s - 10-10 11 [C 4 mpyr][dca] [C 4 mpyr][dca] + LiDCA [C 4 mpyr][dca] + LiTFSA 10-11 [C 4 mpyr][dca] + LiFSI [C 4 mpyr][dca] + LiBF 4 3.0 3.1 3.2 3.3 3.4 3.0 3.1 3.2 3.3 3.4 1000/T / K -1 1000/T / K -1 H. Yoon, et al., manuscript in preparation, 2013. We ll focus on DCA from here Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 11

Lithium but no cycling.) I (ma cm -2, Arb 4 3 2 1 0-1 -2-3 -4 E (V vs. Li Li + ) -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 36 ppm of H 2 O -4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.5 E (V vs. Ag Ag + ) + H. Yoon, et al., Energy & Environmental Science, 6 2013 979 986. Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 12

Moisture effect of Li cycling in C 4 mpyrdca * Measured at an ambient temperature in a Ar glovebox, 20mV/sec, 0.009cm 2 Pt disc WE, Pt wire CE, 10mmol/kg AgTf in P 14 NTf 2 RE 4 4 3 3 2 2 (ma cm -2 ) I 1 0-1 -2 (ma cm -2 ) I 1 0-1 -2-3 -4 97 ppm of H 2 O -3-4 233 ppm of H 2 O 4 4 3 3 2 2 I (ma A cm -2 ) 1 0-1 -2 I (ma cm -2 ) 1 0-1 -2-3 -4 311 ppm of H 2 O -3-4 630 ppm of H 2 O -4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.5 E (V vs. Ag Ag + ) -4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.5 E (V vs. Ag Ag + ) H. Yoon, et al., Energy & Environmental Science, 6 2013 979 986. Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 13

Moisture effect of Li cycling in C 4 mpyrdca * Measured at an ambient temperature t in a Arglovebox, 20mV/sec, 0.009cm 0009 2 Pt disc WE, Pt wire CE, 10mmol/kg AgTf in P 14 NTf 2 RE 2 1 0 I (ma cm -2 ) -1-2 -3-4 -5-6 deposition stripping 0 100 200 300 400 500 600 700 H 2 O contents (ppm) Under 100 ppm of H 2 O, Li does not cycle in DCA. H. Yoon, et al., Energy & Environmental Science, 6 2013 979 986. Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 14

Symmetrical cells with different moisture Li symmetrical cell : 0.1mA/cm 2, 16min charge / discharge at 50 o C E (V) 5 4 3 2 1 0-1 -2-3 -4-5 36 ppm of H 2 O 0 600 1200 1800 2400 3000 3600 Time (min) E (V) 0.06 0.04 0.02 0.00-0.02-0.04 004-0.06 006 0.06 006 0.06 226 ppm of H 2 O 0 600 1200 1800 2400 3000 3600 Time (min.) 0.04 0.04 0.02 0.02 E (V) 0.00 E (V) 0.00-0.02-0.02-0.04-0.06 291 ppm of H 2 O 0 600 1200 1800 2400 3000 3600 Time (min.) 226 ppmof H 2O in the electrolyte shows the most stable over potential. H. Yoon, et al., Energy & Environmental Science, 6 2013 979 986. -0.04-0.06 443 ppm of H 2 O 0 600 1200 1800 2400 3000 3600 Time (min.) Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 15

Kinetic or Electrochemical? Li symmetrical cell : 0.1mA/cm 2, 16min charge / discharge at 50 o C 0.06 0.04 10 cycles 10 cycles 30 cycles 50 cycles 002 0.02 (V) E 0.00-0.02-0.04-0.06 15 h waiting 1 h 24 h waiting 226 ppm of H2O 0 1200 2400 3600 4800 6000 Time (min.) 226 ppm of H 2 O in the electrolyte shows the most stable over potential. H. Yoon, et al., Energy & Environmental Science, 6 2013 979 986. Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 16

SEM 226ppm cycled symmetrical cell Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 17

In situ 7 Li NMR Cathode Material or Lithium metal Copper wire mesh Plastic Bag Pristine Cycled Copper (or Aluminum) wire mesh Separator (soaked with electrolyte) Lithium metal 300 250 200 150 100 50 0-50 Chemical Shift / ppm in-situ RC N. M. Trease C. Grey Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 18

EIS Symmetrical Cells C 4 mpyr DCA + 0.5 mol kg 1 LiDCA Li symmetrical cell stored at 50 o C Li symmetrical cell cycled at 50 o C Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 19

Equivalent circuit Evenly distributed SEI was assumed. Evenly distributed SEI equivalent circuit C_DL CPE_SEI Rs R_CT W R_SEI Solution P + DCA- 14 P + DCA - 14 Li + DCA - e - e SEI - e - C_DL, R_CT P + 14 P + 14 P + Li + Li + Li + 14 Li + e - e - e - e - e - e - e - e - e - C_DL, R_CT Li metal Li + e - Rs SEI Lewandowski, et al., J. Power Sources 2009, 194 (1), 502 507. Lane, et al., Electrochim. Acta 2010, 55 (28), 8947 8952. Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 20

Fitting results C 05 1 4 mpyr DCA + 0.5 mol kg 1 LiX R_CT / (ohm) 80 70 60 50 40 30 20 R SEI / (ohm) 35 30 25 20 15 10 Cycled 10 Stored 0 0 20 40 60 80 100 Time (hrs) 5 Cycled Stored 0 0 20 40 60 80 100 Time (hrs) Fitting error (z plot) varies from 4% to 28% Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 21

How does the SEI form? 200ppm H 2 O G. Lane, et al., Ph.D. Thesis, Monash University 2011 Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 22

LiFePO 4 cells with moisture 3.8 LiFePO 4 (HP,Phostech ) 75 wt% : Shawinigan Black 15 wt% : PVdF 10 wt%, Loading : 2.48mg/cm 2 /Solupor 5P09B / Li disc. / 0.5 mol/kg LiDCA in P 14 DCA Test Condition : 0.026mA/cm 2 CC to 3.8V, 0.026mA/cm 2 CC to 3.0V, 50 o C 3.6 20th 10th E (V) 3.4 32 3.2 1st 3.0 0 20 40 60 80 100 120 140 Capacity (mah g -1 ) Cap pacity (mah g -1 ) 140 120 100 80 60 443ppm of H 2 O, charging 40 443ppm of H 2 O, discharging 20 226ppm of H 2 O, charging 226ppm of H 2 O, discharging 0 0 5 10 15 20 Cycle number C 4 mpyr DCA showed over 130 mah g 1 of discharge capacity retaining over 94% of its initial discharge capacity after 20 cycles in Li LiFePO 4 cells. H. Yoon, et al., Energy & Environmental Science, 6 2013 979 986. Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 23

Solid State Electrolyte C 1 mpyr DCA + 0.5 mol kg 1 LiDCA @80 C (mah.g -1 ) Capacity 200 180 160 140 120 100 80 60 40 20 0 Charge capacity Discharge capacity 0 50 100 150 200 Cycle number H. Yoon, et al., Energy & Environmental Science, 6 2013 979 986. Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 24

Summary 1. The electrochemical window of the cyano based ILs show that DCA has the greater cathodic stability than other nitrile moieties. However, these windows are still inferior to NTf 2 based ILs. 2. The presence of water in a C 4 mpyrdca IL improves the SEI cathodic stability suchthatrelatively efficient lithium reductionandoxidation oxidation becomespossible The use of additives can further stabilise the electrode electrolyte interface 3. 100 ppm to 200 ppm of H 2 O shows the best cycling ability in a Li Li symmetrical cell and a Li LiFePO 4 cell. 4. Solid (plastic crystal) electrolytes show extremely good cycling behaviour against LFP Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 25

Acknowledgements This research is funded by the Australian Research Council (ARC) andcsiro snationalresearch Research Flagship Energy Transformed Thanks to: Energy Storage Group, CSIRO Energy Technology Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 26

Thank You CSIRO Energy Technology Dr. Adam Best Senior Research Scientist t +61 3 9545 8660 e Adam.Best@csiro.au w www.csiro.au ENERGY TECHNOLOGY

SEM 97ppm cycled symmetrical cell Lithium electrochemistry and cyclic behaviour of DCA Martin Yoon Page 28

SEM 443ppm cycled symmetric cell Lithium electrochemistry and cyclic behaviour of DCA Martin Yoon Page 29