Characterization of Isotactic Polypropylene/ Talc Composites Prepared by Extrusion Cum Compression Molding Technique

Similar documents
Influence of Talc Filler Content on the Mechanical and DC Electrical Behavior of Compression Molded Isotactic Polypropylene Composites

Light Weight Insulating Bricks from Coal and Clay

Bull. Mater. Sci., Vol. 33, No. 3, June 2010, pp Indian Academy of Sciences.

Mechanical Engineering Research Journal

Evaluation of Tensile Strength of Jute Fiber Reinforced Polypropylene Composite

Chapter 15-2: Processing of Polymers

Glass Fiber and Blast Furnace Slag Particles Reinforced Epoxy-based Hybrid Composites

M. Oishi et al. Nano Studies, 2015, 11, DEVELOPMENT OF THERMOPLASTIC STARCH NANOCOMPOSITES FOR WET CONDITIONS

Effect of Modifying Agent (ACR) on Cell Structure and Mechanical Properties of Extrusion-Foamed PVC Sheet

MECHANICAL PROPERTIES AND CHARACTERIZATION OF INJECTION MOLDED MICROCELLULAR POLYPROPYLENE (PP)/CARBON FIBER COMPOSITE

Flow Behaviour and Viscoelasticity of Polypropylene-Kaolin Composites Extruded at Different Temperatures

Effect of Talc on Crystallization and Properties of Polypropylene

PREPARATION AND CHARACTERIZATION OF EPOXY COMPOSITE REINFORCED WITH WALNUT SHELL POWDER

Effect of Particle Size on Properties of Wood-Flour Reinforced Polypropylene Composites

Effect of HF-Treatment on the Glass Frit upon Crystallizing Behavior and Microstructure of Glass- Ceramics

Supporting Information. Selective Metallization Induced by Laser Activation: Fabricating

Research on the High Strength Glass Ceramics/Mullite Ceramics Composites

Effects of Melt Temperature and Hold Pressure on the Tensile and Fatigue Properties of an Injection Molded Talc-Filled Polypropylene


Thermal conductivity of silane cross-linked polyethylene composites

Crystallization Mechanism and Kinetics of BaO-Li2O-ZrO2-SiO2 Glasses

DEVELOPMENT OF THERMAL CONDUCTIVE HYBRID COMPOSITES

Melting point: 133 C. Algro Brits. ph:

DEVELOPMENT OF NANOFIBERS REINFORCED POLYMER COMPOSITE FOR SPACE APPLICATION

These two types of analysis can therefore show uniformity of filler content, identity of filler, and concentration of filler.

STUDY OF THE MECHANICAL, PHYSICAL AND THERMAL PROPERTIES OF COCONUT SPATHE FIBER REINFORCED UNSATURATED POLYESTER COMPOSITE.

EFFECT OF VOLUME FRACTION EPOXY-HOLLOW GLASS MICROSPHERES AND CURING TEMPERATURE VARIATION ON COMPRESSIVE PROPERTIES OF COMPOSITES

A STUDY ON GLASS FIBER REINFORCED POLYMER-CLAY NANOCOMPOSITES WITH SANDWICH STRUCTURE

EFFECT OF INDIAN LIGNOCELLULOSIC FILLERS ON IMPACT PROPERTY OF GPPS

MECHANICAL BEHAVIOR OF METAL PARTICLES REINFORCED POLYMER MATRIX COMPOSITES

β Silicon Carbide Coated MWCNTs Reinforced Polyetherimide Nanocomposites

Improvement of Tensile Properties of Recycled Low-Density Polyethylene by Incorporation of Calcium Carbonate Particles

Experimental Studies of Thermal Transport in Heat Transfer Fluids Using Infrared Thermography

Prof. Alcides Lopes Leäo Biocomposites on the Base of Thermoplastic Starch Filled by Wood and Kenaf Fiber

Effect of Saw Dust on the Physical and Mechanical Properties of China Clay Refractory

COMPARISON OF ACOUSTIC EMISSION PRODUCED DURING BENDING OF VARIOUS OXIDE CERAMIC AND SHORT FIBER OXIDE CERAMIC MATRIX COMPOSITES

THE EFFECT OF SOL-GEL TECHNIQUE ON THE ALUMINIUM SiCp COMPOSITE

Renewable Bio-composites for Automotive Applications

Study Of Mechanical and Physical Properties of Wood Plastic Composite, Polypropylene, Rose, Teak and Neem Wood Sunil C 1 Dr. G. B.

STUDY ON THE MECHANICAL PROPERTIES OF GLASS FIBER REINFORCED HOLLOW GLASS MICROSPHERE EPOXY LAMINATED COMPOSITE

i Series Thermal Analysis Systems

Influence of Angle Ply Orientation on Tensile Properties of Carbon/Glass Hybrid Composite

Jānis Grabis. Plasma chemical synthesis of multicomponent nanopowders, their characteristics, and processing

Structural and Electrical Properties of Reaction Bonded Silicon Nitride Ceramics

Preparation and Thermal Behaviour of Polyester Composite Filled with TiO2

Electrical and Mechanical Properties of Polypropylene/Carbon Black Composites

POLYPROPYLENE REINFORCED WITH RECYCLE POLYETHYLENE TEREPHTHALATE AS AN ALTERNATIVE MATERIAL FOR NEW PLASTIC PRODUCT

3M Boron Nitride Cooling Fillers For thermally conductive and electrically insulating plastics and adhesives. The next level of thermal management.

Effect of Materials Design on Properties of Porcelain Insulators

Ceramic Processing. Engineering Materials. 7/15/2009 Ceramic Processing/S.Rattanachan 1

Wood and Mineral Fillers for Injection Molding Grade Polypropylene

CHAPTER 3 STUDY OF MECHANICAL PROPERTIES OF CAST RESIN WITH FLYASH AND CEMENT

Selective Laser Sintering Processing Behavior of Polyamide Powders

Effects of Water Absorption on Impact Value of Aluminum Dispersed Composite Nylon6

COMPOUNDING AND SPINNING OF POLYPROPYLENE NANOCOMPOSITES WITH KAOLINITE

Strength of Carbon Fiber Reinforced Cu-25 at%al Alloy Junction Device*

Effect of Water Absorption on Coconut Fibre Reinforced Functionalized Polyethylene Composites Developed by Palsule Process

PRODUCTION OF FUSED SILICA CORES USING POWDER INJECTION MOULDING TECHNIQUES

Controlled Nanoporosity of Organic Aerogels by Dispersing Clay Platelets

Study Properties of Alumina by Adding Different Ratio of Copper

Characterization of Bitumen and Modified Bitumen (e-pmb) using FT-IR, Thermal and SEM techniques

AARBOR COLORANTS CORPORATION

Effect of Nano-Sized Fe 2 O 3 on Microstructure and Hydration Resistance of MgO-CaO Refractories

EFFECTS OF PROCESSING METHOD AND FIBRE CHARACTERISTICS ON MICROSTRUCTURE AND PROPERTIES OF WOOD-PLASTIC COMPOSITES

DSC differential scanning calorimeter (DSC)

Study of Microstructure and Sliding Wear Behavior of Al (7075) Reinforced with Bottom Ash in Metallic Mould with Water Chill

Crystallization Behavior of Polyamide-6 Microcellular Nanocomposites*

Preventive effect on spalling of UFC using jute fiber at high temperature

The Potential of Silane Coated Calcium Carbonate on Mechanical Properties of Rigid PVC Composites for Pipe Manufacturing

FLEXURAL STRENGTH AND FRACTURE TOUGHNESS OF CARBON NANOTUBES (CNTS) REINFORCED EPOXY COMPOSITES

Comparative study on Mechanical properties of E-glass / Epoxy laminates filled with Silicon carbide, Activated charcoal and Mica

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS

Application Data Book

Kerathin Paper Ropes Textiles

Synthesis, Characterisation and Analysis of Hibiscus Sabdariffa Fibre Reinforced Polymer Matrix Based Composites

Mechanical and Tribological Properties of Epoxy Nanocomposites

Contents. Preface. Lightweight Materials Understanding the Basics F.C. Campbell, editor

Testing for Rotational Moulding (RM) and Service Capabilities of BITS

Effect of Benzyl Urea on Thermal Properties of Recycled High Density Polyethylene/Ethylene Vinyl Acetate/Eggshell Powder Composites

Effect of Processing Parameters on Polypropylene Film Properties

2011 ACCE. C. H. Choi. Research & Development Division

Advances in Plastics Processing: Cost Saving Techniques Sep 2015 Compounding of Filled Polymers with the Co-rotating Twin Screw Extruder ZSK and STS

Ceramic Processing Research

MICRONIZED TALC: A COST-EFFECTIVE FUNCTIONAL FILLER FOR POLYOLEFINS

Analysis of Mechanical and Metallurgical Properties of Al- Fly Ash Composite Material

Calcium Carbonate in Blown HDPE Film

THERMOPLASTIC PREPREG INSERT INJECTION MOLDING COMPOSITES: MECHANICAL AND ADHESIVE PROPERTIES. Introduction

Some studies on olivine fines and clay mixtures

INFLUENCE OF STRUCTURAL ANISOTROPY ON COMPRESSIVE FRACTURE PROPERTIES OF HYDROSTATIC-PRESSURE-EXTRUSION-MOLDED HAP/PLLA COMPOSITE

Mohamad Jani Saad. *Corresponding Keywords: Kenaf Core; Polypropylene; Epolene 43; Tensile; Thickness Swelling

Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore

MICROCELLULAR NANOCOMPOSITE INJECTION MOLDING PROCESS

Analysis of Mechanical and Metallurgical properties of Al-SiCp Composite by Squeeze-cum-Stir Casting

STUDY ON CHEMICAL TREATMENT OF CELLULOSE FIBER TO IMPROVE HEAT RESISTANCE AND THE MECHANICAL PROPERTY OF COMPOSITE MATERIALS USING TREATED FIBER

Investigation into Electrospun LaMnO 3 Nanofibres

EFFECT OF BOTH TALC FINENESS AND TALC LOADING ON HETEROGENEOUS NUCLEATION OF BLOCK COPOLYMER POLYPROPYLENE

Biodegradable Polymer /Clay Nanocomposites Based on Poly(Butylene Adipate-co-Terephthalate) and Poly(Lactic Acid)

Effect of Hydrocarbon Solutions on Polymer Concrete

Defining Thermal Manufacturing

DC Conductivity Measurements of LDPE: Influence of Specimen Preparation Method and Polymer Morphology

Transcription:

Materials Sciences and Applications, 2015, 6, 925-934 Published Online November 2015 in SciRes. http://www.scirp.org/journal/msa http://dx.doi.org/10.4236/msa.2015.611093 Characterization of Isotactic Polypropylene/ Talc Composites Prepared by Extrusion Cum Compression Molding Technique Rahima Nasrin 1, M. A. Gafur 2*, A. H. Bhuiyan 3 1 Department of Physics, University of Barisal, Barisal, Bangladesh 2 Pilot Plant & Process Development Centre, Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh 3 Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh Received 28 August 2015; accepted 3 November 2015; published 6 November 2015 Copyright 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Extrusion-Compression molded isotactic polypropylene (ipp) composites containing 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% of talc filler were studied by scanning electron microscopy (SEM), simultaneous thermal analysis (STA) and physical testing. The scanning electron microscope (SEM) micrographs of neat ipp and composites with 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% talc content show that neat PP, 10 wt%, 20 wt%, and 30wt% talc composites surface is smooth in comparison to 40 wt% and 50 wt% talc composites. It is also observed that talc is dispersed uniformly in the matrix and this uniform dispersion is not decreased even with talc content as high as 30 wt% talc. The composites of 40 wt% and 50 wt% talc contain more crack, agglomerates or larger particles. Bulk density of the composites decreases with the increase of talc content. With the increase of percentage of talc and period of immersion, the water absorption (WA) increases. Thermal analyses indicate a considerable increase of thermal stability of the composites with filler addition. Keywords Isotactic Polypropylene, Water Absorption, Thermal Behavior, Talcs 1. Introduction Fillers-reinforced polymer composites have attracted much attention to the researchers due to the fact that inclusion * Corresponding author. How to cite this paper: Nasrin, R., Gafur, M.A. and Bhuiyan, A.H. (2015) Characterization of Isotactic Polypropylene/Talc Composites Prepared by Extrusion Cum Compression Molding Technique. Materials Sciences and Applications, 6, 925-934. http://dx.doi.org/10.4236/msa.2015.611093

of fillers in polymers remarkably alters structural, physical, mechanical and thermal behavior of final products [1]. Isotactic polypropylene (ipp) has found a wide range of applications in the food packaging, electrical, and automotive industries. Inorganic fillers, such as talc, mica and silica, ceramics, etc. are widely used in ipp to improve their mechanical and thermal properties [2]. The commonly used fillers in ipp are white clay, calcium carbonate, and talc, whose effects in different properties of the composites were described in the literature [2]- [5]. Properties of injection molded ipp/talc composites were investigated by some researchers [2] [4]. The aim of the work is to investigate various properties of ipp/talc composites prepared by extrusion cum compression molding technique. With these aims, this research has been done and details of structural, physical and thermal behavior of these composites are represented in this paper. 2. Experimental Works 2.1. Raw Materials Composites used in this work were prepared from ipp and talc. Commercial grade ipp was purchased from BASF, Germany. The density of PP is 0.91 gm/cc and its melting temperature is 438 K. Talc is collected from local market and is in the form of powder. Different chemical component of talc are presented Table 1. The density of talc is 0.56 gm/cc and melting temperature 1073 K. 2.2. Sample Preparation Five different composites were prepared by ipp and talc powder according to the mass ratio (10-X) PP: X talc, Where X = 1, 2, 3, 4, 5. Besides these one pure ipp sample was also prepared. The mixtures were kept in separate pot and then mixed uniformly as much as possible. The different mixtures were melted by extrusion machine. Three heaters of extrusion machine were switched ON for about one hour. The barrel was heated for about one hour at 513 K. After heating for one hour the mixture was put into the feed hopper. The motor was then switched on to feed the batch from the feed hopper into the barrel. The molten composite material was then collected through the die in the form of rod. For easier handling these were cooled in a water bath during collection. The rods were then cut with a hacksaw. For converting the rod shape samples into disc shape sample 450 kn Press (machine Paul-Otto Weber GmbH. Germany) were used. The rod shape samples were molded by this machine. The heating temperature and initial pressure were set at 180 C and 50 kn, respectively. After reaching the set temperature, the pressure was increased up to 100 kn, continued heating at that temperature for 15 min and stopped the heating system. 2.3. Characterization 2.3.1. Surface Morphology The morphology of the ipp sample and composites with 10 wt%, 20 wt%, 30 wt%, 40 wt%, 50 wt% talc was studied by a scanning electron microscope (SEM) (Philips XL 30, Netherlands) with a maximum operating voltage of 10 kv of the apparatus. The sample surface was coated with a thin gold layer by a sputtering prior to SEM measurement. 2.3.2. Bulk Density (BD) Bulk density was calculated using following formula W s BD = (1) V Table 1. Chemical composition of Talc. Constituents Amount (%) MgO 31.7 SiO 2 63.5 H 2O 4.8 926

where, BD = Bulk Density of the specimen in Kg/m 3, W s = Weight of the specimen in Kg, and V = Volume of the specimen in m 3. In this way the bulk density of each sample is measured [6]. 2.3.3. Water Absorption (WA) Water intake specimen was prepared according to ASTM Designation [7]. The test specimen was 76 mm length and width above 25 mm. The total water absorption was calculated following the rules given below: 100( Ws Wd ) WA% = (2) W where W d = Dry weight of the specimen, W s = Saturated weight at the specimen after submersion in distill water. In all cases a protective gel coat (araldite) was applied on the cut sides to prevent penetration of water from cut sides. 2.3.4. Thermal Measurements Melting and degradation temperatures of the neat ipp sample and the composites were monitored by a thermo gravimetric-differential thermal analyzer (TG-DTA) [Seiko-Ex-STAR-6300, Japan]. The measurements using TG-DTA were carried out from room temperature to 600 C at a heating rate of 20 C min 1 using nitrogen gas flow. While the DTA traces give the melting and degradation temperatures as determined from the DT signal versus temperature curves, the TGA runs exhibit the weight retained of the sample with temperature. 3. Results and Discussions 3.1. Surface Morphology (SEM) The SEM micrographs of ipp and composites with 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% talc content are shown in Figure 1. It is observed that the surface structure changes due to the percentage of talc in PP. It can also be seen from micrographs that ipp, 10 wt%, 20 wt% and 30 wt% talc compotes surface is smooth in comparison to 40 wt% and 50 wt% talc composites. It is also observed that talc is dispersed uniformly in the matrix and this uniform dispersion is not decreased even with talc content as high as 30 wt% talc. On the surface of the composites of 40 wt% and 50 wt% talc composites contain more crack, void, agglomerates or larger particles. These observed agglomerates were created during fracture by extraction of some talc crystals from their places on fractured surface. 3.2. Physical Properties 3.2.1. Bulk Density Figure 2 shows the effect of talc addition on bulk density of composite materials. It is observed that with the increase of talc addition the density of the composites decreases. The experimental density of ipp is 0.905 gm/cc, the value is in the range of (0.80-0.94) gm/cc found in the literature. The density of talc in powder form is 0.56 gm/cc, which is less than that of ipp. As a result the density of the composites decreases with the increase of talc addition. Similar effect was found by Kuriger and Alam [8] in the carbon fibre reinforced ipp composites. 3.2.2. Water Absorption In Figure 3 it is observed that water absorption (WA) increases with increasing period of immersion and increase of percentage of talc. Since talc has more affinity for water than ipp, so with the addition of talc, the water absorption of the composite fairly rises. Similar effect was found by M. Maniruzzaman et al. [9] the pulque fibre reinforced LDPE composites. With increasing period of immersion the water absorption increases in the pulque fibre reinforced LDPE composites. d 927

R. Nasrin et al. Figure 1. The SEM micrographs of (a) Ipp; (b) 10 wt%; (c) 20 wt%; (d) 30 wt%; (e) 40 wt%; and (f) 50 wt% ipp-talc composites. 0.95 Bulk Density (gm/cc) 0.9 0.85 0.8 0.75 0.7 0.65 0 10 20 30 40 50 60 Talc Content (w t%) Figure 2. Effect of talc addition on bulk density of PP-talc composites. 928

0.45 0.4 Water absorption (%) 0.35 0.3 0.25 0.2 0.15 0.1 5 0% 10% 20% 30% 40% 50% 3.3. Thermal Analyses 0 0 20 40 60 80 100 120 Time (hours) Figure 3. Immersion time versus water absorption (%) curves of PP and PP-talc composites. Figure 4(a) shows the TGA, DTA and DTG curves of ipp. The TGA curve shows that major degradation occurs in one stage. The onset temperature is 389.6 C. The 50% degradation occurs at about 415.9 C and the maximum slope is at 413.5 C. The ash content is 2.4%. DTA curve shows two endothermic peaks; one represents melting peak temperature at 166.5 C and the other represents peak degradation temperature at 431.4 C. DTG curve depicts that the maximum degradation occurs at the temperature of 432.8 C with the rate of 1.17 mg/min. Figure 4(b) shows the TGA, DTA and DTG curves of composites with 20 wt% talc. The TGA curve shows that major degradation occurs in one stage. It is found that initial weight loss starts at about 398.2 C. The 50% degradation occurs at about 427.5 C and the maximum slope is at 435.5 C. The ash content is 26.3%. DTA curve shows two endothermic peaks; one is at 166.9 C and the other is at 434.7 C. DTG curve depicts that the maximum degradation occurs at the temperature of 452.1 C with the rate of 1.97 mg/min. Figure 5(a) shows the TGA, DTA and DTG curves of composites with 30 wt% talc. The TGA curve shows that major degradation occurs in one stage. It is found that onset temperature is at 423.7 C. The 50% degradation occurs at about 446.5 C and maximum slope is at 454.5 C. The ash content is 23.3%. DTA curve shows two endothermic peaks; one is at 167.8 C and the other is at 450.6 C. DTG curve depicts that the maximum degradation occurs at the temperature of 454.8 C with the rate of 3.36 mg/min. Figure 5(b) shows the TGA, DTA and DTG curves of composites with 50% talc. The TGA curve shows that major degradation occurs in one stage. It is found that initial weight loss starts at about 403.2 C. The 50% degradation occurs at about 432.4 C and the maximum slope is at 447.7 C. The ash content is 34.6%. DTA curve shows three endothermic peaks at 171.7 C, 326.6 C and 438.1 C. DTG curve depicts that the maximum degradation occurs at the temperature of 447 C with the rate of 1.73 mg/min. From Table 2 it is evident that thermal stability of ipp-talc composites increases to maximum value for 30% talc addition, but it is decreased with further addition. Table 3 shows melting shifts towards higher temperature with the addition of talc. It is also evident that the peak degradation temperature also increases to maximum for 30% talc-pp composites, then it decreases. For 40% - 50% talc composites addition 3 rd peak is obtained. Table 4 describes that both the maximum degradation temperature and degradation increases with the increase of talc addition up to 30%, then decreases with further addition. Figure 6 represents the comparison of TGA, DTA and DTG curves of ipp and ipp-talc composites. From TGA curve it is evident that major degradation occurs at one stage for PP and composites. From the TGA curve it is also observed that with the addition of talc, the TGA curve of composites shift towards higher temperature. It shows that composite with 30 wt% talc is the most thermally stable than others and ipp is least thermally stable. This shift to high temperature may be attributed that the composite becomes more thermally stable with the addition of talc. DTA curves show two endothermic peaks for 0, 10, 20, and 30 wt% talc content and three endothermic peaks for 40 and 50 wt% talc content. The DTG curve shows that the peak of PP is below the peak of 929

5.000 15 TGA 389.6Cel 98.1% 4.000 95.7% 415.9Cel 431.5Cel 50.4% 24.7% 5 3.000 5 444.3Cel 2.4% DTG mg/min 2.000 DTA uv DTA 166.4Cel 19.6uV 431.7Cel 12.0uV 432.8Cel 1.169mg/min - TG % 1.000 - -15-15 00 - DTG 30 Temp Cel 40 50 - (a) 10 8.00 15 72.7% 398.2Cel 98.9% 427.5Cel 62.7% 435.4Cel 52.9% 5 DTG mg/min 6.00 4.00 DTA uv 5 166.9Cel -1.1uV 457.0Cel 26.3% 434.7Cel -19.1uV TG % 2.00-435.1Cel 1.97mg/min - -15 0-30 Temp Cel 40 50-15 Figure 4. TGA, DTA and DTG curves of (a) ipp; and (b) 20 wt% ipp-talc composites. (b) 930

14.00 15 423.7Cel 98.6% 12.00 75.2% 446.5Cel 61.0% 454.5Cel 47.7% 5 DTG mg/min 10 8.00 6.00 DTA uv 5 167.8Cel -9.0uV 469.2Cel 23.3% 450.6Cel -52.6uV TG % 4.00-2.00-15 454.8Cel 3.36mg/min - 0 - (a) 30 Temp Cel 40 50-15 5.000 4.500 15 403.2Cel 98.2% 432.4Cel 66.5% 4.000 3.500 3.000 5 63.6% 447.7Cel 50.4% 462.4Cel 34.6% 5 DTG mg/min 2.500 2.000 1.500 DTA uv 171.7Cel 9.2uV 326.6Cel 32.0uV 438.1Cel -1.2uV 447.0Cel 1.730mg/min TG % 1.000-0.500-00 -15-0.500-30 40 50 Temp Cel (b) Figure 5. TGA, DTA and DTG curves of (a) 30 wt%; and (b) 50 wt% ipp-talc composites. -15 931

25 14.00 12.00 Black-0%, Maroon-10%, Green-20%, Red-30%, Blue-40%, Pink-50% 15 5 10 DTG mg/min 8.00 6.00 DTA uv 5 TG % 4.00 2.00 - - -15 0-30 Temp Cel 40 50-15 Figure 6. TGA, DTA and DTG curves of the PP sample and PP-talc composites with various contents of talc. Table 2. TGA results for ipp and ipp-talc composites. Sample (wt%) On set Temperature ( C) Temperature of 50% degradation ( C) Ash content (%) 0 389.6 C 415.9 2.4 10 407.1 C 431 8.2 20 398.2 C 427.5 26.3 30 423.7 C 446.5 23.3 40 391.7 C 417.2 35.5 50 403.2 C 432.4 34.6 Table 3. DTA for PP and PP-talc composites. Sample (wt%) 1 st peak ( C) 2 nd peak ( C) 3 rd peak ( C) 0 166.4 431.7 _ 10 174.2 442.8 _ 20 166.9 434.7 _ 30 167.8 450.6 _ 40 166.7 391.4 430.8 50 171.7 326.6 438.1 932

Table 4. DTG of PP and PP-talc composites. Sample (wt%) Maximum Degradation temp ( C) Degradation rate (mg/min) 0 432.8 1.169 10 442.8 2.84 20 435.1 1.97 30 454.8 3.36 40 430.8 1.976 50 447 1.73 different wt% of ipp-talc composites. From DTG curve it is also noticed that the maximum degradation occurs for 30% talc at the temperature 454.8 C with the rate of 3.36 mg/min. The reason for increasing degradation temperature of the composites may be based on the influence of impurity. If it is assumed that talc has higher volumetric heat capacity and thermal conductivity than ipp, then the composite materials will preferably absorb more heat as compared to the pure ipp sample. As a result of the colligative thermodynamic effect, the temperature of the composite material will increase and the ipp chains start to degrade at higher temperatures in the composites than the ipp sample. So Figure 4 analyses show that with addition of talc in different concentration ipp-talc composite become more thermally stable. Such increase of thermal stability in copper filled low density polyethylene, talc filled polypropylene and TiO 2 filled PP was observed by Luyt et al. [10], Zhou et al. [1] and Farhad Mina et al. [11] respectively. 4. Conclusions The structural, physical and thermal properties of ipp-talc composites are studied. The SEM micrographs of ipp and composites with 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% talc content show that PP, 10 wt%, 20 wt%, and 30 wt% talc surface is smooth comparison to 40 wt% and 50 wt% talc composites. The composites of 40 wt% and 50 wt% talc contain more crack, agglomerates or larger particles. Bulk density of the composites decreases with the increase of talc content. With the increase of percentage of talc and period of immersion, WA increases. From the TGA, DTA, and DTG curves it is seen that composites become more thermally stable than neat ipp and composites with 30 wt% talc is the most thermally stable than others. In conclusion, it is seen that a thermally stable ipp-talc composite can be developed for industrial and scientific application. Acknowledgements The authors thank the authority of the Bangladesh University of Engineering and Technology (BUET) to provide financial support for this investigation. The authors are grateful to the department of materials and metallurgical Engineering, BUET and Bangladesh Council of Scientific & Industrial Research (BCSIR) to allow facilities for this research. References [1] Zhou, Y.X., Rangari, V., Mahfuz, H., Jeelani, S. and Mallick, P.K. (2005) Experimental Study on Thermal and Mechanical Behavior of Polypropylene, Talc-Polypropylene and Polypropylene-Clay Nanocomposites. Materials Science and Engineering, A402, 109-117. [2] Tjong, S.C. and Li, R.K.Y. (1997) Mechanical Properties and Impact Toughness of Talc Filled β-crystalline Phase Polypropylene Composites. Journal of Vinyl and Additive Technology, 3, 89-95. http://dx.doi.org/10.1002/vnl.10171 [3] Farhad Md, M., Nasima, B. and Jellur Md., R., Gafur, M.A. and Buiyan, Md.A.H. (2009) Structures and Performance of White Clay-Filled Isotactic Polypropylene Composites Prepared by Double Molding Techniques. Polymer-Plastics Technology and Engineering, 48, 1275-1281. http://dx.doi.org/10.1080/03602550903204139 [4] Samsudin, M.S.F., Mohd Ishak, Z.A., Jikan, S.S., Ariff, Z.M. and Ariffin, A. (2006) Effect of Filler Treatments on Rheological Behavior of Calcium Carbonate and Talc-Filled Polypropylene Hybrid Composites. Journal of Applied 933

Polymer Science, 102, 5421-5426. http://dx.doi.org/10.1002/app.25054 [5] Leong, Y.W., Abu Bakar, M.B., Mohd Ishak, Z.A. and Ariffin, A. (2005) Effects of Filler Treatments on the Mechanical, Flow, Thermal, and Morphological Properties of Talc and Calcium Carbonate Filled Polypropylene Hybrid Composites. Journal of Applied Polymer Science, 98, 413-426. http://dx.doi.org/10.1002/app.21507 [6] ASTM Designation; C 134-76, Standard Test Method for Size and Bulk Density of Refractory Brick and Insulating Firebrick. [7] ASTM (1988) Designation; D 570-81; Standard Test Method for Water Absorption of Plastic. [8] Kuriger, R.J. and Khirul Alam, M. (2002) Thermal Properties of Carbon Fiber Reinforced Polypropylene. BSME- ASME International Conference on Thermal Engineering, 31 December 2001-2 January 2002. [9] Maniruzzaman, M., Haque Md, M. and Gafur, M.A. (2008) Properties of Pulque Fibre Reinforced LDPE Composites. Textile Asia, 6, 37-39. [10] Luyt, A.S., Molefi, J.A. and Krump, H. (2006) Thermal, Mechanical and Electrical Properties of Copper Powder Filled Low-Density and Linear Low-Density Polyethylene Composites. Polymer Degradation and Stability, 91, 1629-1636. http://dx.doi.org/10.1016/j.polymdegradstab.2005.09.014 [11] Mina, F.Md., Seema, S., Matin, R., Rahman, J.Md., Bijoy, S.R., Gafur, M.A. and Bhuiyan, A.H. (2008) Improved Performance of Isotactic Polypropylene/Titanium Dioxide Composites: Effect of Processing Conditions and Filler Content. Polymer Degradation and Stability, 1-6. 934