Defining Thermal Manufacturing

Size: px
Start display at page:

Download "Defining Thermal Manufacturing"

Transcription

1 Defining Thermal Manufacturing Thermal manufacturing relies on heat-driven processes like drying, smelting, heat treating, and curing to produce materials such as metals, glass, and ceramics, as well as downstream products such as electronics, vehicles, and machinery. As a result of its far reach, thermal manufacturing is estimated to directly and indirectly impact the employment of an estimated 5.4 million people in the United States at more than 101,000 establishments (U.S. Census Bureau 2009, 2012). These companies 97% of which are small and medium enterprises annually produce $2.9 trillion in total value of shipments (U.S. Census Bureau 2009, 2012). Figure 1 provides an overview of thermal manufacturing and the industries it impacts. Figure 1: U.S. Thermal Manufacturing Overview Thermal Manufacturing Equipment The type of equipment used for thermal manufacturing ultimately depends on the material undergoing thermal treatment and the desired properties of the final product. These factors determine the required thermal manufacturing process and the associated process atmosphere and temperature. Different 1

2 types of equipment can best achieve the desired properties of the final product based on varying atmospheres and temperature ranges, modes of operation (batch vs continuous), heat-producing energy sources, and heating methods (direct-fired vs indirect-fired). While some equipment is best suited for a single process, multiple thermal manufacturing processes can be conducted in some equipment designs. The following sections, organized by thermal manufacturing process, indicate the processes that are conducted in each thermal manufacturing equipment type. The following types of equipment are used in thermal manufacturing: Arc furnace Fluid heaters/boilers Fluidized bed reactor Thermal Manufacturing Process Atmospheres and Temperatures Manufacturers must ensure that their thermal manufacturing processes adhere to specific atmospheric conditions, including air composition and pressure, that directly impact the quality and properties of a product. They must also determine and maintain the optimal thermal processing temperatures, which range from room temperature to over 4,000 F depending on the material and process, and the processing duration, which can also affect temperature. These processing conditions are chosen after a manufacturer determines the type of material undergoing treatment and the thermal process needed to achieve the desired properties of the product. Using this criteria, a manufacturer or process implementer can make an informed decision about the required or preferred types of process heating equipment. Thermal manufacturing processes are conducted in the following types of atmospheres: Air/ambient Oxygen Ammonia Particle-Free Carbon-based Pressurized Dry steam/air Reducing Inert gas Salt Bath Helium Sulfur-based Hydrogen Vacuum Hydrocarbon The following sections include figures that outline the process atmospheres and temperatures based on thermal manufacturing subprocesses. Industry Input Encouraged As we do not have access to all process information, we welcome industry input to ensure the completeness and accuracy of these figures. 2

3 Curing & Forming Curing is the crosslinking of polymer chains in polymer-based materials. Crosslinking causes an exothermic reaction (generation of heat) that is further accelerated with the application of thermal energy. Curing is commonly applied in the fabrication of composites and ceramic coatings. Forming is a process that shapes plastic resin, polymers, glass, or rubber into a variety of configurations (e.g., rolls, containers, automotive parts). In thermoforming, a thermoplastic is heated and forced against a mold until cooled. Curing & forming processes Figure 2: Autoclave include Curing/Postcuring, Glass forming, and Thermoforming. The equipment and conditions for each of these processes is outlined in the following figures. Table 1: Curing & Forming Equipment Fluidized bed reactor Curing/ Postcuring Glass Forming Thermoforming Table 2: Curing & Forming Process Atmospheres Air/Ambient Ammonia Carbon-based Dry steam/air Inert gas Helium Hydrogen Curing/Postcuring Glass Forming Thermoforming Hydrocarbon Oxygen Particle-Free Pressurized Reducing Salt Bath Sulfur-based Vacuum 3

4 Figure 3: Curing & Forming Process Temperatures Curing/Postcuring Ceramic coatings: 266 F Polymers: 70 F 780 F Glass Forming Glass: 900 F 3,180 F Thermoforming Polymers: 260 F 720 F Drying Drying is the removal of water that is not chemically bound to a material. It is most commonly used to reduce the moisture content of raw sand materials like clay, stone, and glass. Examples of drying include the use of direct-fired heaters to dry pulp at paper mills and the use of conveyer-type dryers to remove water from powder compounds in chemical and pharmaceutical manufacturing. Drying is also used during petroleum refining, textile manufacturing, and food production. The equipment and conditions for drying are outlined in the following tables. Table 3: Drying Equipment Figure 4: Conveyor dryer Fluidized bed Drying 4

5 Table 4: Drying Process Atmospheres Air/Ambient Ammonia Carbon-based Dry steam/air Inert gas Helium Hydrogen Hydrocarbon Oxygen Particle-Free Pressurized Reducing Salt Bath Sulfur-based Vacuum Drying Figure 5: Drying Process Temperatures Drying Brick: 100 F 400 F Clay: 210 F 1,650 F Pulp: 100 F 180 F Silica: 392 F Extractive Processing Extractive processing involves the conversion of mineral ores or inorganic materials to metals or other intermediate products. Three key extractive processes include calcining, smelting, and agglomeration. Agglomeration, also called sintering, is the grouping of smaller particles into a large cluster by applying pressure or heat below the melting temperature. Calcination is a thermal treatment performed in the presence of air or oxygen to remove chemicallybound water from a material (as opposed to free water removal, which is known as drying); this process is commonly used in the production of petroleum coke, lime, cement, wallboard, and pulp and paper. Smelting is a thermal or chemical treatment used to extract metal from ore; common smelting processes include steel, aluminum, and magnesium smelting. The equipment and conditions for Extractive Metallurgy are outlined in the following tables. Figure 6: Electric 5

6 Table 5: Extractive Processing Equipment Fluidized bed reactor Calcining Smelting Agglomeration Table 6: Extractive Processing Atmospheres Air/Ambient Ammonia Carbon-based Dry steam/air Inert gas Helium Hydrogen Hydrocarbon Oxygen Particle-Free Pressurized Reducing Salt Bath Sulfur-based Vacuum Agglomeration Calcining Smelting Figure 7: Extractive Processing Temperatures Iron: 2,282 F 2,462 F Agglomeration Smelting Aluminum: 1,724 F 1,832 F Copper: 2,100 F 2,600 F Lead: 1,650 F 2,200 F Magnesium: 2,732 F Steel/Iron: 3,000 F Green coke: 2,192 F 2,462 F Gypsum: 250 F 300 F Limestone: 1,436 F 2,444 F Calcining 6

7 Fluid Heating Fluid heating is the application of heat to a gas or liquid (i.e., thermal fluid) within a closed-loop system. These systems often rely on a series of heat exchangers, blowers, and pumps to apply thermal processing heat to a variety of products and materials. Examples of fluid heating include distillation of crude oil into separate components and heating of fluids in chemical manufacturing to achieve ideal processing conditions. Fluid heating processes include Air Heating, Catalytic/Thermal Cracking, Distillation, Hydrotreating, Liquid Heating, Quenching, and Steam/Catalytic Reforming. The equipment and conditions for each of these processes is outlined in the following tables. Figure 8: Fluid heating columns at petrochemical plant Table 7: Fluid Heating Equipment Fluidized bed reactor Air Heating Catalytic/Thermal Cracking Distillation Hydrotreating Liquid Heating Quenching Steam/Catalytic Reforming 7

8 Table 8: Fluid Heating Process Atmospheres Air/Ambient Ammonia Carbon-based Dry steam/air Inert gas Helium Hydrogen Air Heating Distillation Quenching Catalytic/Thermal Cracking Hydrotreating Liquid Heating Steam/Catalytic Reforming Hydrocarbon Oxygen Particle-Free Pressurized Reducing Salt Bath Sulfur-based Vacuum Figure 9: Fluid Heating Process Temperatures Air Heating 70 F 1,200 F 968 F 1,382 F Catalytic/Thermal Cracking 1,112 F Distillation Hydrotreating 662 F 1,022 F Liquid Heating 200 F 750 F 8

9 80 F 300 F Quenching Steam/Catalytic Reforming 900 F 1,830 F Heat Treating Heat treating is the application of thermal energy to change the microstructure of a material. This alteration then changes the material s mechanical properties strength, ductility, hardness, toughness, and elasticity. Heat treating processes include Aluminizing (Hot Dipping), Annealing, Bluing, Carburizing, Decarburizing, Homogenization, Nitriding, Precipitation Hardening, Solution Heat Treating, and Tempering. The equipment and conditions for each of these processes is outlined in the following tables. Figure 10: Computerized heat treating furnace Table 9: Heat Treating Equipment Fluidized bed reactor Aluminizing Annealing Bluing Carburizing/ Recarburizing Decarburizing Homogenization 9

10 Fluidized bed reactor Nitriding Precipitation Hardening Solution Heat Treating Tempering Table 10: Heat Treating Process Atmospheres Aluminum Copper Glass Magnesium Nickel Steel Titanium Air/Ambient Ammonia Carbon-based Dry steam/air Inert gas Helium Hydrogen Hydrocarbon Oxygen Particle-Free Pressurized Reducing Salt Bath Sulfur-based Vacuum Aluminizing Annealing Bluing Carburizing/ Recarburizing Decarburizing Homogenization Nitriding Precipitation Hardening Solution Heat Treating Tempering 10

11 Figure 11: Heat Treating Process Temperatures Steel: 1,110 F 1,300 F Aluminum: 570 F 770 F Copper: 500 F 1,700 F Glass: 742 F 1,020 F Magnesium: 550 F 850 F Nickel: 1,300 F 2,200 F Steel: 1,350 F 1,650 F Titanium: 1,200 F 1,650 F Steel: 644 F 1,000 F Titanium: 1,920 F Steel: 1,510 F 1,740 F Steel: 1,300 F Copper: 1,425 F 1,950 F Metals: 932 F 950 F Aluminum: 250 F 400 F Copper: 660 F 1,000 F Magnesium: 265 F 480 F Nickel: 800 F 1,600 F Steel: 900 F 1,100 F Titanium: 735 F 1,400 F Aluminizing Annealing Bluing Carburizing Decarburizing Homogenization Nitriding Precipitation Hardening 11

12 Aluminum: 920 F 1,000 F Copper: 1,400 F 1,830 F Magnesium: 725 F 1,050 F Nickel: 1,800 F 2,150 F Steel: 1,500 F 1,600 F Titanium: 1,400 F 1,940 F Steel: 350 F 1,300 F Solution Heat Treating Tempering Metal Heating In contrast to heat treating, metal heating primarily refers to the heating of metals to establish ideal fabrication conditions in shaping processes. This application of heat increases the malleability of metals to prevent them from fracturing during coldand hot-working processes such as forging, extraction, and rolling. In addition to shaping metals, metal heating is required in coating processes such as galvanization and chemical vapor deposition (CVD). The equipment and conditions for each of these processes is outlined in the following tables. Table 11: Metal Heating Equipment Figure 12: Sheet of metal being heated prior to shaping Fluidized bed reactor CVD Coating Cold- Working Galvanizing Hot-Working 12

13 Table 12: Metal Heating Process Atmospheres Air/Ambient Ammonia Carbon-based Dry steam/air Inert gas Helium Hydrogen Hydrocarbon Oxygen Particle-Free Pressurized Reducing Salt Bath Sulfur-based Vacuum CVD Coating Cold-Working Galvanizing Hot-Working Figure 13: Metal Heating Process Temperatures Metals: 1,470 F 2,010 F Chemical Vapor Deposition Coating Metals: 70 F 450 F Cold-Working Metals: 850 F 1,436 F Aluminum: 500 F 950 F Copper: 1,300 F 1,740 F Steel: 1,300 F 2,250 F Titanium: 1,600 F 1,800 F Galvanizing Hot-Working 13

14 Metal & Non-Metal Melting Melting is a standard procedure used to convert a material from a solid to a liquid by applying heat (also known as molten ). It is commonly used in the metals industry to convert bulk ingots to finished or semifinished castings. Non-metal melting is also used in the production of glass. Metal and Non-Metal Melting processes include Casting, Enameling, Glass Production, Joining, and Sintering (Powder Metallurgy). The equipment and conditions for each of these processes is outlined in the following tables. Figure 14: Molten metal being poured into mold Table 13: Metal & Non-Metal Melting Equipment Fluidized bed reactor Casting Enameling Glass Production Joining Sintering (Powder Metallurgy) 14

15 Table 14: Metal & Non-Metal Melting Process Atmospheres Casting Enameling Glass Production Air/Ambient Ammonia Carbon-based Dry steam/air Inert gas Helium Hydrogen Hydrocarbon Oxygen Particle-Free Pressurized Joining Sintering (Powder Metallurgy) Reducing Salt Bath Sulfur-based Vacuum Figure 15: Metal & Non-Metal Melting Process Temperatures Aluminum: 865 F 1,240 F Magnesium: 660 F 1,220 F Steel: 2,600 F 2,800 F Titanium: 3,020 F 3,034 F Casting Aluminum: 1,000 F 1,020 F Steel: 1,450 F 1,550 F Enameling Glass: 2,912 F 4,532 F Glass Production Filler Metals: 361 F 2,260 F Joining Ceramic: 2,000 F 2,700 F Steel: 1,472 F 2,192 F Sintering (Powder Metallurgy) 15

1-Materials Science & Materials Engineering

1-Materials Science & Materials Engineering 1-Materials Science & Materials Engineering 1-1-Structure & Properties Relationship (Materials Science or Materials Engineering) Processing Structure Properties Performance Sub Atomic Atomic Sub Atomic

More information

INTRODUCTION AND OVERVIEW OF MANUFACTURING. Manufacturing is Important. Manufacturing - Technologically Important

INTRODUCTION AND OVERVIEW OF MANUFACTURING. Manufacturing is Important. Manufacturing - Technologically Important INTRODUCTION AND OVERVIEW OF MANUFACTURING 1. What is Manufacturing? 2. Materials in Manufacturing 3. Manufacturing Processes 4. Production Systems 5. Organization of the Book Manufacturing is Important

More information

APPLICATIONS OF Fe-C PHASE DIAGRAM

APPLICATIONS OF Fe-C PHASE DIAGRAM APPLICATIONS OF Fe-C PHASE DIAGRAM KEY POINTS OF Fe-C Diagram Phases: Liquid Fe-Tmin=1148C @ 4.3%C 1394 C

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-7 ALLOY STEELS Tool Steels TYPES of FERROUS ALLOYS FERROUS ALLOYS Plain Carbon Steels Alloy Steels Cast Irons - Low carbon Steel - Medium carbon steel - High carbon

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

Heat Treating Basics-Steels

Heat Treating Basics-Steels Heat Treating Basics-Steels Semih Genculu, P.E. Steel is the most important engineering material as it combines strength, ease of fabrication, and a wide range of properties along with relatively low cost.

More information

Innovative heat treatment technologies. Field proven reliability and cutting-edge technology for every application

Innovative heat treatment technologies. Field proven reliability and cutting-edge technology for every application Innovative heat treatment technologies Field proven reliability and cutting-edge technology for every application Leading-edge heat treatment furnaces meeting international safety and quality standards

More information

Cast steel: Group of ASTM standards for steel castings and forgings

Cast steel: Group of ASTM standards for steel castings and forgings Cast steel: Group of ASTM standards for steel castings and forgings Abstract: This group of ASTM specifications covers standard properties of steel and iron castings and forgings for valves, flanges, fittings,

More information

Equipment That Needs A Permit From The SCAQMD

Equipment That Needs A Permit From The SCAQMD Equipment That Needs A Permit From The SCAQMD In general, SCAQMD Permits to Construct and/or Operate are required to operate, build, erect, install, alter or replace any equipment, the use of which may

More information

These elements are in carbon steels in minimal amounts, usually less than 1%.

These elements are in carbon steels in minimal amounts, usually less than 1%. Alloy Steels Weld Tech News VOL 1. NO. 11 WELD TECH NEWS is a newsletter for welders working primarily in maintenance and repair. Each issue contains useful information on materials (cast irons, steels,

More information

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds.

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds. 11-2 11.2 (a) Ferrous alloys are used extensively because: (1) Iron ores exist in abundant quantities. (2) Economical extraction, refining, and fabrication techniques are available. (3) The alloys may

More information

Q1.A student investigated simple cells using the apparatus shown in the figure below.

Q1.A student investigated simple cells using the apparatus shown in the figure below. Q1.A student investigated simple cells using the apparatus shown in the figure below. If metal 2 is more reactive than metal 1 then the voltage measured is positive. If metal 1 is more reactive than metal

More information

The Technological World. Chapter 12

The Technological World. Chapter 12 The Technological World Chapter 12 Chapter 12 Manufacturing Technical Objects There have been many inventions that have improved the quality of our lives. We will refer to these inventions as technical

More information

Lecture 9 - Manufacturing in Engineering

Lecture 9 - Manufacturing in Engineering Introduction Dr. Carolyn Skurla Speaking Slide 2 Process Selection Choice depends on: The material from which the component is to be made. The size, shape, and dimension tolerances for the component. The

More information

Steel Forgings: Design, Production, Selection, Testing, and Application. Edward G. Nisbett. ASTM Stock No. MNL53

Steel Forgings: Design, Production, Selection, Testing, and Application. Edward G. Nisbett. ASTM Stock No. MNL53 Steel Forgings: Design, Production, Selection, Testing, and Application Edward G. Nisbett ASTM Stock No. MNL53 INTERNATIONAL Standards Worldwide ASTM International 100 Barr Harbor Drive PO Box C700 West

More information

Uddeholm Formvar. FORMVAR is a trade mark registered in the European Union

Uddeholm Formvar. FORMVAR is a trade mark registered in the European Union Uddeholm Formvar FORMVAR is a trade mark registered in the European Union UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright

More information

true grit minerals CUMI lative range of EMD PRODUCT CATALOG 100 years US $ 3 billion 29 companies +30,000 people MURUGAPPA GROUP

true grit minerals CUMI lative range of EMD PRODUCT CATALOG 100 years US $ 3 billion 29 companies +30,000 people MURUGAPPA GROUP MURUGAPPA GROUP 100 years US $ 3 billion 29 companies +30,000 people EMD ELECTRO MINERALS DIVISION CUMI lative range of true grit minerals PRODUCT CATALOG FUSED PRODUCTS MACRO REGULAR BROWN FUSED ALUMINA

More information

Chapter 11: Applications and Processing of Metal Alloys

Chapter 11: Applications and Processing of Metal Alloys Chapter 11: Applications and Processing of Metal Alloys ISSUES TO ADDRESS... What are some of the common fabrication techniques for metals? What heat treatment procedures are used to improve the mechanical

More information

MATERIALIZING VISIONS. Bohler-Uddeholm H13 TOOL STEEL

MATERIALIZING VISIONS. Bohler-Uddeholm H13 TOOL STEEL MATERIALIZING VISIONS Bohler-Uddeholm H13 TOOL STEEL Bohler-Uddeholm H13 General Bohler-Uddeholm H13 is a chromium-molybdenumvanadium alloyed steel which is characterized by: Good resistance to abrasion

More information

Energy Use, Loss and Opportunities Analysis for U.S Manufacturing and Mining

Energy Use, Loss and Opportunities Analysis for U.S Manufacturing and Mining Use, Loss and Opportunities Analysis for U.S Manufacturing and Mining Joan Pellegrino, Energetics, Incorporated James Quinn, U.S. Department of Arvind Thekdi, E3M, Incorporated Mauricio Justiniano, Energetics,

More information

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718)

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718) ATI 718 Nickel-Base Superalloy (UNS Designation N07718) INTRODUCTION ATI 718 alloy (N07718) is an austenitic nickel-base superalloy which is used in applications requiring high strength to approximately

More information

NONFERROUS METALS AND ALLOYS

NONFERROUS METALS AND ALLOYS NONFERROUS METALS AND ALLOYS Chapter 7 7.1 Introduction Usage of nonferrous metals and alloys has increased due to technology Possess certain properties that ferrous materials do not have Resistance to

More information

Types of manufacturing processes

Types of manufacturing processes Materials processing Metal parts undergo sequence of processes Primary alter the ( raw ) material s basic shape or form. Sand casting Rolling Forging Sheet metalworking Types of manufacturing processes

More information

VAC AERO International Inc. Training Manual BASIC HEAT TREATING

VAC AERO International Inc. Training Manual BASIC HEAT TREATING Training Manual BASIC HEAT TREATING What is Heat Treating? -1- BASIC HEAT TREATING Heat treating is a process involving controlled heating and cooling of a solid metal to produce a desired change in the

More information

Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance.

Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance. UDDEHOLM DIEVAR Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance. The chemical composition and the very latest in production technique make

More information

SINTERED WIRE MESH.

SINTERED WIRE MESH. SINTERED WIRE MESH www.sinteredfilter.org "Total filtration solution provider" For over 15 years, Boegger has been providing filtration solutions to a wide range of filtering industries where air, liquid

More information

FRAUNHOFER INSTITUTE FOR CERAMIC TECHNOLOGIES AND SYSTEMS IKTS CENTER OF COMPETENCE POWDER TECHNOLOGY

FRAUNHOFER INSTITUTE FOR CERAMIC TECHNOLOGIES AND SYSTEMS IKTS CENTER OF COMPETENCE POWDER TECHNOLOGY FRAUNHOFER INSTITUTE FOR CERAMIC TECHNOLOGIES AND SYSTEMS IKTS CENTER OF COMPETENCE POWDER TECHNOLOGY PRODUCT DESIGN READY-TO-PRESS-POWDER (PREMIX) POWDER FOR THERMAL CLADDING AND SPRAYING FUNCTIONAL POWDERS

More information

Polyurethane. Polyurethane Recycling and Recovery. Options for Polyurethane Recycling and Recovery

Polyurethane. Polyurethane Recycling and Recovery. Options for Polyurethane Recycling and Recovery Options for Polyurethane Recycling and Recovery Polyurethane Repair and Reuse Mechanical Recycling Chemical Recycling Feedstock Mechanical Energy Recovery Long-life products, such as building panels can

More information

ASTM Volume 02.05, May 2017 Metallic and Inorganic Coatings; Metal Powders and Metal Powder Products

ASTM Volume 02.05, May 2017 Metallic and Inorganic Coatings; Metal Powders and Metal Powder Products 1 B136-84(2013) Standard Method for Measurement of Stain Resistance of Anodic Coatings on Aluminum 2 B137-95(2014) Standard Test Method for Measurement of Coating Mass Per Unit Area on Anodically Coated

More information

Recycled Content & Certifications. Green Building Standards. Total 3 rd Party Recycled. Certifications Content

Recycled Content & Certifications. Green Building Standards. Total 3 rd Party Recycled. Certifications Content Cordia Receptacles are ergonomic, low maintenance and easy to disassemble. Wood insets are FSC 100% Jatoba hardwood with a natural oiled finish. Corrosion resistant aluminum insets have a low- or no- VOC

More information

INDEX METALS FERRIC METALS NON-FERRIC METALS WORKING WITH METALS METAL FORMING TECHNIQUES ENVIRONMENTAL IMPACT OF METAL EXTRACTION

INDEX METALS FERRIC METALS NON-FERRIC METALS WORKING WITH METALS METAL FORMING TECHNIQUES ENVIRONMENTAL IMPACT OF METAL EXTRACTION METALS INDEX METALS FERRIC METALS NON-FERRIC METALS WORKING WITH METALS METAL FORMING TECHNIQUES ENVIRONMENTAL IMPACT OF METAL EXTRACTION METALS CHEMICAL ELEMENTS FOUND IN NATURE IN SOLID STATE AT ROOM

More information

The following steps are used in the powder metallurgy techniques:

The following steps are used in the powder metallurgy techniques: Advantages of Powder Metallurgy Virtually unlimited choice of alloys and non metallicswith associated properties. * A variety of metal or non metal powders can be used. * Refractory materials are popularly

More information

Beechcraft Corporation Special Processes Index Special Processes that Require Approval to Perform

Beechcraft Corporation Special Processes Index Special Processes that Require Approval to Perform Brazing Note: Part Number-specific approval is required for Suppliers who do not hold Nadcap Welding/Brazing certification. Silver brazing requires Part Number-specific approval in all cases. Contact:

More information

STEELS & COATINGS FOR CUTTING TOOL APPLICATIONS

STEELS & COATINGS FOR CUTTING TOOL APPLICATIONS STEELS & COATINGS FOR CUTTING TOOL APPLICATIONS Requirements for cutting tools There are several characteristics that are essential to the good performance of a cutting tool. Powder Metal High Speed Steels

More information

MME 291: Lecture 15. Surface Hardening of Steels. Today s Topics

MME 291: Lecture 15. Surface Hardening of Steels. Today s Topics MME 291: Lecture 15 Surface Hardening of Steels Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Surface hardening fundamental Carburising Nitriding Cyaniding and carbonitriding Induction

More information

Contents. 1. Introduction to Materials Processing Starting Materials 21. Acknowledgements

Contents. 1. Introduction to Materials Processing Starting Materials 21. Acknowledgements Preface Acknowledgements xiii xv 1. Introduction to Materials Processing 1 1.1 Materials Processing: Definition and Scope 1 1.2 Three Approaches to Materials Processing 4 1.3 Materials Processing Steps

More information

CHY1H (JUN09CHY1H01) General Certifi cate of Secondary Education June Unit Chemistry C1. CHEMISTRY Unit Chemistry C1.

CHY1H (JUN09CHY1H01) General Certifi cate of Secondary Education June Unit Chemistry C1. CHEMISTRY Unit Chemistry C1. Surname Other Names For Examiner s Use Centre Number Candidate Number Candidate Signature General Certifi cate of Secondary Education June 2009 SCIENCE B Unit Chemistry C1 CHEMISTRY Unit Chemistry C1 CHY1H

More information

STANDARD STEELS STANDARD STEELS 403

STANDARD STEELS STANDARD STEELS 403 STANDARD STEELS 403 STANDARD STEELS Standard Steels Compositions, Applications, and Heat Treatments Steel is the generic term for a large family of iron carbon alloys, which are malleable, within some

More information

RA17-4 stainless. Introduction

RA17-4 stainless. Introduction RA17-4 stainless Introduction RA17-4 is an age-hardening martensitic alloy combining high strength with the corrosion resistance of stainless steel. Hardening is achieved by a short-time, simple lowtemperature

More information

STAINLESS STEELS. Chromium and nickel content in the various groups of stainless steels

STAINLESS STEELS. Chromium and nickel content in the various groups of stainless steels These steels contain a high percentage of chromium and sometimes other alloys and have been designed to prevent different types of corrosion. There are two kinds of corrosion: dry corrosion (often named

More information

Metal Forming Process. Prof.A.Chandrashekhar

Metal Forming Process. Prof.A.Chandrashekhar Metal Forming Process Prof.A.Chandrashekhar Introduction Shaping of a component by the application of external forces is known as the metal forming. Metal forming can be described as a process in which

More information

Metal Matrix Composite (MMC)

Metal Matrix Composite (MMC) Matrix Metal Matrix Composite (MMC) The matrix is the monolithic material into which the reinforcement is embedded, and is completely continuous. This means thatt there is apath throughh the matrix ti

More information

1. Plastic products that are formed into a permanent shape by heat and pressure and may not be altered after curing are produced by which process?

1. Plastic products that are formed into a permanent shape by heat and pressure and may not be altered after curing are produced by which process? Student Name: Teacher: Date: District: Rowan Assessment: 9_12 T and I IV22 - Drafting - Engnrng II Test 1 Description: Unit C - Manufacturing 1 Form: 501 1. Plastic products that are formed into a permanent

More information

Bin Level Indication Applications in Cement Production and Concrete Batching Plants

Bin Level Indication Applications in Cement Production and Concrete Batching Plants Bin Level Indication Applications in Cement Production and Concrete Batching Plants Introduction Concrete is fundamental to our modern day construction and a key part of our global economy. Concrete is

More information

ME 216 Engineering Materials II

ME 216 Engineering Materials II ME 216 Engineering Materials II Chapter 12 Heat Treatment (Part II) Mechanical Engineering University of Gaziantep Dr. A. Tolga Bozdana Assistant Professor Hardenability It is the ability of steel to harden

More information

Vacuum furnaces. SECO/WARWICK vacuum furnace assembly facility. Vacuum carburizing Fine Carb. Aircraft and energy industry

Vacuum furnaces. SECO/WARWICK vacuum furnace assembly facility. Vacuum carburizing Fine Carb. Aircraft and energy industry 4 Vacuum furnaces SECO/WARWICK offers a wide variety of Vacuum furnaces and process technology for heat treatment including: Bright hardening, High-pressure gas hardening, Vacuum carburizing FineCarb,

More information

Powder Metallurgy. Science, Technology. and Materials. Anish Upadhyaya. G S Upadhyaya. Department of Materials Science and Engineering

Powder Metallurgy. Science, Technology. and Materials. Anish Upadhyaya. G S Upadhyaya. Department of Materials Science and Engineering Powder Metallurgy Science, Technology and Materials Anish Upadhyaya Associate Professor Department of Materials Science and Engineering Indian Institute of Technology Kanpur, India G S Upadhyaya Former

More information

Impact 7 Steel. A Durable, Dependable Steel Solution For Harsh Environments. Technical Data. Alloy Description. Alloy Type. Typical Applications

Impact 7 Steel. A Durable, Dependable Steel Solution For Harsh Environments. Technical Data. Alloy Description. Alloy Type. Typical Applications Impact 7 Steel Technical Data A Durable, Dependable Steel Solution For Harsh Environments Alloy Description As a world leader in steel manufacturing, TimkenSteel specializes in providing custom steel solutions

More information

D.1 High Integrity Magnesium Automotive Castings (HI-MAC)

D.1 High Integrity Magnesium Automotive Castings (HI-MAC) D.1 High Integrity Magnesium Automotive Castings (HI-MAC) STATEMENT OF WORK Objective Vehicle weight reduction is a key enabler to meet future stringent CAFE requirements, and this can best be achieved

More information

Joining of Dissimilar Automotive Materials

Joining of Dissimilar Automotive Materials Joining of Dissimilar Automotive Materials P.K. Mallick William E. Stirton Professor of Mechanical Engineering Director, Center for Lighweighting Automotive Materials and Processing University of Michigan-Dearborn

More information

Vacuum Furnaces Furnaces for Advanced Materials

Vacuum Furnaces Furnaces for Advanced Materials Vacuum Furnaces Furnaces for Advanced Materials Vacuum Furnaces and Furnaces for Advanced Materials IHI is one of the largest furnace manufacturers in the following industries. AUTOMOTIVE AEROSPACE TOOL

More information

Surface treatments fundamental Carburising Nitriding Cyaniding and carbonitriding Induction and flame hardening

Surface treatments fundamental Carburising Nitriding Cyaniding and carbonitriding Induction and flame hardening Surface Treatments t of Steels Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Surface treatments fundamental Cyaniding and carbonitriding Induction and flame hardening Reference: 1.

More information

Manufacturing Technologies University of Rome Tor Vergata

Manufacturing Technologies University of Rome Tor Vergata Manufacturing Tech (6 cr) + Metallurgy (3 cr) Initial introduction (1 week) Timetable 6 credits (54-60 h) End of the course: 28 giugno Type of examination Written test Oral test (mandatory) Average of

More information

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY 1. What is matrix? The ore is generally associated with rock impurities like clay, sand etc. called gangue or matrix 2. What is mineral? The natural

More information

Vacuum Solutions for Furnace and Metallurgy Processes

Vacuum Solutions for Furnace and Metallurgy Processes Vacuum Solutions for Furnace and Metallurgy Processes 173.12.02 Oil-sealed Vacuum Pumps and Pump Systems Principal Areas of Applications for Systems with TRIVAC Rotary Vane Vacuum Pumps Use in the laboratory

More information

EAF. Ladle Furnace. Continuous Casting. Conventional Casting. Remelting VAR and ESR. Reheating Furnace. Open Die. Mill. Bar/Coil Finish Rolling Mill

EAF. Ladle Furnace. Continuous Casting. Conventional Casting. Remelting VAR and ESR. Reheating Furnace. Open Die. Mill. Bar/Coil Finish Rolling Mill TOOL STEELS Conventional Casting EAF Ladle Furnace VD Continuous Casting MANUFACTURING PROCESSES FOR CONVENTIONAL AND REMELTED STEELS MELT SHOP Melting Process (Conventional): EAF (Electric Arc Furnace)

More information

Element, Mixture, Compound Lab

Element, Mixture, Compound Lab Element, Mixture, Compound Lab Background: Material engineers and mechanical engineers are focused on understanding different materials so that they can create new materials with desired properties. For

More information

Activities Conditions Incentives

Activities Conditions Incentives Advanced Materials Activities Conditions Incentives 2.1 Prospecting of minerals 1. Prospecting licenses (Prospecting Atchaybat: PA or Exclusive Prospecting Atchayabat: EPA or Special Atchayabat: SA) must

More information

THE INNOVATION CENTER

THE INNOVATION CENTER THE INNOVATION CENTER CUSTOMIZED TESTING SOLUTIONS Testing offers a host of invaluable information, allowing you to gain critical data on your material, work out process variables, and develop a recipe

More information

Properties A Metal B Non- metal Electronic configuration?? Nature of oxides?? Oxidizing or reducing action?? Conduction of heat and electricity??

Properties A Metal B Non- metal Electronic configuration?? Nature of oxides?? Oxidizing or reducing action?? Conduction of heat and electricity?? CLASS: X NCERT (CBSE) SCIENCE: Chemistry Page: 1 Question 1: Compare the properties of a typical metal and a non-metal on the basis of the following. Fill in Column A, B. Properties A Metal B Non- metal

More information

Ibrayev I.K., Ibrayeva O.T., Zhaksybayeva G. Sh.

Ibrayev I.K., Ibrayeva O.T., Zhaksybayeva G. Sh. The technology of processing high moisture ferriferous slime to obtain a complex iron-carbon-containing materials for metallurgical processing and new commercial products Ibrayev I.K., Ibrayeva O.T., Zhaksybayeva

More information

AEROSPACE MATERIAL SPECIFICATION

AEROSPACE MATERIAL SPECIFICATION AEROSPACE MATERIAL SPECIFICATION AMS 2759/3D Issued OCT 1984 Revised FEB 2005 Superseding AMS 2759/3C Treatment Precipitation-Hardening Corrosion-Resistant and Maraging Steel Parts 1. SCOPE: This specification,

More information

HEAT TREATMENT. Chapter 6. Veljko Samardzic. ME-215 Engineering Materials and Processes

HEAT TREATMENT. Chapter 6. Veljko Samardzic. ME-215 Engineering Materials and Processes HEAT TREATMENT Chapter 6 Materials Properties STRUCTURE PERFORMANCE PROCESSING PROPERTIES 6.1 Structure Property Relationships Properties and structure can be manipulated and controlled Interactive relation

More information

Production of Steel by the

Production of Steel by the Production of Steel by the Bessemer Process By E. F. Ketterer* THE pneumatic steelmaking process invented by William Kelly and Henry Bessemer, and commonly known as the bessemer process, has been in use

More information

ATI 825 ATI 825. Technical Data Sheet. Nickel-base Alloy INTRODUCTION PRODUCT FORMS SPECIFICATIONS & CERTIFICATES (UNS N08825)

ATI 825 ATI 825. Technical Data Sheet. Nickel-base Alloy INTRODUCTION PRODUCT FORMS SPECIFICATIONS & CERTIFICATES (UNS N08825) ATI 825 Nickel-base (UNS N08825) INTRODUCTION ATI 825 alloy (UNS N08825) is an austenitic nickel-iron-chromium-molybdenum-copper alloy containing high levels of chromium, nickel, molybdenum and copper

More information

QRO 90 SUPREME Hot work tool steel

QRO 90 SUPREME Hot work tool steel T O O L S T E E L F A C T S QRO 90 Hot work tool steel Great Tooling Starts Here! Cover photo: Bo Dahlgren This information is based on our present state of knowledge and is intended to provide general

More information

Challenges and limiting factors for the Recycling of steel scrap in Europe

Challenges and limiting factors for the Recycling of steel scrap in Europe Challenges and limiting factors for the Recycling of steel scrap in Europe International Workshop on Technospheric Mining 2 nd October 2015 Philip Bundschuh Table of Content Scrap availability trading

More information

What Are Metal Standards and Why Are They Important?

What Are Metal Standards and Why Are They Important? What Are Metal Standards and Why Are They Important? Table of Content Metallurgy101...3 Pure Metals...3 Component Metals...4 Characteristics of Metal Standards...5 Metal Standards and Testing Standards...6

More information

1. Hardness 2. Streak 3. Density 4. Crystal structure 5. A mineral must be a naturally occurring, inorganic. 7. c 8. f 9. a 10. d 11. g 12. e 13.

1. Hardness 2. Streak 3. Density 4. Crystal structure 5. A mineral must be a naturally occurring, inorganic. 7. c 8. f 9. a 10. d 11. g 12. e 13. Properties of Guided Reading and Study Use Target Reading Skills Properties of I. What Is a Mineral? A. Naturally Occurring B. Inorganic C. Solid D. Crystal Structure E. Definite Chemical Composition II.

More information

ENVIRONMENTAL PRODUCT DECLARATION ROLL FORMED STEEL PANELS

ENVIRONMENTAL PRODUCT DECLARATION ROLL FORMED STEEL PANELS ENVIRONMENTAL PRODUCT DECLARATION ROLL FORMED STEEL PANELS ArcelorMittal is the world s largest steel and mining company with leading research and development and technology, as well as sizeable captive

More information

Mold Design. 12. Mold Materials. Bong-Kee Lee School of Mechanical Engineering Chonnam National University

Mold Design. 12. Mold Materials. Bong-Kee Lee School of Mechanical Engineering Chonnam National University 12. Mold Materials Bong-Kee Lee Chonnam National University Mold Materials easy toolmaking good performance during production good machining properties ease of hear treatment where hardening is required

More information

Callidus Oxidizer Systems. Thermal and Catalytic Oxidizer Systems

Callidus Oxidizer Systems. Thermal and Catalytic Oxidizer Systems Callidus Oxidizer Systems Thermal and Catalytic Oxidizer Systems Meet the Thermal Oxidizer Experts Wide Range of Applications Honeywell UOP Callidus is an industry leader in environmental combustion technology.

More information

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba Cutting Tool Materials and Cutting Fluids HomeWork #2 22.37 obtain data on the thermal properties of various commonly used cutting fluids. Identify those which are basically effective coolants and those

More information

TOTAL WATER MANAGEMENT IN THE STEEL INDUSTRY. By N. Ramachandran, Ion Exchange (India) Ltd

TOTAL WATER MANAGEMENT IN THE STEEL INDUSTRY. By N. Ramachandran, Ion Exchange (India) Ltd TOTAL WATER MANAGEMENT IN THE STEEL INDUSTRY By N. Ramachandran, Ion Exchange (India) Ltd Large quantities of water are required to produce steel and steel products - typically 180-200 m 3 of water per

More information

A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS

A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS 1 R.Raja, 2 M.Rajkumar 1 Assistant Lecturer, St. Joseph College

More information

wrought = rolled, extruded, forged heat treatable non-heat treatable

wrought = rolled, extruded, forged heat treatable non-heat treatable Physical metallurgy of alluminium Wrought Al alloys wrought = rolled, extruded, forged heat treatable non-heat treatable International alloy designation system (IADS) e.g. 1XXX = Al 7XXX = Al-Zn-Mg-(Cu)

More information

Therelek Furnaces Private Limited

Therelek Furnaces Private Limited +91-8071801388 Therelek Furnaces Private Limited https://www.indiamart.com/therelek-furnaces/ We are one of the prominent manufacturers and suppliers of a wide assortment of Electric Furnace. Our range

More information

QRO 90 SUPREME. Hot work tool steel

QRO 90 SUPREME. Hot work tool steel QRO 90 SUPREME Hot work tool steel This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed

More information

HEAT TREATMENT. Bulk and Surface Treatments Annealing, Normalizing, Hardening, Tempering Hardenability

HEAT TREATMENT. Bulk and Surface Treatments Annealing, Normalizing, Hardening, Tempering Hardenability Bulk and Surface Treatments Annealing, Normalizing, Hardening, Tempering Hardenability HEAT TREATMENT With focus on Steels Principles of Heat Treatment of Steels Romesh C Sharma New Age International (P)

More information

Index. Atmosphere Effect on fatigue processes, 49, 200 Auger spectroscopy, 51 A533-B steel Mode II fracture, 235, 242 B

Index. Atmosphere Effect on fatigue processes, 49, 200 Auger spectroscopy, 51 A533-B steel Mode II fracture, 235, 242 B STP600-EB/Jun. 1976 Index Abrasion Due to crack closure, 228 On Mode II fractures, 240 AgaMg-AgMg alloys, 160, 166 AISI 1025 steel Hydrogen attack, 88 Microstructure of, 91 Tensile properties, 90 AISI

More information

HTR Process Heat Applications

HTR Process Heat Applications HTR Process Heat Applications Training Course on High Temperature Gas-cooled Reactor Technology October 19-23, Serpong, Indonesia Japan Atomic Energy Agency HTR Heat Applications Hydrogen production Hydrogen

More information

Researches on the production of self-reducing briquettes from waste containing iron and carbon

Researches on the production of self-reducing briquettes from waste containing iron and carbon IOP Conference Series: Materials Science and Engineering OPEN ACCESS Researches on the production of self-reducing briquettes from waste containing iron and carbon To cite this article: E Ardelean et al

More information

S THERMAL OXIDIZER SOLUTIONS TO MEET TOMORROW S CHALLENGES

S THERMAL OXIDIZER SOLUTIONS TO MEET TOMORROW S CHALLENGES UOP Callidus Oxidizers for Waste Destruction TODAY S THERMAL OXIDIZER SOLUTIONS TO MEET TOMORROW S CHALLENGES Thermal oxidizer systems Catalytic oxidizer systems Callidus, experts in Thermal Oxidizers

More information

1. METALS 2. FERRIC METALS 3. NON-FERRIC METALS 4. WORKING WITH METALS 5. METAL FORMING TECHNIQUES 6. ENVIRONMENTAL IMPACT OF METAL EXTRACTION

1. METALS 2. FERRIC METALS 3. NON-FERRIC METALS 4. WORKING WITH METALS 5. METAL FORMING TECHNIQUES 6. ENVIRONMENTAL IMPACT OF METAL EXTRACTION METALS: 1. METALS 2. FERRIC METALS 3. NON-FERRIC METALS 4. WORKING WITH METALS 5. METAL FORMING TECHNIQUES 6. ENVIRONMENTAL IMPACT OF METAL EXTRACTION 1. METALS: Metals are chemical elements found in nature

More information

1. Dimensions, Tolerance and Related Attributes DIMENSIONS, TOLERANCES AND SURFACE. 2. Surface. Surface Technology.

1. Dimensions, Tolerance and Related Attributes DIMENSIONS, TOLERANCES AND SURFACE. 2. Surface. Surface Technology. DIMENSIONS, TOLERANCES AND SURFACE 1. Dimension, Tolerances and Related Attributes 2. Surfaces 3. Effect of Manufacturing Processes 1. Dimensions, Tolerance and Related Attributes Dimensions a numerical

More information

304/304L STAINLESS STEEL

304/304L STAINLESS STEEL 304/304L STAINLESS STEEL P R O D U C T D ATA B U L L E T I N Architectural Moldings and Trim Textile Kitchen Equipment Paper Pharmaceutical and Chemical Industry Processing Equipment Applications Potential

More information

special hot work tool steel CR7V-L

special hot work tool steel CR7V-L special hot work tool steel CR7V-L T h e p r e m i u m s t e e l w i t h m a x i m u m h i g h t e m p e r at u r e w e a r r e s i s ta n c e 2 From the casting of steel to finished die... LONG-STANDING

More information

Selection of Tool & Die Steels

Selection of Tool & Die Steels Selection of Tool & Die Steels Introduction The success of a metal forming tool depends on optimizing all the factors affecting its performance. Usually, operating conditions (applied loads, abrasive environments,

More information

REFRACTORIES. Definition Classification Properties Manufacture of refractory bricks Properties and applications of Refractory bricks

REFRACTORIES. Definition Classification Properties Manufacture of refractory bricks Properties and applications of Refractory bricks Topics REFRACTORIES Definition Classification Properties Manufacture of refractory bricks Properties and applications of Refractory bricks Definition Substances which can with stand high temperature without

More information

EAF DUST TREATMENT FOR HIGH METAL RECOVERY MICHIO NAKAYAMA *

EAF DUST TREATMENT FOR HIGH METAL RECOVERY MICHIO NAKAYAMA * EAF DUST TREATMENT FOR HIGH METAL RECOVERY BY MICHIO NAKAYAMA * SYNOPSYS: Electric arc furnaces (EAF) generate much dust during operation, which contains very high percentages of zinc, lead, and iron,

More information

AISI D2 Cold work tool steel

AISI D2 Cold work tool steel T OOL STEEL FACTS AISI D2 Cold work tool steel Great Tooling Starts Here! This information is based on our present state of knowledge and is intended to provide general notes on our products and their

More information

CEMENT MANUFACTURING PROCESS

CEMENT MANUFACTURING PROCESS CEMENT MANUFACTURING PROCESS Definition: Defined as a product material obtained by calcination of calcareous (a material containing lime) and argillaceous (a material which contain silica) materials. According

More information

+91-8043047505 Indotherm Equipment Corporation http://www.indotherms.com/ We are specialized in manufacturing, exporting and supplying of and Belt Conveyor. The range of products which we are offering

More information

GIFA 2015 Page 1 of 5 1.0

GIFA 2015 Page 1 of 5 1.0 Page 1 of 5 1.0 1 2 Foundry plants and installations, planning, construction, engineering Melting shop 2.1 Cupolas 2.1.1 Cupolas, coke-fired 2.1.2 Cupolas, cokeless, gas-fired or oil-fired 2.2 Electric

More information

Special Bar Quality Steel:

Special Bar Quality Steel: Special Bar Quality Steel: Helping Customers Push the Bounds of What s Possible TimkenSteel is a leading special bar quality (SBQ) steel maker of small, intermediate and large bars up to 16" (406 mm) in

More information

Experiment E: Martensitic Transformations

Experiment E: Martensitic Transformations Experiment E: Martensitic Transformations Introduction: The purpose of this experiment is to introduce students to a family of phase transformations which occur by shear rather than diffusion. In metals,

More information

UDDEHOLM VIDAR 1 ESR

UDDEHOLM VIDAR 1 ESR UDDEHOLM VIDAR 1 ESR This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty

More information

MATERIALS OF CONSTRUCTION FOR PROCESS EQUIPMENT AND PIPING SYSTEMS

MATERIALS OF CONSTRUCTION FOR PROCESS EQUIPMENT AND PIPING SYSTEMS MATERIALS OF CONSTRUCTION FOR PROCESS EQUIPMENT AND PIPING SYSTEMS SECTOR / ENGINEERING NON-TECHNICAL & CERTIFIED TRAINING COURSE Appropriate material selection is the cornerstone of pressure equipment

More information

The Nanomaterials in the Industrial Process of GERDAU

The Nanomaterials in the Industrial Process of GERDAU The Nanomaterials in the Industrial Process of GERDAU NANOSAFETY & EHS ADVANCE Global Presence 2 Products and End Users 3 Special Steel Locations 4 Product Portfolio: SBQ 5 Shipments: Special Steel 6 Special

More information

Powder-Metal Processing and Equipment

Powder-Metal Processing and Equipment Powder-Metal Processing and Equipment Text Reference: Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010 Chapter 17 Powder Metallurgy Metal powders are compacted into desired and

More information