HOMEWORK 6. PROJECT WORK READINGS

Similar documents
Chapter 9 Phase Diagrams. Dr. Feras Fraige

Phase Diagrams of Pure Substances Predicts the stable phase as a function of P total and T. Example: water can exist in solid, liquid and vapor

ENGR 151: Materials of Engineering LECTURE #15: PHASE DIAGRAMS

Phase Diagrams. Phases

MSE 513 Homework #1 Due Jan. 21, 2013

Chapter 9: Phase Diagrams

ENGR 151: Materials of Engineering LECTURE #14: PHASE DIAGRAMS

CHAPTER 9 PHASE DIAGRAMS

12/3/ :12 PM. Chapter 9. Phase Diagrams. Dr. Mohammad Abuhaiba, PE

www-materials.eng.cam.ac.uk/typd

Schematic representation of the development of microstructure. during the equilibrium solidification of a 35 wt% Ni-65 wt% Cu alloy

CHAPTER 9 PHASE DIAGRAMS PROBLEM SOLUTIONS

PHASE EQUILIBRIUM P + F = C + 2

Chapter 9: Phase Diagrams

Phase Diagrams, Solid Solutions, Phase Strengthening, Phase Transformations

Cu/Ag Eutectic System

TALAT Lecture Phase Diagrams. 14 pages, 13 Figures. Basic Level

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING MATERIALS C102 TUTORIAL 3 THERMAL EQUILIBRIUM (PHASE) DIAGRAMS

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy.

Development of Microstructure in Eutectic Alloys

Materials Engineering. Phase transformation Phase diagrams

CHAPTER 10 PHASE DIAGRAMS PROBLEM SOLUTIONS

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Phase Diagram

Phase diagrams wt% of carbon in Fe microstructure of a lead tin alloy of eutectic composition

Introduction of Materials Materials Science SScience

Equilibrium phase diagram of metallic alloy

Two Components System

Chapter 10. Phase Diagrams

Chapter 11: Phase Diagrams

The Solubility Limit

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11)

CHAPTER9. Phase Diagrams Equilibrium Microstructural Development

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 8 Solid Solutions and Phase Equilibrium

Phase diagrams. R.D.Makwana,IT,NU. R.D.Makwana,IT,NU

MAE 212: Spring 2001 Lecture 14 PHASE DIAGRAMS AND EQUILIBRIUM MICROSTRUCTURES N. Zabaras

PHASE DIAGRAMS. IE-114 Materials Science and General Chemistry Lecture-10

MME292 Metallic Materials Sessional

Introduction to the phase diagram Uses and limitations of phase diagrams Classification of phase diagrams Construction of phase diagrams

[CLICK] [CLICK] [CLICK] [CLICK] [CLICK] [CLICK] [CLICK] [CLICK] [CLICK] [CLICK] [CLICK]

Phase Diagrams. Today s Topics

CHAPTER 9: PHASE DIAGRAMS

Cu-Ag phase diagram Brazil s map

the Phase Diagrams Today s Topics

HOMEWORK 6. PROJECT WORK READINGS. DUE DATE: Ongoing

The internal structure of a material plays an important part on its mechanical properties.!

There are many types of alloying systems which they are:

Engineering Materials and Processes Lecture 9 Equilibrium diagrams

Chapter 11: Phase Diagrams. Phase Equilibria: Solubility Limit

solvent: component of a solution present in the greatest amount in alloy.

Lecture 7: Solid State Reactions Phase Diagrams and Mixing

the Phase Diagrams Today s Topics

Engineering materials

Metallic Materials-Phase Diagrams

Lecture - 10 Free Energy of Binary Isomorphous Phase Diagrams

Why do cocktail ice served in expensive restaurants are clear whereas the ice formed in your refrigerator is cloudy?

CHAPTER 9: PHASE DIAGRAMS

Material Properties and Phase Diagrams

C β = W β = = = C β' W γ = = 0.22

The Stabilities of phase

Lecture 42 Phase Diagram of Ceramic

5 a l l o y i n g b e h av i o r

Solidification & Binary Phase Diagrams II. Solidification & Binary Phase Diagrams II

Fe-Fe 3 C phase diagram is given on the last page of the exam. Multiple choices (2.5 points each):

Chapter 10: Phase Diagrams

MS524 Phase Equilibria and Phase Diagrams DMSE, KAIST December 19, Problem 1 (35 Points) Problem 2 (40 Points)

Teach Yourself: Phase Diagrams and Phase Transformations

J = D C A C B x A x B + D C A C. = x A kg /m 2

PHASE DIAGRAMS UNDERSTANDING BASICS THE. Edited. F.C. Campbell. Materials Park, Ohio The Materials Information Society.

Introduction to Phase Diagrams. Version 2.1. Andrew Green, MATTER Trevor Myers, UMIST/University of Manchester

Binary Phase Diagrams - II

Alloys & Their Phase Diagrams. مرجع علمى مهندسى مواد

Pre-Course Reading for ESI s Solidification Course

The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram

Materials and Minerals Science Course C: Microstructure. Eutectic Systems. A single-component melt solidifies directly to a single-component solid:

Phase diagrams (cont.) and the Fe-C system

Slide 1. Slide 2. Slide 3. Chapter 10: Solid Solutions and Phase Equilibrium. Learning Objectives. Introduction

Chapter 10: Phase Transformations

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C).

Chapter 10: Phase Transformations

Components The elements or compounds which are mixed initially. (e.g. Al & Cu)

Binary phase diagrams

Binary phase diagrams

EXPERIMENTAL STUDY OF THE Cu-Al-Sn PHASE EQUILIBRIA, CLOSE TO THE COPPER ZONE

Modeling Diffusion: Flux

Porter & Easterling, chapter 5

ME 254 MATERIALS ENGINEERING 1 st Semester 1431/ rd Mid-Term Exam (1 hr)

Lecture 3: Solutions: Activities and. Phase Diagrams

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1

Phase Diagrams & Phase Tranformation

Metallurgy of Aluminum Die Casting Alloys EC 305 Dave Neff

WELCOME MUCH LIKE YOUR FIRST DAY OF SCHOOL, THERE ARE LIKELY QUESTIONS, CONCERNS TO ZGM AND A FEW INSECURITIES THAT YOU VE BROUGHT WITH YOU TODAY.

Lecture 30. Phase Diagrams

(12) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit.

Teach Yourself Phase Diagrams

This Week in the Boardroom 12/04/14 Page 1

Introduction to phase diagrams

Identifying and Addressing Employee Performance Issues

LN Introduction to Solid State Chemistry. Lecture Notes No. 10 PHASE EQUILIBRIA AND PHASE DIAGRAMS

EXPERIMENT 6 HEAT TREATMENT OF STEEL

PRESENCE OF GOLDEN RATIO RELATIONSHIPS IN Fe Fe 3. C, Cu Zn AND Cu Sn ALLOY SYSTEMS

Transcription:

: materials science & solid state chemistry HOMEWORK 6. PROJECT WORK By the end of this week, your team may have a pretty good idea of where the project is heading, and your materials processing and analysis should be underway. This week, try to translate your big-picture project questions into more specific questions, such as:! What are your primary project goals? Which fundamental questions are you asking and attempting to answer? What makes these questions significant?! What are your experimental controls and variables? How does your experimental plan look, in terms of scope and materials science connection building opportunities? Do you need to make some adjustments?! What materials science data and analyses will appear in your final paper? How will you obtain the data? How will you communicate the data and analyses tables, graphs, sketches, micrographs, photos?! How will you connect relevant materials theory (e.g., phase diagrams, phase transformations, strengthening mechanisms, nucleation and growth, diffusion) to your processing variables, your experimental property data, and the broader performance context of your alloys?! How will you connect environmental or societal impacts to your project? What data will you collect, and how will you present the data in your report and presentation? Your materials science project work this week should be goal driven: if you run an experiment, do it because it will give you relevant data. Try analyzing your data and synthesizing your evidence as you go build your paper as your proceed through your test plan. READINGS a. Research your phase diagram(s). In Volume 4 of ASM Handbook, locate a binary phase diagram for the two primary constituents of the alloy system(s) you are studying. For example, if you are studying bronze, find the phase diagram for copper-tin alloys. If you know the composition of your alloy, try to locate it on the phase diagram and attempt to glean some information from the diagram (e.g., phases present at different temperatures, melting temperatures, solubility limits). b. Build your understanding of phase diagrams, either via textbook or videos. Textbook reading options o Ashby Engineering Materials 2 Chapter 3 (Phase Diagrams 1) and Chapter 4 (Phase Diagrams 2) o Callister 6th - 9th editions: Chapter 9 (Phase Diagrams)

MATERIALS SCIENCE AND SOLID STATE CHEMISTRY HOMEWORK 6, PAGE 2 OF 6 Video options o David Dye, Imperial College videos. Check out videos 2.1, 2.2, 2.3, and 3.1: http://dyedavid.com/mse104/ o MIT Open Courseware videos, Check out videos 34 and 35 on Binary Phase Diagrams: http://ocw.mit.edu/courses/materials-science-and-engineering/3-091sc-introduction-to-solid-statechemistry-fall-2010/solid-solutions Supplemental reading o Ashby s Teaching yourself phase diagrams from older editions of the Engineering Materials 2 textbook is sometimes helpful, if you are having difficulty understanding phase diagrams. This supplemental reading is posted on the Resources page of the course web site. STOLK S TAKE ON THE MATSCI READINGS: I love phase diagrams, almost as much as I love coffee. Actually, the two things are similar in many ways. Coffee can describe solid or liquid forms of the same substance. Phase diagrams often depict solid and liquid forms of the same substance. Coffee comes in a variety of flavors, some very simple and some quite complex. Phase diagrams can be very simple (e.g., Cu-Ni) or quite complex (e.g., Cu-Sn). Coffee smells delightful. Phase diagrams smell like oxidized metal mixed with puréed turnips (i.e., delightful). Coffee serves in a range of social, cultural, motivational, and cognitive roles. Phase diagrams bring people together, shape our beliefs and attitudes, spark our imagination and creative efforts, and further our understanding of the world. Coffee is delicious. Phase diagrams taste like Ground Ball Grape flavored Big League Chew (i.e., delicious). Need I go on? There are many types of phase diagrams. Chances are you ve seen a few unary (one chemical component) temperature-pressure diagrams in your chemistry or physics classes. You know what I m talking about the water phase diagram, with the liquid, solid, and vapor phases, and the triple point. Yeah, I bet you ve seen that. Unary diagrams are nice and all, but they ve served their purpose for now, so we re going to leave them in the dust right now. Yes, indeed, it s time to double our pleasure, double our fun, with binary diagrams. For our materials phase diagrams, we ll hang onto that temperature axis from the unary diagrams, as we frequently heat and cool materials during processing operations. But since we usually deal with materials at ambient pressures, we can treat pressure as constant, and get rid of that pesky pressure variable. This frees up the pressure axis to be used for something else. What variable would you like to put on the x-axis? I m thinking that composition would make a great choice, as it will enable us to see what happens when we mix two materials together. Guess what, you just arrived in binary land (or B-land, as the big wave surfers and antique stamp collectors like to call it). Welcome. Take off your shoes, hang your hat, and stay a while. Will a binary phase diagram serve you well during your Part Two project? Maybe. The silver teams are set, since Revere usually dealt with sterling silver (Ag-Cu). And the iron teams will be okay, since pig iron is basically Fe and C, with minor amounts of impurities. The copper teams don t really need a phase diagram, since they re dealing with a single chemical component. But what about those bronze teams? Were Revere s bronze alloys limited to two chemical components? Not really, but perhaps we should make our lives a little easier by assuming that the bronzes were primarily composed of two elements. Sound okay to you? If not, take a few minutes to explore ternary phase diagrams, which are pretty cool but a bit more difficult to interpret. I encourage you to think about binary phase diagrams as a tool that can help you understand how two different components interact with each other as a function of temperature and/or composition. Believe it or

MATERIALS SCIENCE AND SOLID STATE CHEMISTRY HOMEWORK 6, PAGE 3 OF 6 not, this understanding can help you predict the microstructure and properties of the material. But let s not get ahead of ourselves. Take a moment to consider what, exactly, the phase diagram can tell you. What information is available from a binary temperature-composition diagram? Your textbook and the Ashby supplemental reading do a nice job of introducing phase diagrams concepts, so I m not going to waste document real estate for that, but I will provide a few questions for you to think about as you read: 1. Can you label the phases present in all the unlabeled regions of a phase diagram? This is often a necessary first step before you begin to gather more detailed information on phase compositions and relative amounts (weight percentages) of the phases. 2. Can you say anything in general about how well your two chemical components like each other? For example, binary isomorphous phase diagrams have a single solid phase (isomorph = one form ), which means that at no point do the two different components (e.g., Cu and Ni) reach a point where they have this sort of discussion:! Cu: Nickel, you are really cramping my style.! Ni: Me?! I m so sick of your freakin face centered cubic structure that I m about ready to pack up my valence atoms and walk out the door.! Cu: My fcc structure is beautiful, and you know it. Your atomic radius and electronegativity, on the other hand, leave much to be desired. You think you can go around pushing and pulling me and my electrons without any consequences?! Ni: Okay, that s it. I m leaving, and I m taking all my nickel friends with me. We re going to start a new community, based entirely on our preferred social structure and ways of interacting.! Cu: Fine, go! But I suspect you ll be back when the temperature starts to rise in your utopian nickel dream-world! Nope, nickel and copper would never have that conversation. Silver and copper, on the other hand, is a different story. You ll notice on the silver-copper phase diagram that this system has two terminal solid solutions, meaning that there is a point at which silver is no longer miscible in copper, and vice versa. Other binary systems, like the Cu-Sn bronze system, show a number of intermediate phases or intermetallic phases in the middle of the diagram, which appear when the two elements join forces to create an entirely new phase with a different structure and properties. 3. What type(s) of three-phase equilibria appear on your phase diagram? These are the horizontal lines within the diagram, and they indicate that some sort of reaction (e.g., eutectic, eutectoid, peritectic) is taking place. Can you interpret what this reaction means in terms of microstructural and property changes? 4. Given a particular binary phase diagram and composition, could you sketch the appearance of the microstructure as a function of temperature (moving vertically through the diagram)? Given an isotherm, could you sketch the structural changes that occur as a function of composition (moving horizontally through the phase diagram)? 5. The binary phase diagrams you re studying now usually show conditions of thermodynamic equilibrium. What isn t shown on the phase diagrams is how much time it may take for the binary system to get to a state of thermodynamic equilibrium. Does it take a millisecond for a reaction to proceed? An hour? A year? Which reactions would you expect to occur more quickly? What effect(s) would fast cooling of an alloy have on its microstructure and properties? Finally, there s a lot of new terminology in the phase diagrams reading, e.g., eutectic, solvus and liquidus and solidus lines, three phase equilibria, solubility limits, etc. Don t try to memorize all of these at once; rather, do your best to integrate these terms into your language as you discuss your Part Two materials and processes. Enjoy your phase diagrams. Sip them like a fine cup of espresso. Ride them like a North Shore wave.

MATERIALS SCIENCE AND SOLID STATE CHEMISTRY HOMEWORK 6, PAGE 4 OF 6 PROBLEMS When you work through the practice problems, consider how the concepts apply to your project topic. Will your materials have one phase, two phases, or multiple phases in the solid state? If you are dealing with a two-component or multi-component alloy, what are the solubility limits of each component in the other components? How do the solubility limits change as a function of temperature? How will your microstructure appear? Does your alloy system form two distinct microstructural regions, or microconstituents? How might the presence of different phases affect the properties? Wow, I m starting to sound like a broken record. Use the binary, isomorphous, molybdenum-vanadium phase diagram for Problems 1-3. Note: the dashed curve in the phase diagram indicates that there is some error or uncertainty in the location of the liquidus line; the uncertainty in the liquidus line should not affect your calculations. 1. Sketch the expected trend in hardness as a function of composition for Mo-V alloys. 2. For a 50 wt% vanadium alloy at 2200 C, determine the following: a. Phases present b. Compositions of the phases c. Percent or fractions of the phases 3. What is the solubility limit of molybdenum in vanadium at 1900 ºC? Use the silver-copper phase diagram shown on the next page for Problems 4-8. 4. What are the solubility limits of Ag in (Cu) and Cu in (Ag)? The (Cu) and (Ag) phases are the same as α and β, respectively (just different naming methods). 5. For equilibrium solidification of a Cu-Ag alloy containing 40 weight percent Ag, a. State the temperature at which solidification begins. b. State the temperature at which solidification is complete.

MATERIALS SCIENCE AND SOLID STATE CHEMISTRY HOMEWORK 6, PAGE 5 OF 6 6. For a Cu-Ag alloy of 50 wt.% Ag, a. Determine the phases present, compositions of the phases, and relative amounts (weight fractions) of the phases at a temperature just above the eutectic temperature. b. Determine the phases present, compositions of the phases, and relative amounts of the phases when solidification is just complete (at a temperature just below the eutectic temperature). 7. For a 50 wt.% Ag alloy, determine the fractional amounts of microconstituents when solidification is just complete. 8. Sketch the 50 wt.% silver alloy at a temperature just below the eutectic temperature. Label both the phases and the microconstituents. 9. The molybdenum-rhenium phase diagram is provided on the next page. Note that all the single-phase regions labeled. a. Label all two-phase regions. b. Specify the temperatures and compositions for all 3-phase equilibria in this system. For each 3-phase equilibrium, write the reaction upon cooling. c. Assuming no phase transformations occur at lower temperatures, specify the strengthening mechanisms that are possible for an alloy of Mo with 18 wt. % Re. d. BONUS: How would you form an alloy of Mo with 10 wt. % Re? Could you make it in one of our furnaces?

MATERIALS SCIENCE AND SOLID STATE CHEMISTRY HOMEWORK 6, PAGE 6 OF 6