1K UV-A Automotive Refinish; Clear Coats and Primers

Similar documents
New solutions to reduce yellowing directly after UV-cure to simplify color matching

MAKING IMPROVEMENTS IN ENERGY CURABLE PLASTIC SUBSTRATE ADHESION PERFORMANCE

UV/EB CURABLE RESINS. Dual Cure Product Guide - Automotive Interior - Worldwide

Novel Energy-Curable Polyurethane Dispersion with High Formulation Versatility

TMI (META) UNSATURATED ALIPHATIC ISOCYANATE. All About Resins.

New Waterborne Radiation Curable Compositions for Digital Printing Applications

UV-A Curable Automotive Refinish Coatings: Utilizing High-Throughput Experimentation as a Tool in the Discovery Process

UV/EB CURABLE RESINS CONSUMER ELECTRONICS & INDUSTRIAL PLASTICS

Excelitas Technologies Utilizing deep-uv LED below 300nm to enhance curing

ACTIV-8 and ACTIV-8 HGL. Drier Accelerator and Stabilizer

NON-ISOCYANATE 2K COATINGS

CoatOSil* 7001E. Page 1 of 7. *CoatOSil is a trademark of Momentive Performance Materials Inc Technical Data Sheet.

SilFORT* AS4000. Technical Data Sheet. SilFORT* AS4000. Description SilFORT AS4000 Hard Coat

UV Curable Putty for Automotive Repair

SilFORT* UVHC3000. Technical Data Sheet. SilFORT* UVHC3000 weatherable abrasion-resistant hardcoat

Light-emitting diodes for ultravioletcuring

Stabilizers for Coatings Applications Overview Hostavin Hostanox

PHENOLIC CROSSLINKERS

Emerging/Future Applica6ons for UV Cure Technologies

PARALOID Edge 2301 Resin

While the current economic

TSE322. Technical Data Sheet

Impact of Zinc Oxide on the UV Absorbance and Mechanical Properties of UV Cured Films

Formulating to good effect

Tetrashield IC3000 protective resin system for one-component (1K) industrial coatings

Radiation Curing in Europe

HARDNESS OR FLEXIBILITY By Marcus Hutchins, Surface Specialties UCB

Kapcibase 670 Basecoat Mixing System

Exterior Wood Coatings based on New Waterborne One-Component UV-Curable Polyurethane Dispersions

High performance resins for monocoats

With the influx of plastic

K-KAT Guide to Tin-Free Catalysts For Urethane Coatings

Joint design is critical to the optimum performance of a bond. Factors to be considered in choosing a joint design include

Starting formulations for UV-cured automotive coatings

Aerocron 2100 Anionic Epoxy Primer

The Start of a Great Finish Ask

Avery Supreme Wrapping Film With Easy Apply RS * Technology

Liquid bis-acylphosphine oxide (BAPO) photoinitiators. Author: Dr. Chingfan Chris Chiu Chitec Technology Co., Ltd. Taiwan

EFFICIENT UV TECHNOLOGY DESIGNS FOR METAL PACKAGING ASIA CAN TECH CONFERENCE. Kuala Lumpur, November , John Clark

A range of automotive refinish ancillaries designed to deliver results.

UCECOAT Waterborne UV Resins for Field Applied Wood Floor Finishes

1 K Sunshine Cure Polyurethane Dispersion Deck Coatings

A range of automotive refinish ancillaries designed to deliver results.

TECHNICAL DATA SHEET 1051R / 1057R HIGH PRODUCTIVE SURFACER DESCRIPTION

Contractors SCS1001. Contractors SCS1000 sealant is available in 4 colors plus. General Glazing: Glass, plastic, channel or stop.

QUALITY PERFORMANCE PRODUCTIVITY

UV Curable Polyurethane Dispersion Coatings for Site-Applied Flooring

Repair of two-colour paintwork with ONYX HD on the 208 GTI 30 th, textured finishes

Application Guidelines for Field-Applied Touch-up Paint Systems on Metal Panels

Desofill HS CA8620TG Sanding Surfacer

SPUR+* 1015LM. Technical Data Sheet SPUR+* 1015LM

NORIPHAN XMR Halogen Free Ink System for IMD/FIM-Technology (back molding of screen printed films)

Driven by tomorrow. BASF pigments, resins and additives for the automotive and transportation coatings industry

UV-LED: Beyond the Early Adopters

Extreme Sealing Tape 4412N

Radiation Curable Components and Their Use in Corrosion Resistant Applications

Abstract. Introduction

1.4 kg/l (11.4 lb/us gal) Maximum 295 g/kg (Directive 1999/13/EC, SED) Maximum 420 g/l (3.5 lb/gal) 50 to 63 μm (2.0 to 2.

One-component, heat-resistant silicone acrylic topcoat primarily for the PPG HI-TEMP 1027 primer or the PPG HI-TEMP 222 G primer

Keeping that shine on your automobile is important to you. Our products help you maintain it.

Coil coatings Improving efficiency, enhancing aesthetics

SLAM* Technical Data Sheet

UNCURED PROPERTIES TSE3664(A) TSE3664(B)

Niax* silicone L-3002

Trusted and recommended for over 15 years.

Extreme Sealing Tape

Affix Technology Sdn. Bhd.

(1) Depending on the substrate and/or processing conditions other cross-linkers may be considered. Property SilForce SL6162 SilForce SL6031

Your ideas. Our technologies.

How the Selection of Raw Materials Can Impact Print Speeds in Digital Printing

IMRON MARINE DP4101/DP4104 HS Primer

Product Brochure Paint Additives

Typical physical properties are average data and should not be used as or to develop product specifications. (1) Aluminum lap shear

SnapSil* RTV230 Adhesive

ENERGY CURABLE TECHNOLOGIES CHRIS ORILALL, PHD SARTOMER AMERICAS ARKEMA INC.

MAINCOTE 1100A Emulsion Advanced Resin for Industrial Coatings based on AVANSE Technology Platform

M-PP AUTODEPOSITION 966 COATINGS AND UV CURABLE POWDER COATINGS. Todd Coggins Henkel Corporation Mike Knoblauch Keyland Polymer UV Powder

LOCTITE 406. Technical Data Sheet. (TDS for new formulation of Loctite 406 ) February-2012

WeatherMaster ULTIMATE MP Sealant

Typical physical properties are average data and should not be used as or to develop product specifications. (1) Aluminum lap shear

NOVEL, ADAPTIVE AND CUSTOMIZABLE CHEMISTRY APTALON POLYAMIDE POLYURETHANE TECHNOLOGY.

Carbon Black pigments for UV curing printing inks. Technical Information TI 1257

3 Automotive Structural Adhesives Two-Part Induction-Cure Epoxy Adhesive 5045

Peak Irradiance & Energy Density

Direct to Metal 2K Urethane High Build Primer

Industrial and Decorative Epoxy Coating Systems

RTV6700 Series. RTV6700 Series One-Component, Modified Alkoxy Adhesive Sealants

Automotive Appearance Chemicals Product Selection Guide

1040R UNIVERSAL 2K PRIMER GREY

RTF8510A Base. RTF8510B Curing Agent Color Black Beige Viscosity (cps) 9,000 6,000 Specific Gravity

RTV210. Technical Data Sheet RTV210 - RTV224B / RTV229B

Radiation Curing AIPI Milano, 15 May 2014 DELO Stefano Farina. Stand: 10/10

Two component transparent polyurethane adhesive. transparent fast curing UV stable Suitable for bonding a variety of metal and plastic substrates

Acrylated Products Designed for Formability and Adhesion Enhancement in Direct-to-Metal Applications

SilForce* SL7562S Solventless Coating

Automotive Appearance Chemicals Product Selection Guide

PPG HI-TEMP 1000 VS. PRODUCT DATA SHEET December 10, 2014 (Revision of June 30, 2014) DESCRIPTION

TECHNICAL DATA SHEET EL600 IMRON FLEET LINE CLEAR DESCRIPTION

3.5 HSP (High Solids Polyurethane) Low VOC

Excellent adhesion Superior gloss retention Excellent fluid resistance Improves clean ability Service temperature -54 C to 177 C (-65 F to 350 F)

Transcription:

1 30 January 2015 1K UV-A Automotive Refinish; Clear Coats and Primers Michael J. Dvorchak Phone: 404-719-8912 E-Mail: Michael.Dvorchak@allnex.com www.allnex.com

Introducing Allnex! 2

Outline Changes in the automotive OEM and refinish markets Introduction of UV-A curable auto refinish Current products and innovation in the market Future outlook for the UV A curable refinish market Conclusions References Questions 3

Changes in the Automotive OEM and Refinish Markets Major changes in polymers technologies used in coatings NC lacquers were acceptable when the only color option was black 2 K reactive primers, clear coats, water based base coats Lower VOC and VHAPS Major changes in substrate technologies Cold rolled steel Engineered plastics Aluminum Composites NC lacquers Base Coat; smokey quartz 4

Introduction of UV A Auto Refinish Early attempts to develop a UV refinish clear coat (2K) 1 UV Flash lamp (Xe lamp @ 480 nm) used in conjunction with BAPO PI Polymer chemistry was dual cure (R-N=C=O; R-C=C & R-OH) Cure took place with 10 to 20 flashes Patent application on a UV-A primer in 2001 (1K) 2 UV A lamp source was 250 W iron doped source filtering out UV B, UV C Polymer chemistry was mono-cure (R-C=C) Cure took place in several minutes leaving an uncured surface due to oxygen inhibition Solvent wipe required Photo provided by I-CAR 5

Introduction of UV A Auto Refinish Automotive OEM technical paper on UV auto refinish clear coats 3 OEM evaluates UV cure clear coats HALS and UVAs were formulated into these clear coats OEM found that these systems embrittled to unacceptable levels under accelerated weathering 2003 Patent application by a paint company on UV A (1K) CC 4 UVA/UVV & UV A only curable Polymer chemistry was mono-cure (R-C=C) Cure times were 4 minutes with no surface inhibition No gloss reduction or cracking was found when subjected to SAEJ1960 6

Introduction of UV A Auto Refinish 2003 RADTECH report on use of UV A cure primer systems in body shops 5 The following benefits were noted in the report: 1) time savings of 25 to 88 % on each job, 2) less preparation time, 3) use of disposable utensils is reduced, 4) less masking, 5) no flash times required between layers and 6) less waste over a 2K system Report states the need for a UV A clear coat 2005 OEM/Refinish paint company awarded the US Presidential Green Chemistry award for UV-cured auto finishing paint Photo provided by I-CAR 7

Introduction of UV A Auto Refinish 2006 patent application on dual cure UV clear coat spot repair 6 UV A light source used for cure Polymer chemistry was dual cure (R-N=C=O; R-C=C & R-OH) After cure, the surface was easily polishable without defects 2006 patent filed by an auto OEM paint company on a UV A primer that has a high pigmentation levels and extremely low oxygen inhibition 7 Uses a 400 W UV A light that is held 10 to 30 cm away from the substrate Chemistry is a mono-cure technology (R-C=C) Cure time is 1-3 minutes at a thickness of 200 microns Patent reports the ability to sand the primer after UV curing and the coating has had time to cool 8

Introduction of UV A Auto Refinish Auto OEM technical paper on scratch performance of three UV cure automotive refinish clear coats 8 Three UV cure clear coats tested against a thermally cured acrylic/melamine/silane clear coat. Car wash performance testing by the AMTEC-Kistler showed that two of the UV cure clear coats performed better than the acrylic/melamine/ silane clear coat. 9

Introduction of UV A Auto Refinish Patent filed in 2007 that uses a structure to cure the UV paint 9 Patent publication filed in 2009 on a UV cure spot blender for clear coats 10 Uses a UV A 400 lamp to cure the UV clear coat Chemistry is based on 2K dual cure or 3K dual cure thiolene-based technology Clear coat technology is cured for 5 minutes at a distance of 10 inches Photo provided by I-CAR 10

Introduction of UV A Auto Refinish OEM awarded the 2010 RADTECH Emerging Technology Award for the use of an in-line UV spot repair 11 The UV cure technology could possible reduce their cycle time by 50% OEM evaluating the process to see if this technology will meet the durability specifications and test protocols. Facilities would have to be modified to use the UV cure technology Photo provided by I-CAR 11

Current Products and Innovation in the Market High throughput formulation screening 12,13 Resin/ 50:50 blend Symplex lattice design 1:1 Reactive diluent Photoinitiator/blend [PI] Irradiation time [sec] Distance from lamp Delta HDDA Irgacure 184 # 4% 0 8 Fox Trot TPGDA Irgacure 500 # 1% 20 4 Echo TMPTA Irgacure 500 #/Amine synergist 60 Hotel Darocur 1173 # 180 Charlie CGI 1870 # Delta/Fox Trot Irgacure 819 # Delta/Echo Irgacure 1850 # Delta/Charlie Darocur 4265 # Fox Trot/Echo Irgacure 184/Darocur 1173 Fox Trot/Echo Genacure ITX + Fox Trot /Hotel Irgacure500/Amine synergist/irgacure 819 Fox Trot / Charlie Genacure ITX/ CGI 1870 Echo / Hotel Irgacure 1300 # Echo / Charlie Irgacure 1700 # Hotel / Charlie Irgacure 2959 # D-optimal design including 2nd order interactions: ~ 500 formulations and ~ 24,000 films (5 weeks of experimentation) # BASF, + Rahn

Current Products and Innovation in the UV-A Refinish Market Echo/Hotel Echo/Charlie Echo Hotel/Charlie Hotel Fox Trot/Echo Fox Trot/Hotel Fox Trot/Charlie Fox Trot Delta/Echo Delta/Hotel Delta/Fox Trot Delta/Charlie Delta Charlie 1870 1173 ITX 1700 184/1173 2959 500/Amine 819 1870/ITX 4265 1300 184 1850 500 500/819/Amine The larger the bubble shows the least amount of surface inhibition after UV cure

Current Products and Innovation in the Market Photo micrograph of a blend line for a commercially available UV A curable clear coat over a black base coat 14

Current Products and Innovation in the Market Concept of matching the Tg s of traditional 2 K clear coat technology with a 1K UV A cure clear coat 14 Resin C UA Resin A 10 UA Resin B 104 UA Blend 1 103 UA Blend 2 105 UA Blend 3 106 UA Blend 4 84 UA Blend 5 74 Commercial UV Refinish 101 Commercial 2K Refinish 62 isocyanurate allophanate O O R O N N R N R O R O N N R O H O O intramolecular H-bridge 1 O 2 R= -(CH 2 ) 6 N H O O O 15

Current Products and Innovation in the Market Blend line Blend line Photo micrograph of a blend line for a commercially available 2K Clear Coat over a black base coat Photo micrograph of a blend line for a UV A Cure Clear Coat After matching Tg of a 2K Clear Coat over a black base coat 16

Current Products and Innovation in the Market Photograph of a 1K UV-A primer and a 1K UV-A Clear Coat after 8 years of service in the NE US Photograph of a 2K traditional primer and Clear Coat that was used as the standard for testing on the same vehicle 17

Future Outlook for the UV A Curable Refinish Market Driving Change event in 2003 15 Over 130 industry personnel attended The future looked bright over 10 years ago RADTECH Transportation Focus Group & I-CAR In 2007 RADTECH ( industry trade organization) teamed up with I-CAR (auto refinish professional training organization) to develop a web based training module devoted to UV-A auto refinish Since this launch over 900 professional body repair technicians have paid to take this unique training program The future of 1K UV A cure is tied to the introduction of a 1K UV-A cure clear coat 16 Photo provided by I-CAR 18

Conclusions A significant amount of work has been done trying to develop the market for 1K UV-A Primers and Clear Coats When polymer technology went from NC lacquers to 2K reactive system, there was a lot of resistance to change The difficulty to repair was the major resistance to change from NC lacquers to a 2K reactive system In time better acceptance of the 1K UV-A Primers and Clear Coats will occur 19

References 1.) K.Magg, et al., Progress in Organic Coatings 40 (2000) 93-97 2.) D. Fenn, et al., US 6,838,177 Mar. 27, 2003 3.) M. Nichols, et al., RADTECH Report Nov/DEC 2001 4.) D. Braun, et al., US 2005/0095371 May 5, 2005 5.) D. Maloney, RADTECH Report NOV/DEC 2003 6.) B. Lettmann, et al., US 7,683,105 Mar. 23, 2010 7.) J. O Neil, US 8,227,050 Jul. 24, 2012 8.) C. Seubert, et al., J. Coat. Technol. Res., 4 (1) 21-30, 2007 9.) K. DeRegge, et al., US 7,704,564 Apr. 27, 2010 10.) M. Bowman, et al., US 2011/0097481 Apr. 28, 2011 11.) Ford Motor Company, 2010 Emerging Technology Award, RADTECH 2010 Conference 12.) H. Bach, et al., RADTECH Europe, Nov. 2003 13.) S. Strazisar, et al., RADTECH Report, Nov. 2003 14.) M. Jeffries, et al., RADTECH 2/5 2006, Apr. 2006 15.) RADTECH NA sponsored event; Driving Change, Sept. 2003 16.) H.-B. Gia, WO 2009/039137 Mar. 26, 2009 20

Thank you for your attention! For more information, please visit us at www.allnex.com. Contact Name: Michael J. Dvorchak Cell Phone: 404-719-8912 E-mail: Michael.Dvorchak@allnex.com www.allnex.com

www.allnex.com Notice: Trademarks indicated with the, or * are registered, unregistered or pending trademarks of Allnex IP S.à r.l. or its directly or indirectly affiliated Allnex Group companies. Disclaimer: Allnex Group companies ( Allnex ) decline any liability with respect to the use made by anyone of the information contained herein. The information contained herein represents Allnex's best knowledge thereon without constituting any express or implied guarantee or warranty of any kind (including, but not limited to, regarding the accuracy, the completeness or relevance of the data set out herein). Nothing contained herein shall be construed as conferring any license or right under any patent or other intellectual property rights of Allnex or of any third party. The information relating to the products is given for information purposes only. No guarantee or warranty is provided that the product and/or information is adapted for any specific use, performance or result and that product and/or information do not infringe any Allnex and/or third party intellectual property rights. The user should perform its own tests to determine the suitability for a particular purpose. The final choice of use of a product and/or information as well as the investigation of any possible violation of intellectual property rights of Allnex and/or third parties remains the sole responsibility of the user. 2015 Allnex Belgium SA. All Rights Reserved.

Back Up Slides

Light Output Readings After UV A Cure Refinishing of PC 1993 Dodge Sundance Readings at low audit settings High beam 17,000 Candla Prior value = 7,000 Candla Low beam 7,000 Candla Prior value = 3,000 Candla Many military equipment / vehicles use polycarbonate as replacement for glass due to its performance for bullet resistance and light weight.

Stencil UV A Coating F-16

C-130; Small Area Repair UV A

Military Applications UV A Cure Battle Field Composite Repair KISS Principle Ballistic holes in composites - AK-47 or shrapnel Quick return to service Simple and quick process that returns the aircraft to service with eventual permanent repair at the depot Commercial air lines interested is this technique for remote location repair

Basics of UV Curing Curing of Coatings with electromagnetic radiation UV- or electron beam curing Curing conditions seconds/ milliseconds Source: Bürkle Electron beam X- Rays UV light Visible light < 1 nm < 100 nm < 400 nm > 400 nm > 800 nm wave length IR UV-C 100-280 nm Imperative for the polymerization of printing inks and varnishes for a complete curing. UV-B 280-315 nm Supports and maintains the triggered off reactions and ensures a better curing because of longer waves. UV-A 315-380 nm Responsible for the curing of very thick layers

Low Energy UV-A Lamps Philips TL03 Promotor Car 250 Honle 250 Panacol 250 UV Process Supply 400 H&S Autoshot 400

Low Intensity Microwave Lamp Quantum Technologies Low powered lamps Current UV-A lamp assembly has a series of bulbs from 320 to 400 nm Bulbs can be made to desired wavelength output

NEW UV-A Light Sources Automotive Refinish/Aerospace & Printing 1,200 W UVA Light H & S Auto Shot LED UVA Phoseon Technology