Concentrated solar power (CSP):

Similar documents
Solar Thermal Energy

Sustainable Energy Science and Engineering Center. Concentrating Collectors - Power Generation

Introduction to Solar Energy Technology. Introduction to Solar Energy Technology. Introduction to Solar Energy Technology

From Concept to Product

Session 6. Solar Power Plant

Volume I Issue X Dec 2012 IJLTEMAS ISSN

Solar power status and perspectives DESERTEC an update. Dr. Bernd Utz Head of the Project Desertec Initiative of the Renewable Energy Division

20-CSP Technologies. ECEGR 452 Renewable Energy Systems

UNIT FOUR SOLAR COLLECTORS

Radiant energy from the sun has powered life on Earth for many millions of years.

Solar Thermal Conversion

DESIGN AND EXPERIMENT OF PARABOLIC TROUGH COLLECTOR WITH NORTH-SOUTH ORIENTATION

Institute of Solar Research. Concentrating Solar Systems for Power, Heat and Fuel Generation

Concentrated Solar Power

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Grand Opening KaXu Solar One

Concentrated Solar Power (CSP)

Siemens Solar Energy. Buenos Aires, November 2011 By Rolf Schumacher R2 Siemens AG All rights reserved

Funded by. EU GCC CLEAN ENERGY NETWORK II Join us: Contact us:

Low Cost Solar. New Ultra Lite Technology Testing optics in SHEC Energy s LASER lab

OVERVIEW OF SOLAR THERMAL TECHNOLOGIES

CONCENTRATING SOLAR POWER, THE PANACEA TO NIGERIA S POWER SUPPLY


The standards would cover all of the current different types of systems in the STE field, as follows:

SOLAR ENERGY INTRODUCTION:

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Solar Energy-An overview

CMR Journal of Engineering and Technology Vol.2 Issue.2 April, 2018

Concentrating Solar Power: Energy from Mirrors

An Exploration of the Present and Future State of Concentrated Solar Power in the U.S. Southwest. Reber, Joseph E. 12/11/2012

Solar Tower Receivers. The Power to Change the World

Solar Energy II. Solar Electricity. Original slides provided by Dr. Daniel Holland

3. Concentrated Solar Power Generation

EVALUATION OF SOLAR POWER GENERATION TECHNOLOGIES FOR SOUTHERN AFRICA

Solar boilers Evolving issues with an evolving technology

Global and National JULY 8, 2010

Solar Boiler Concept for Concentrating Solar Power Plants. Ulrich Hueck, Dr.-Ing. Co-Founder

Solar Technology. Solar Lenses We have developed a unique thin film lens that focuses the sun s energy to a hightemperature

Euro-Supergrid with a EU-MENA-Connection: Sketch of possible infrastructure for a sustainable supply of power to EU-MENA.

The surface receives about 47% of the total solar energy that reaches the Earth. Only this amount is usable.

The Status and Prospects of CSP Technologies

LENS-BASED CONCENTRATED SOLAR POWER (CSP) SYSTEMS

Solar Thermal Energy

DESERTEC-Clean Power from Deserts. A concept for energy security and climate protection for a world with 10 billion people in 2050

A Review On Power Generation Methods Using Concentrating Solar Power.

FLATE Hillsborough Community College - Brandon (813)

CHAPTER 5 RENEWABLE ENERGY SYSTEMS. SOLAR ENERGY

Grid Integration of Concentrating Solar Power Plant and Cost Analysis

Solar Power Industry Report Major Solar Thermal Players

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Southwest Solar Technologies, Inc. ASSETS FOR COLLABORATION IN CONCENTRATING SOLAR Herb Hayden, CTO

Energy Considerations in Membrane Treatment and Brine Disposal

Concentrated Solar Thermal Power Technology

Facility produces at least as much energy on-site as it uses in a year

Solar energy technologies and markets. Eero Vartiainen, Solar Technology Manager, Fortum Solar Business Development

Experience You Can Count On Technology That Delivers

Innovative technology solutions for sustainability ABENGOA. Hybrid Solar Power Plants

Leader on the home market in electricity generation from solar energy, with a development plan for 302 MW over the next few years.

More affordable solar energy using astronomical know-how. Roger Angel, University of Arizona and REhnu Inc

Straight down the line: New linear tower tech in store for CSP sector

Solar. Groundbreaking international leaders in large solar energy and industrial steam plants

Guidance page for practical work 1: modeling of a thermodynamic solar plant

PV+THERMAL SYSTEMS Design and performance aspects for building integration Yiannis TRIPANAGNOSTOPOULOS

The First Solar Thermal Power Plant. In Egypt. Engineer. R & D Sector Director New & Renewable Energy Authority NREA, Egypt

Improvement in Efficiency of Solar Panel

Solar and Wind Energy

Prof. Hans Müller-Steinhagen, D.Eng., Dr.-Ing. (habil), FREng, FIChemE

Trends in Linear Solar Concentrators

Solar Millennium AG Short Profile of the Group

Solar Power Vs. Nuclear Power. By: G. H C. P S. J

Prof Wikus van Niekerk Director of CRSES Prof Frank Dinter Eskom Chair in CSP Stellenbosch University

LPI-Solar. CPV (Concentration Photovoltaics)

CSP Parabolic Trough Technology for Brazil A comprehensive documentation on the current state of the art of parabolic trough collector technology

Photovoltaics under concentrated sunlight

5 / KWh Electricity from Concentrated Solar Power (CSP) Finally a Reality

Solana. A 3 square mile site with 3,200 collectors. More than 2,000 people involved in the construction.

ASI funded Solar Thermal Storage and Steam Programs at the CSIRO and ANU

DESERTEC: Solar Power from the Desert

SOLAR CHIMNEYS A Promising Alternative. Salah El-Din E. El-Metwally Wai-Fah Chen David Ma University of Hawaii at Manoa

EMERGING TECHNOLOGY OPTION FOR CLEAN POWER GENERATION - CONCENTRATED SOLAR POWER (CSP)

An experimental investigation on the effect of ferrofluids on the efficiency of novel parabolic trough solar collector under laminar flow conditions

Economic Diversification and Sustainable Development Facts and thoughts

Concentrating Solar Power (CSP) Cornerstone of Future Energy Generation? ENERDAY 2009, April 3rd 2009

PS10 Solar Power Tower. Xi Jing, Fang

Performance evaluation of hybrid solar parabolic trough concentrator systems in Hong Kong

Concentrating Solar Power

In this block I will give a quick overview of the development of solar energy technology.

Peter Weissferdt Coordinator W. Africa DESERTEC Foundation Germany /The Gambia. DESERTEC Clean Power from Deserts

POWER GENERATION FROM RENEWABLE RESOURCES

Concentrating PV at $1/watt. Field tests of a disruptive approach to reduce cost. Roger Angel Steward Observatory University of Arizona

Solar Thermal Power The Science and Technology of Solar Thermal Power in Africa

Why does a wind turbine have three blades?

High-tech for Solar Thermal Power Generation Made in Germany NUMOV: Solar Industry in the Republic of Cyprus

The Choice of Solar Energy in the Field of Electrical Generation - Photovoltaic or Solar Thermal - For Arabic Region

THE ALTERNATIVE GENERATION Emerging technologies for renewable energy sources

CONCENTRATED SOLAR THERMAL POWER SYSTEM

Master Level Thesis. Techno-economic Appraisal of Concentrating Solar Power Systems. European Solar Engineering School No.

Solar thermal energy: A promising source for Energy Intensive Industries

A Review of Solar Collectors in Solar Thermal Applications

Transcription:

Article Concentrated solar power (CSP) Content Part III Concentrated solar power (CSP): What is CSP? Definition, how does it work? History Division, What kind of applications are there? Concentrated solar thermal (CST) Concentrated photovoltaics (CPV) Concentrating photovoltaics and thermal (CPT) Advantages Disadvantages of concentrating systems Future of Concentrated Solar Power

What is CSP? Definition, how does it work? Concentrated solar power (CSP) are systems that use lenses or mirrors to concentrate a large area of sunlight, or solar thermal energy, onto a small area. Electrical power is produced when the concentrated light is converted to heat which drives a heat engine (usually a steam turbine) connected to an electrical power generator. CSP should not be confused with photovoltaics, where solar power is directly converted to electricity without the use of steam turbines. The concentration of sunlight onto photovoltaic surfaces, similar to CSP, is known as concentrated photovoltaics (CPV). History Concentrated sunlight has been used to perform useful tasks from the time of ancient China. A legend has it that Archimedes used a "burning glass" to concentrate sunlight on the invading Roman fleet and repel them from Syracuse. In 1973 a Greek scientist, Dr. Ioannis Sakkas, curious about whether Archimedes could really have destroyed the Roman fleet in 212 BC lined up nearly 60 Greek sailors, each holding an oblong mirror tipped to catch the Sun's rays and direct them at a tar-covered plywood silhouette 160 feet away. The ship caught fire after a few minutes; however, historians continue to doubt the Archimedes story. In 1866, Auguste Mouchout used a parabolic trough to produce steam for the first solar steam engine. The first patent for a Solar Collector was obtained by the Italian Alessandro Battaglia in Genoa, Italy, in 1886. Over the following years, inventors such as John Ericsson and Frank Shuman developed concentrating solar-powered devices for irrigation, refrigeration, and locomotion. In 1913 Shuman finished a 55 HP parabolic solar thermal energy station in Meadi, Egypt for irrigation. Another Genoese, Professor Giovanni Francia (1911 1980), designed and built the first solar concentrated plant which entered in operation in Sant'Ilario, near Genoa, Italy in 1968. This plant had the architecture of today's solar concentrated plants with a solar receiver in the center of a field of solar collectors. The plant was able to produce 1 MW with superheated steam at 100 bar and 500 degrees celsius. The 10 MW Solar One power tower was developed in Southern California in 1981 but the parabolic trough technology of the nearby Solar Energy Generating Systems (SEGS), begun in 1984, was more workable. The 354 MW SEGS is still the largest solar power plant in the world. Division Concentrated solar power systems are divided into Concentrated solar thermal (CST) Concentrated photovoltaics (CPV) Concentrating photovoltaics and thermal (CPT) Concentrated solar thermal (CST) Concentrated solar thermal (CST) is used to produce renewable heat or cool or electricity (called solar thermoelectricity, usually generated through steam). CST systems use lenses or mirrors and tracking systems to focus a large area of sunlight onto a small area. The concentrated light is then used as heat or as a heat source for a conventional power plant (solar thermoelectricity). A wide range of concentrating technologies exist, including the parabolic trough, Dish Stirling, Concentrating Linear Fresnel Reflector, solar chimney and solar power tower. Each concentration method is capable of producing high temperatures and correspondingly high thermodynamic

efficiencies, but they vary in the way that they track the Sun and focus light. Due to new innovations in the technology, concentrating solar thermal is becoming more and more cost-effective. Parabolic trough A parabolic trough consists of a linear parabolic reflector that concentrates light onto a receiver positioned along the reflector's focal line. The receiver is a tube positioned directly above the middle of the parabolic mirrorr and is filled with a working fluid. The reflector follows the Sun during the daylight hours by tracking along a single axis. A working fluid (e.g. molten salt) is heated to 150 350 C (423 623 K (302 662 F)) as it flows through the receiver and is then used as a heat source for a power generation system. Trough systems are the most developed CSP technology. The Solar Energy Generating Systems (SEGS) plants in California, Acciona's Nevada Solar One near Boulder City, Nevada, and Plataforma Solar de Almería's SSPS-DCS plant in Spain are representative of this technology. Concentrating Linear Fresnel Reflectors are CSP-plants which use many thin mirror strips instead of parabolic mirrors to concentrate sunlight onto two tubes with working fluid. This has the advantage that flat mirrors can be used which are much cheaper than parabolic mirrors, and that more reflectors can be placed in the same amount of space, allowing more of the available sunlight to be used. Concentrating Linear Fresnel reflector can come in large plants or more compact plants. Parabolic trough Source: http://en.wikipedia.org/wiki/solar_thermal_collector, 19.11.2010 Solar Energy Generating Systems (SEGS), California, USA Read more about the project here

Parabolic Dish Stirling A Dish Stirling or dish engine system consists of a stand-alone parabolic reflector that concentrates light onto a receiver positioned at the reflector's focal point. The reflector tracks the Sun along two axes. The working fluid in the receiver is heated to 250 700 C (523 973 K (482 1,292 F)) and then used by a Stirling engine to generate power. Parabolic dish systems provide the highest solar-to-electric efficiency among CSP technologies, and their modular nature provides scalability. The Stirling Energy Systems (SES) and Science Applications International Corporation (SAIC) dishes at UNLV, and Australian National University's Big Dish in Canberra, Australia are representative of this technology. Dish engine systems eliminate the need to transfer heat to a boiler by placing a Stirling engine at the focal point. Source: http://en.wikipedia.org/wiki/concentrated_solar_power, 25.11.2010 There are two key phenomena to understand in order to comprehend the design of a parabolic dish. One is that the shape of a parabola is defined such that incoming rays which are parallel to the dish's axis will be reflected toward the focus, no matter where on the dish they arrive. The second key is that the light rays from the sun arriving at the Earth's surface are almost completely parallel. So if dish can be aligned with its axis pointing at the sun, almost all of the incoming radiation will be reflected towards the focal point of the dish most losses are due to imperfections in the parabolic shape and imperfect reflection. Losses due to atmosphere between the dish and its focal point are minimal, as the dish is generally designed specifically to be small enough that this factor is insignificant on a clear, sunny day. Compare this though with some other designs, and you will see that this could be an important factor, and if the local weather is hazy, or foggy, it may reduce the efficiency of a parabolic dish significantly. In some power plant designs, a stirling engine coupled to a dynamo, is placed at the focus of the dish, which absorbs the heat of the incident solar radiation, and converts it into electricity.

Solar updraft tower Please watch on Youtube and click here A Solar updraft tower consists of a transparent large room (usually completely in glass) which is sloped gently up to a central hollow tower or chimney. The sun heats the air in this greenhouse-type structure which then rises up the chimney, hereby driving an air turbine as it rises. This air turbine hereby creates electricity. Solar chimneys are very simple in design and could therefore be a viable option for projects in the developing world. Solar power tower You can visit the web pages of the project 'Jülich experimental power plant' - the leading competence centre for the exploration of an innovative and trendsetting power engineering technology. Source: http://www.solarturm-juelich.de/en A solar power tower consists of an array of dual-axis tracking reflectors (heliostats) that concentrate light on a central receiver atop a tower; the receiver contains a fluid deposit, which can consist of sea water. The working fluid in the receiver is heated to 500 1000 C (773 1,273 K (932 1,832 F)) and then used as a heat source for a power generation or energy storage system. Power tower development is less advanced than trough systems, but they offer higher efficiency and better energy storage capability. The Solar Two in Daggett, California and the Planta Solar 10 (PS10) in Sanlucar la Mayor, Spain are representative of this technology. Concentrated Solar Thermal Power is the main technology proposed for a cooperation to produce electricity and desalinated water in the arid regions of North Africa and Southern Europe by the Trans- Mediterranean Renewable Energy Cooperation DESERTEC. The 5 MW Sierra SunTower facility in Lancaster, California employs a field of heliostats concentrating sunlight onto a central tower. Watch on Youtube and click here

Concentrated photovoltaics (CPV) Concentrated photovoltaics (CPV) systems employ sunlight concentrated onto photovoltaic surfaces for the purpose of electrical power production. Solar concentrators of all varieties may be used, and these are often mounted on a solar tracker in order to keep the focal point upon the cell as the Sun moves across the sky. Serious research and development work on concentrator PV systems has been conducted since the 1970s. For example, a linear-trough concentrator system was tested and installed at Sandia National Laboratories, and the first modern point focus photovoltaic concentrating system was developed in the Sandia, both late in that decade. The latter system used a point focus acrylic Fresnel lens focusing on water-cooled silicon cells and two axis tracking. A similar concept was used in other prototypes. Ramón Areces' system, developed in the late 1970s, used hybrid silicone-glass Fresnel lenses, while cooling of silicon cells was achieved with a passive heat sink. Luminescent solar concentrators (when combined with a PV-solar cell) can also be regarded as a Concentrating photovoltaics (CPV) system. Luminescent solar concentrators are useful as they can improve performance of PV-solar panels drastically. Efficiency Semiconductor properties allow solar cells to operate more efficiently in concentrated light, as long as the cell junction temperature is kept cool by suitable heat sinks. CPV operates most effectively in sunny weather since clouds and overcast conditions create diffuse light, which essentially cannot be concentrated. Record efficiency of 41.6% was achieved in 2009 with future efficiencies possibly approaching 50%. Low concentration CPV Low concentration CPV are systems with a solar concentration of 2-100 suns. For economic reasons, conventional or modified silicon solar cells are typically used, and, at these concentrations, the heat flux is low enough that the cells do not need to be actively cooled. The laws of optics dictate that a solar collector with a low concentration ratio can have a high acceptance angle and thus in some instances does not require active solar tracking. Medium concentration CPV From concentrations of 100 to 300 suns, the CPV systems require two-axes solar tracking and cooling (whether passive or active), which makes them more complex. High concentration photovoltaics (HCPV) High concentration photovoltaics (HCPV) systems employ concentrating optics consisting of dish reflectors or fresnel lenses that concentrate sunlight to intensities of 300 suns or more. The solar cells require high-capacity heat sinks to prevent thermal destruction and to manage temperature related performance losses. Multijunction solar cells are currently favored over silicon as they are more efficient. The efficiency of both cell types rises with increased concentration; multijunction efficiency also rises faster. Multijunction solar cells, originally designed for non-concentrating spacebased satellites, have been re-designed due to the high-current density encountered with CPV (typically 8 A/cm 2 at 500 suns). Though the cost of multijunction solar cells is roughly 100 times that of comparable silicon cells, the cell cost remains a small fraction of the cost of the overall concentrating PV system, so the system economics might still favor the multijunction cells.

Concentrated photovoltaics and thermal (CPVT) Concentrating Photovoltaics and Thermal (CPVT) technology produces both electricity and thermal heat in the same module. Thermal heat that can be employed for hot tap water, heating and heatpowered air conditioning (solar cooling), desalination or solar process heat. Australian, American, and Chinese researchers are exploring the potential for Combined Heat and Power Solar (CHAPS) and Europeans have CHAPS systems in production. The Israeli company ZenithSolar (http://www.zenithsolar.com/ )has developed a combined photovoltaic/thermal (cogeneration) system with a claimed efficiency of 72%. Advantages Disadvantages of concentrating systems Advantages Disadvantages Very high temperatures reached. High temperatures are suitable for electricity generation using conventional methods like steam turbine or some direct high temperature chemical reaction. Good efficiency. By concentrating sunlight current systems can get better efficiency than simple solar cells. A larger area can be covered by using relatively inexpensive mirrors rather than using expensive solar cells. Concentrated light can be redirected to a suitable location via optical fiber cable. For example illuminating buildings. Heat storage for power production during cloudy and overnight conditions can be accomplished, often by underground tank storage of heated fluids. Molten salts have been used to good effect. Concentrating systems require sun tracking to maintain Sunlight focus at the collector. Inability to provide power in diffused light conditions. Solar Cells are able to provide some output even if the sky becomes a little bit cloudy, but power output from concentrating Future of Concentrated Solar Power A study done by Greenpeace International, the European Solar Thermal Electricity Association, and the International Energy Agency's SolarPACES group investigated the potential and future of concentrated solar power. The study found that concentrated solar power could account for up to 25% of the world's energy needs by 2050. The increase in investment would be from 2 billion Euros worldwide to 92.5 billion Euros in that time period. Spain is the leader in concentrated solar power technology, with more than 50 projects approved by the government in the works. Also, it exports its technology, further increasing the technology's stake in energy worldwide. Because of the nature of the technology needing a desert like area, experts predicted the biggest growth in places like Africa, Mexico, the southwest United States. The study examined three different outcomes for this technology: no increases in CSP technology, investment continuing as it has been in Spain and the US, and finally the true potential of CSP without any barriers on its growth. The findings of the third part are shown in the table below:

Time Investment Capacity 2015 21 billion euros a year 420 megawatts 2050 174 billion euros a year 1500 gigawatts Finally, the study acknowledged how technology for CSP was improving and how this would result in a drastic price decrease by 2050. It predicted a drop from the current range of.23 to.15 Euros per kilowatthour, down to.14 to.10 Euros a kilowatthour. Recently the EU has begun to look into developing a 400 billion ($774 billion) solar power plant based in the Sahara region using CSP technology known as Desertec. It is part of a wider plan to create "a new carbon-free network linking Europe, the Middle East and North Africa". The plan is backed mainly by German industrialists and predicts production of 15% of Europe's power by 2050. Morocco is a major partner in Desertec and as it has barely 1% of the electricity consumption of the EU, it will produce more than enough energy for the entire country with a large energy surplus to deliver to Europe. Other organizations expect CSP to cost $0.06(US)/kWh by 2015 due to efficiency improvements and mass production of equipment. That would make CSP as cheap as conventional power. Investors such as venture capitalist Vinod Khosla expect CSP to continuously reduce costs and actually be cheaper than coal power after 2015. On September 9, 2009; 13 months ago, Bill Weihl, Google.org's green energy czar said that the firm was conducting research on the heliostat mirrors and gas turbine technology, which he expects will drop the cost of solar thermal electric power to less than $0.05/kWh in 2 or 3 years. In 2009, scientists at the National Renewable Energy Laboratory (NREL) and SkyFuel teamed to develop large curved sheets of metal that have the potential to be 30% less expensive than today's best collectors of concentrated solar power by replacing glass-based models with a silver polymer sheet that has the same performance as the heavy glass mirrors, but at a much lower cost and much lower weight. It also is much easier to deploy and install. The glossy film uses several layers of polymers, with an inner layer of pure silver. Sources http://en.wikipedia.org/wiki/concentrating_solar_power, 23.11.2010 http://en.wikipedia.org/wiki/solar_thermal_collector, 25.11.2010 http://www.solarturm-juelich.de/en