Available online at ScienceDirect. Procedia Engineering 117 (2015 )

Similar documents
Available online at ScienceDirect. Procedia Engineering 117 (2015 )

Research on integrated solar and geothermal energy engineering design in hot summer and cold winter area

EVALUATION OF THE SOLAR INCOME FOR BRAŞOV URBAN AREA

Verified net Zero Energy Building with air source heat pumps for SME

Available online at ScienceDirect. Energy Procedia 57 (2014 )

ADAPTIVE FACADE SYSTEM BASED ON PHASE CHANGE MATERIALS

Evaluation of Solar PV and Wind Alternatives for Self Renewable Energy Supply: Case Study of Shrimp Cultivation

Available online at ScienceDirect. Energy Procedia 70 (2015 ) 57 64

Nearly Zero Energy Building in Lecco Modern technological building compared to an ancient Villa

Application of Low Cost Active and Passive Energy Saving Technologies in an Ultra-low Energy Consumption Building

COMPARATIVE SUMMER THERMAL AND COOLING LOAD PERFORMANCE OF NATURAL VENTILATION OF CAVITY ROOF UNDER THREE DIFFERENT CLIMATE ZONES

ScienceDirect. Energy and environmental monitoring of a school building deep energy renovation in Italy

Available online at ScienceDirect. Energy Procedia 78 (2015 )

ScienceDirect. Simulation based mixed mode building design

ScienceDirect ENERGY EFFICIENT REFURBISHMENT TOWARDS NEARLY ZERO ENERGY HOUSES, FOR THE MEDITERRANEAN REGION

ANNUAL ENERGY PERFORMANCE OF SOLAR THERMAL SYSTEMS IN BRAŞOV, ROMANIA

Available online at ScienceDirect. Energy Procedia 78 (2015 )

Procedia - Social and Behavioral Sciences 216 ( 2016 )

Available online at ScienceDirect. Procedia Technology 24 (2016 ) Tahira Bano a,*, K.V.S. Rao a

Future tree planting on the two acre lot will offset remaining lifetime carbon emissions.

ScienceDirect. Influence of the balcony glazing construction on thermal comfort of apartments in retrofitted large panel buildings

Assessment of Climate Change Robustness of a Deep Energy Retrofit Design of an Existing Day Care Centre

Cost Optimal Retrofitting Of Shopping Malls In Europe

Available online at ScienceDirect. Procedia Engineering 121 (2015 )

Zero Energy House in Japan: Actual results and future target. Isamu Ohta Misawa Homes Institute of Research & Development CO., LTD.

Available online at ScienceDirect. Energy Procedia 78 (2015 )

Available online at ScienceDirect. Energy Procedia 78 (2015 )

Performance analysis of a PV driven heat pump system during a heating season in high latitude countries

POTENTIAL OF APPLICATION OF PV SYSTEM FOR BWRO DESALINATION IN GAZA

Optimizing the Configuration of a Compact Thermal Facade Module for Solar Renovation Concept in Buildings

Solar Energy Technologies

ECO-RETROFITTING VERY OLD DWELLINGS: CURRENT AND FUTURE ENERGY AND CARBON PERFORMANCE FOR TWO UK CITIES

The use of decentralized ventilation systems with heat recovery in the historical buildings of St. Petersburg

Passive Strategies and Low-Carbon Technologies: Evaluating the Energy Performance and Thermal Comfort of a Passive House Design

THE SIMULATION OF PHOTOVOLTAIC POWER GENERATION AND WIND POWER GENERATION ON THE HYDRID ELECTRICITY SUPPLY SYSTEM OF A BUILDING

Zero Energy Building Example in Estonia. Tõnu Mauring

STUDY ON TESTING FEASIBILITY OF SOLAR ENERGY IN THE PALESTINIAN TERRITORIES

Parametric Louver Design System Based On Direct Solar Radiation Control Performance

A prototype architecture for passive and plus energy building in Estonia

European Cooperation in the field of Scientific and Technical Research. Building Integration of Solar Thermal Systems TU1205 BISTS

Renewables. Vacuum Tube Solar Systems. Solar Energy to the Power of

Strategies for energy efficiency improvement in residential and office buildings: their role at building and country scale

A technique for accurate energy yields prediction of photovoltaic system

SOPHARMA AND LITEX TOWERS Hi-tech intelligent building where light, architecture and sustainability meet business

Using Prometheus weather files. Andrew Cripps Sustainable Development Group AECOM

Sustainable Building Façade and Advanced Fenestration Systems

Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings

Available online at ScienceDirect. Energy Procedia 91 (2016 )

PASSIVE HOUSE. is a building, which doesn t need an active type of heating. Dr. Ing Mihail Stancu

Here Comes The Sun Applications of Solar Energy. Marc Rosenbaum, P.E. South Mountain Company West Tisbury, MA

Available online at ScienceDirect. Energy Procedia 91 (2016 )

Hot water persons. Map section

Dimensioning a small-sized PTC solar field for heating and cooling of a hotel in Almería (Spain)

THE FRENCH EMBASSY IN TOKYO

Performance evaluation of hybrid solar parabolic trough concentrator systems in Hong Kong

Solar energy house with brine-water heat pump and PV. Map section

Energy Saving Public Swimming Complex In Finland

Available online at ScienceDirect. Energy Procedia 78 (2015 )

Dynamic facades, the smart way of meeting the energy requirements Johnsen, Kjeld; Winther, Frederik Vilbrad

Ventilative Cooling potential tool

Solar Power. Technical Aspects and Environmental Impacts. 6 th March 2011 Sustainable Energy Options (UAU212F) - University of Iceland

Appendix T Renewable Energy Applications on the Green Deck

STEADY STATE AND DYNAMIC THERMOPHYSICAL PARAMETERS OF TRANSPARENT BUILDING COMPONENTS

Aalborg Universitet Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

Available online at ScienceDirect. Energy Procedia 91 (2016 ) 20 26

EVALUATION OF A MICRO PV-WIND HYBRID SYSTEM IN NORDIC CLIMATE CONDITIONS

Case study of an ECBC Compliant, Energy Efficient Building: Aranya Bhawan, Jaipur

ARCH-MEDES (I) CONSULTANTS PVT. LTD. Green Park Delhi

Available online at ScienceDirect. Energy Procedia 70 (2015 )

Development of the ventilation system in historical buildings of St. Petersburg

Available online at ScienceDirect. Energy Procedia 48 (2014 )

Yield Study on Identical Bifacial Rooftop Systems Installed in the USA and in Germany

Validation of Methods Used in the APVI Solar Potential Tool

A STUDY ON DESIGN OPTIMIZATION OF A NEAR NET-ZERO ENERGY HOUSE

State Of The Art Office Building & Campus For Maharashtra Energy Development Agency(MEDA) At AUNDH, PUNE

Available online at ScienceDirect. Energy Procedia 70 (2015 )

Project PolarSol koti 41\193\- Map section

Available online at ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015

Simulation based façade control implemented as a responsive building element

SOLAR ENERGY ASSESSMENT REPORT. For 80.5 kwp. Meteorological Data Source NASA-SSE. Date 18 October, Name of Place Uttar Pradesh.

Solar Photovoltaic (PV) GreenSmart Energy Performance Report

ACHIEVING HIGH ENERGY PERFORMANCE FOR LOW ENERGY BUILDINGS IN ROMANIAN CLIMATE USING GREEN ENERGY

27/10/15. Rod Hughes Architect Director 2030 architects ltd. Penrith

Measurements of Energy Performance and Indoor Environmental Quality in 10 Danish Passive Houses Larsen, Tine Steen; Jensen, Rasmus Lund

Achieving a cost optimal balance between heat supply efficiency and moderation of demand

Available online at ScienceDirect. Procedia Engineering 121 (2015 )

SOLAR ENERGY SYSTEMS IN THE RECONSTRUCTION OF HERITAGE HISTORICAL BUILDINGS OF THE NORTHERN TOWNS (FOR EXAMPLE SAINT-PETERSBURG)

Passiv Haus Institut Dr. Wolfgang Feist PEP Project Information

Application of Solar Heating on the Electrolyte Conditioning for Electrowinning Process: Thermosolar Plant Performance

TREES Training for Renovated Energy Efficient Social housing. Section 1 Techniques 1.5 Photovoltaic systems

Available online at ScienceDirect. Energy Procedia 78 (2015 )

NYSERDA High Performance Development Challenge Energy Monitoring Report Hudson Passive Project

AIC TECH 2015 Sustainability in Practice Turning Ideas into Reality Jan 16, 2015 FUTURE & NET ZERO BUILDINGS

ScienceDirect. Thermal Performance Improvement of Prefab Houses by Covering Retro-reflective Materials

Assignment 3 Integrated Energy Design

PassivHaus/ EnerPHit Introduction. Maiia Guermanova behalf of

The Double Glass Skin Façade: a sustainable option for the Curtain Wall in Mediterranean Climate Countries?

A Comparative Study Of The Thermal Comfort By Using Different Building Materials In Gaza City (JERT)

Q-Air detailed physical properties

Available online at ScienceDirect. Energy Procedia 78 (2015 )

Transcription:

Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 117 (2015 ) 766 774 International Scientific Conference Urban Civil Engineering and Municipal Facilities, SPbUCEMF-2015 Design Energy-Plus-House for the Climatic Conditions of Macedonia Ekaterina Aronova a,nikolai Vatin b, Vera Murgul b, * a Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 194021, Saint-Petersburg, Russia b St. Petersburg State Polytechnical University, Politekhnicheskaya, 29, Saint-Petersburg, 195251, Russia Abstract Climatic conditions allow Macedonia to design buildings, known as «Energy-plus house». This work complements the earlier studies carried out under the project «Passive house» for single-family house of Franz Freundorfer, and skips to the next level creating a «Energy-plus house». The project supplemented by the possibility of electricity based on solar energy. Evaluations insolation and receipt of solar radiation on differently oriented surfaces have shown the promise of using photovoltaic modules for electricity generation in Macedonia weather conditions. 2015 The The Authors. Authors. Published Published by Elsevier by Elsevier Ltd. This Ltd. is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the organizing committee of SPbUCEMF-2015. Peer-review under responsibility of the organizing committee of SPbUCEMF-2015 Keywords: Passive house, Energy-plus house, solar power, photovoltaic systems, energy efficiency, Macedonia. 1. Introduction Possibility of building a completely non-volatile buildings is relevant to Macedonia, where low population density is far away from the centralized energy networks areas. The concept is based on the statement to reduce heating costs to zero and achieve constant comfortable temperatures owing to efficient thermal insulation and impermeability of a building s envelope, any home heat recovery and passive solar heating. [2, 3, 4] (Fig. 1). * Corresponding author. Tel.: +7 950 010 1931; fax: +7 812 535 7992 E-mail address: october6@list.ru 1877-7058 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the organizing committee of SPbUCEMF-2015 doi:10.1016/j.proeng.2015.08.231

Ekaterina Aronova et al. / Procedia Engineering 117 ( 2015 ) 766 774 767 Fig. 1. Basic components of the «Passive house»concept. The report for the project in this article Energy-plus house has taken the concept of "passive house", supplemented by the possibility of electricity based on solarenergy. The basic assessment criteria whether the building meets the standard passive house are as follows: alternative: heating/cooling load (HL)/(CL) 10W/m2]; air impermeability 0.6 h-1]; specific kwh/(m2a)] and the emission of CO2. [1] The rate of 15 kw / (m² per year) is the typical one in matter of energy consumption needed to heat a «passive house» under weather conditions of Central Europe. In Stockholm it can reach 20 kw / (m² per year), and in Rome it can t be over 10 kw / (m² per year). 2. Object of research The macro location of the building falls in the eastern part of Macedonia, at an altitude of 600m and is located on a plateau. The architecture of the house has been taken from the famous house of Franz Freundorfer (Fig. 2). Fig. 2. Facade of the analyzedbuilding

768 Ekaterina Aronova et al. / Procedia Engineering 117 ( 2015 ) 766 774 3. Parametric analysis of the passive house The calculation of the passive house was made with the software package PHPP2007. Dimensions of the insulation, windows and all other elements were defined to meet the criteria for a passive house and in same time to be as close as possible to the limit values for the Passive House (PH) standard. Comparison of the final calculation results with the maximum values defined by the Passive House standard is presented in Tab. 1 [1, 5]. Table 1. Comparison of calculation results from PHPP 2007 and standard values [1] Criteria Symbol Unites Design Max. value value (standard) Specific energyheating demand QSH kwh/(m 2 a) 14 15 Specific primaryenergy demand QSP kwh/(m 2 a) 78 120 Heating load HL W/m 2 10 10 Cooling load CL W/m 2 7 10 Frequency ofoverheating h % 4 10 An extremely low energy demand for heating enables the heat to be delivered through the ventilation system (the air is heated with electric heaters after therecuperator). The calculation results clearly show that there is a need additional heating device which will produce an additional 171 W. In the case of conventional energy sources, emissions of carbon dioxide from the heating system is 9 kg/(m 2 a) while the total emission is 19 kg/(ma). Building, that are using only the solar energy, will be a CO2-neutral. Previously developed project standards of "passive house" is proposed to add energy-based photovoltaic modules. 4. Influence of the building orientation The orientation of the building has direct impact on the energy balance of the passive building. The initial orientation (south of the house was rotated by steps of 30 clockwise and the results of PHPP 2007 for each of the defined positions of the house are presented in the Tab. 2. Table 2. Influence of building orientation [1] Specific energydemands Load Freq. of overh. CO2 emision Description heating cooling primary energy heating Cooling without equipem. Total Symbol QSH QCS QSP HL CL h CO2 Qsh Unites [ kwh/(m 2 a)] [W/m 2 ] [%] [kg/(m 2 a)] CO2 Qsp Prescribedvalues 15 120 10 10 10 / / Design values 13.93 9.36 77.74 10.06 6.76 3.62 8.88 19.35 Rotation 30 o 14.57 11.22 78.33 10.22 7.87 6.11 9.01 19.49 Rotation 60 o 16.34 14.93 79.96 10.46 8.56 12.97 9.39 19.86 Rotation 90 o 18.26 17.20 81.78 10.65 10.03 11.90 9.80 20.28

Ekaterina Aronova et al. / Procedia Engineering 117 ( 2015 ) 766 774 769 Rotation 120 o 20.02 16.68 83.47 10.75 8.96 9.89 10.19 20.66 Rotation 150 o 21.41 14.99 84.84 10.78 7.55 4.10 10.51 20.97 Rotation 180 o 22.92 13.85 86.36 10.94 6.61 1.83 10.85 21.32 5. Calculation of the incoming solar energy The territory of Macedonia is rich of the solar resources, which confirms the insolation map of the country, shown in Fig. 3 Meteorological observations conducted from April 2004 to March 2010, showed that almost all of the country's annual influx of solar energy is more than 1400 kwh/m², and for some areas is 1600 kwh/m². Therefore, the use of solar photovoltaic modules and systems based on them is relevant and energyefficient way to produce additional electricity for Passive house. Solution of the task of placement of photovoltaic modules on the ground is based on the correct definition of the angle of inclination to the horizontal surface of the modules, for optimal security features of electricity (at a given orientation modules to the south, in accordance with the locationof the house). Tab. 3 below presents data on the amount of solar radiation on surfaces inclined at different angles to the weather conditions, the Skopje with coordinates 41 59'N, 21 26'E [8]. Fig. 3. Global horizontal irradiation.

770 Ekaterina Aronova et al. / Procedia Engineering 117 ( 2015 ) 766 774 Table 3. Receipt of the total solar radiation on differently oriented surfaces of photovoltaicmodules, [kwh/m²] Month Angle of inclination of the modules to the horizon, [deg] 0 27 42 57 90 January 52.08 79.67 89.28 93.93 85.87 February 68.04 91.56 98.28 99.68 84 March 106.33 126.17 128.65 124.62 94.55 April 126 133.2 128.4 117.9 79.2 May 158.41 157.17 146.32 128.65 78.43 June 183.6 174.3 159 136.5 78.3 July 192.82 188.48 172.98 149.42 85.25 August 170.5 177.32 168.64 151.59 94.55 September 122.1 140.4 140.7 133.8 96.6 October 85.25 110.05 115.94 115.94 95.17 November 50.4 72 78.9 81.6 72.3 December 41.54 63.86 71.92 76.26 70.37 Year 1357.07 1514.18 1499.01 1409.89 1014.59 As can be seen from Table 3 the maximum annual amount of solar radiation is observed in the surface inclined at an angle of 27 to the horizon. However, when selecting the optimum angle modules should also take into account peculiarities of power consumption. In this project, Passive house the house lacks heating (171 W), which is proposed to be added by using the electric heater in the cold season. Therefore, in Fig. 4 shows the flow of radiation from season to season, and Fig. 5 discrepancy in the parish in relation to the horizontal plane.

Ekaterina Aronova et al. / Procedia Engineering 117 ( 2015 ) 766 774 771 Fig. 4. Assessment of the amount of solar radiation on differently oriented surfaces byseasons. Analysis of the data presented in Fig. 4 and 5, led to the following conclusions: The arrival of the solar radiation in the summer is maximum on a horizontal surface; The arrival of the solar radiation in the winter is maximum on the surface with angle of 57 ; The arrival of the solar radiation in the spring and autumn periods is highest on the surface at angles 27 and 42, respectively; The amount of solar radiation on a vertical surface is practically unchanged from season to season, but it is minimal with respect to the horizontal surface of the spring and summer; The difference in the flow of energy on the surface at angles of 42 and 57 are minimal.

772 Ekaterina Aronova et al. / Procedia Engineering 117 ( 2015 ) 766 774 Fig. 5. Shots incoming solar energy on differently oriented surface and a horizontal surface Thus, the priority use of the energy generated by photovoltaic modules in the cold season, possibly with tilt angles of modules in 57 and 42. However, since the total annual flow in the second case, a 6% increase in the subsequent calculations will be used in a 42 angle to the horizon. In the second stage assess the effectiveness of solar panels to generate electricity in Macedonia weather conditions dealing with the following inputs: Estimated area south oriented front roof pitch - 50 m²; The efficiency of PV modules - 15%; The angle of the modules to the horizon - 42. Figure 6 provides an assessment of electricity generation by the solar modules of 50 m² in every month of the year. Annual electricity production will be 11242 kwh. Daily average values for each month of the year are shown in Fig. 7. The graph shows the minimum value for December is 17 kwh, which is enough to provide electricity for the heatingdevice.

Ekaterina Aronova et al. / Procedia Engineering 117 ( 2015 ) 766 774 773 1265 (11,25%) 1297 (11,54%) 1055 (9,38%) 1193 (10,61%) 870 (7,74%) 592 (5,27%) 1097 (9,76%) 539 (4,79%) 670 (5,96%) 963 (8,57%) 965 (8,58%) 737 (6,56%) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Fig. 6. Evaluation of power generation by the solar modules (from the surface of the roof 50m 2 ) Fig. 7. Evaluation of the average daily power generation solar modules by month (50m 2 ) 6. Conclusions Climatic conditions allow Macedonia to design buildings, known as «Energy-plus house». In addition, emission of carbon dioxide (CO2) is proportional to the increase in energy consumption for heating / cooling and total primary energy. «Energy-plus house» provide an environmentally safe operation of buildings. Evaluations insolation and receipt of solar radiation on differently oriented surfaces have shown the promise of

774 Ekaterina Aronova et al. / Procedia Engineering 117 ( 2015 ) 766 774 using photovoltaic modules for electricity generation in Macedonia weather conditions. Optimum tilt angle of the module is 42, which provides operational efficiencies of modules in the cold season and almost maximum energy production throughout the year. Evaluation of power generation modules with the surface of the building showed that the worst in terms of resource flows of solar radiation of the month - December solar modules will generate no less than 17 kwh electricity consumption per day. Thus, this work complements the earlier studies carried out under the project «Passive house», and skips to the next level creating a «Energy-plus house». References [1] Cvetkovska, M., Trpevski, S., Andreev, A., Knezevic, M. Parametric analysis of the energy demand in buildings with Passive House standard (2013) Portugal SB13 - Contribution of Sustainable Building to Meet EU 20-20-20 Targets, pp. 303-310. [2] Feist, W., Schnieders, J., Dorer, V., Haas, A. Re-inventing air heating: Convenient and comfortable within the frame of the Passive House concept (2005) Energy and Buildings, Vol. 37(11), pp. 1186 1203. [3] Gabriyel, I., Ladener, Kh. Rekonstruktsiya zdaniy po standartam energoeffektivnogo doma (2011) SPb.: BKhV-Peterburg, 470 p. ekologicznych wykorzystania energii na domu jednorodzinnego (2013) Rocznik 2697 2710. [5] Andreev A., Parametric analysis of the energy demand in buildings with Passive House standard (2013) Master thesis, University Ss. Cyril and Methodius, Skopje, 182p. [6] Standards: MKC EN 410:200; MKC EN 673/A1/A2:2006; MKC ISO 6946:2009; MKC EN ISO 9288:2008; MKC EN ISO 13788:2006; MKC EN ISO 13947:2009; DIN 277; DIN V 4108-4; DIN EN 1283; DIN EN 13363 ; DIN EN 13829; DIN EN ISO 13790:2004; DIN ISO 13370 ; DIN V 18599-2; DIN V 4180-6; DIN EN ISO 10211-1:1995; DIN V 4701-10; DIN EN ISO 6946:1996 deformation measurement techniques and their comparison (2008) Strojniski Vestnik/Journal of Mechanical Engineering, 54 (5), pp. 364-371. [8] Information on: http://solargis.info