A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana

Similar documents
Supplementary Fig 1. The responses of ERF109 to different hormones and stresses. (a to k) The induced expression of ERF109 in 7-day-old Arabidopsis

Supplementary Information. c d e

Construction of plant complementation vector and generation of transgenic plants

A Repressor Complex Governs the Integration of

Supplemental Data. Cui et al. (2012). Plant Cell /tpc a b c d. Stem UBC32 ACTIN

Supplemental Data. Wang et al. Plant Cell. (2013) /tpc

Supplementary Materials for

Supplemental Data Supplemental Figure 1.

Supplementary Information

- 1 - Supplemental Data

Supplementary Figure 1. jmj30-2 and jmj32-1 produce null mutants. (a) Schematic drawing of JMJ30 and JMJ32 genome structure showing regions amplified

Sperm cells are passive cargo of the pollen tube in plant fertilization

Supplemental Data. Steiner et al. Plant Cell. (2012) /tpc

Supplementary Figures 1-12

Supplemental Data. Guo et al. (2015). Plant Cell /tpc

Supplemental Data. Na Xu et al. (2016). Plant Cell /tpc

Supplemental Data. Liu et al. (2013). Plant Cell /tpc

WiscDsLox485 ATG < > //----- E1 E2 E3 E4 E bp. Col-0 arr7 ARR7 ACTIN7. s of mrna/ng total RNA (x10 3 ) ARR7.

Supplemental Data. Lee et al. Plant Cell. (2010) /tpc Supplemental Figure 1. Protein and Gene Structures of DWA1 and DWA2.

Supplemental Data. Benstein et al. (2013). Plant Cell /tpc

SUPPLEMENTARY INFORMATION

Supplemental Data. Borg et al. Plant Cell (2014) /tpc

Nature Genetics: doi: /ng Supplementary Figure 1. ChIP-seq genome browser views of BRM occupancy at previously identified BRM targets.

Supplemental Data. Wu et al. (2). Plant Cell..5/tpc RGLG Hormonal treatment H2O B RGLG µm ABA µm ACC µm GA Time (hours) µm µm MJ µm IA

Supplemental Figure 1. Floral commitment in Arabidopsis WT and mutants.

Supplemental Figure 1. Conserved regions of the kinase domain of PEPR1, PEPR2, CLV1 and BRI1.

SUPPLEMENTARY INFORMATION

Supplementary Information

Supplementary Figure 1. BES1 specifically inhibits ABA responses in early seedling

Supplemental Materials

Integrated Omics Study Delineates the Dynamics of Lipid Droplets in Rhodococcus Opacus PD630

Gene specific primers. Left border primer (638) ala3-4 (Salk_082157) Gene specific primers. Left border primer (1343)

SUPPLEMENTARY INFORMATION

Supplemental data. Zhao et al. (2009). The Wuschel-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice.

PIE1 ARP6 SWC6 KU70 ARP6 PIE1. HSA SNF2_N HELICc SANT. pie1-3 A1,A2 K1,K2 K1,K3 K3,LB2 A3, A4 A3,LB1 A1,A2 K1,K2 K1,K3. swc6-1 A3,A4.

Supplementary Materials

Supplementary Figure 1 qrt-pcr expression analysis of NLP8 with and without KNO 3 during germination.

S156AT168AY175A (AAA) were purified as GST-fusion proteins and incubated with GSTfused

Supplemental Figure 1 HDA18 has an HDAC domain and therefore has concentration dependent and TSA inhibited histone deacetylase activity.

Schematic representation of the endogenous PALB2 locus and gene-disruption constructs

Supplemental Figure 1. VLN5 retains conserved residues at both type 1 and type 2 Ca 2+ -binding

Supplemental Figure 1

Supporting information

Supplemental Information

A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast. Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice

The Arabidopsis Transcription Factor BES1 Is a Direct Substrate of MPK6 and Regulates Immunity

Supplemental Figure 1. Alignment of the NbGAPC amino acid sequences with their Arabidopsis homologues.

(phosphatase tensin) domain is shown in dark gray, the FH1 domain in black, and the

Supplementary information

Supplemental Data. Seo et al. (2014). Plant Cell /tpc

Supplemental Data. Farmer et al. (2010) Plant Cell /tpc

Supplementary Information

Supplemental Figure 1. Mutation in NLA Causes Increased Pi Uptake Activity and

Confocal immunofluorescence microscopy

Supplemental Data. mir156-regulated SPL Transcription. Factors Define an Endogenous Flowering. Pathway in Arabidopsis thaliana

pgbkt7 Anti- Myc AH109 strain (KDa) 50

Supplemental Data. Zhang et al. Plant Cell (2014) /tpc

Table S1. List of primers used in this study.

Supplemental Data. Osakabe et al. (2013). Plant Cell /tpc

Supplemental materials

To investigate the heredity of the WFP gene, we selected plants that were homozygous

Chemical hijacking of auxin signaling with an engineered auxin-tir1

Supplemental Figure 1. Rosette Leaf Morphology of Single, Double and Triple Mutants of eid3, phya-201 and phyb-5. Photographs of Ler wild type,

Nature Biotechnology: doi: /nbt.4166

Intron distance to transcription start (nt)*

Supplemental Data. Zhang et al. (2010). Plant Cell /tpc

Obtaining More Accurate Signals: Spatiotemporal Imaging of Cancer Sites Enabled by a Photoactivatable Aptamer-Based Strategy

Supplemental Data. Polycomb Silencing of KNOX Genes Confines. Shoot Stem Cell Niches in Arabidopsis Current Biology, Volume 18

Supplementary Information. Supplementary Figure S1. Phenotypic comparison of the wild type and mutants.

Nature Genetics: doi: /ng.3556 INTEGRATED SUPPLEMENTARY FIGURE TEMPLATE. Supplementary Figure 1

Temperature modulates tissue-specification program to control fruit dehiscence in Brassicaceae

Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures

Supporting Information

Figure S1. Figure S2 RT-PCR. qpcr RT-PCR. Northern. IVSwt ΔIVS IVS IVS IVS. NTC mock IVSwt ΔIVS IVS IVS. mock IVSwt ΔIVS

Supplementary Figure 1 Collision-induced dissociation (CID) mass spectra of peptides from PPK1, PPK2, PPK3 and PPK4 respectively.

Supplementary Materials: 1. Supplementary Figures S1-S9. 2. Supplementary Tables S1-S2

Supplemental Data. Dai et al. (2013). Plant Cell /tpc Absolute FyPP3. Absolute

Supplementary information, Figure S1

Supplemental Data. Wu and Xue (2010). Plant Cell /tpc

6/256 1/256 0/256 1/256 2/256 7/256 10/256. At3g06290 (SAC3B)

Supplemental Materials

Expanded View Figures

Supplementary Figure 1. Isolation of GFPHigh cells.

Supplemental Data. Li et al. (2015). Plant Cell /tpc

ABI3 Controls Embryo De-greening Through Mendel's I locus

Supplementary Figure S1. Immunodetection of full-length XA21 and the XA21 C-terminal cleavage product.

Supplemental Figure 1

AD BD TOC1. Supplementary Figure 1: Yeast two-hybrid assays showing the interaction between

Supplementary Information

SUPPLEMENTARY INFORMATION

Functional analysis reveals that RBM10 mutations. contribute to lung adenocarcinoma pathogenesis by. deregulating splicing

Figure S1. DELLA Proteins Act as Positive Regulators to Mediate GA-Regulated Anthocyanin

Supplemental Data. Hachez et al. Plant Cell (2014) /tpc Suppl. Figure 1A

Supplemental Figure legends Figure S1. (A) (B) (C) (D) Figure S2. Figure S3. (A-E) Figure S4. Figure S5. (A, C, E, G, I) (B, D, F, H, Figure S6.

(a) Immunoblotting to show the migration position of Flag-tagged MAVS

SUPPLEMENTARY INFORMATION

Supplemental Data. Challa et al. (2016). Plant Cell /tpc

Table S1. List of DNA constructs and primers, part 1 Construct

Supplemental Data. Ko et al. (2014). Plant Cell /tpc Supplemental Figure 1. Evidence of T-DNA Insertion in ms142 Mutant.

Graphene oxide-enhanced cytoskeleton imaging and mitosis tracking

Transcription:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Journal of Plant Research A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana Linna Leng 1 Qianqian Liang 1 Jianjun Jiang 1 Chi Zhang 1 Yuhan Hao 1 Xuelu Wang 2 Wei Su 1,* 1 State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China 2 College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China These authors contributed equally to this work *Correspondence: weisu@fudan.edu.cn Supplementary materials Fig. S1 Fig. S2 Fig. S3 Fig. S4 Fig. S5 Fig. S6 Fig. S7 Table S1 Table S2 Materials and methods Confocal microscopy 22 23 1

24 Supplementary figures!!"#$%&'&()#!"#$%&*&()#!"#$%&+&()#!"#$%&,&()#!"#$%&-&()# " # $ 25 26 27 28 29 Fig. S1 Subcellular localizations of HSP70-1 to HSP70-5 in Nicotiana benthamiana pavement leaves. Microscope images of Nicotiana benthamiana leaves transient expressing HSP70-1-GFP to HSP70-5-GFP were stained with DAPI. (a d) The image of DAPI channel (a), GFP channel (b), bright field (c), Merge (d) showed that the HSP70-1 to HSP70-5 proteins were located both in cytosol and nucleus. Bar = 100 µm. 30 2

31!"#$%!"#$%&' ()*$%&'+&'%(,-./)&*+(,-./)&'%( 32 33 34 35 36 Fig. S2 HSP70-5 gene expression in wild type and hsp70-5 mutant. The TUB2 gene was used as the quantitative control. The amplified products of HSP70-5 are 1,941 bp (full length of HSP70-5 CDS) and that for TUB2 are 664 bp (741 1,304). PCR products amplified for 30 cycles were used to detect the expression of HSP70-5, 25 cycles and 30 cycles for TUB2. 37 3

38 39 40 41 42 43 Fig. S3 Genotype identification of hsp70-1/4 and hsp70-2/4/5 mutants. Genomic DNA was used as a template for genotyping PCR. L, left primer; R, right primer; T, T-DNA primers (LBb1.3 for hsp70-1 to hsp70-4, LB1 for hsp70-5); M, marker. The mutant hsp70-1/4 was hsp70-1 -/- hsp70-3 +/- hsp70-4 -/- and mutant hsp70-2/4/5 was hsp70-2 -/- hsp70-3 +/- hsp70-4 -/- hsp70-5 -/- 44 4

45 & &'()*+,-.,/012,.-+,340562,6-,*56*+,)-46758,2608*, $" $! #" #! "! 9-4:! %%%!"#$%&'()* %%%!"#$%&+()(,* " # &'()*+,-.,/012,.-+,340562,6-,*56*+,.4-<*+758,2608*, ;! $! #!! 9-4:!!"#$%&'()* %%% %%%!"#$%&+()(,* &'()*+,-.,/012,.-+,340562,6-,*56*+,)+05=>758,2608*, ;! $! #!! 9-4:!!"#$%&'()! %%% %%%!"#$%&+()(,! $ %?>*,4*586>,-.,6>*,2747@'*2, A=(B #C$!CE!CD!C! 9-4:!!"#$%&'()* %%% %%%!"#$%&+()(,*?>*,<7/6>,-.,6>*,26*(2,A((B #C!!CE!CF!CD!C$!C! 9-4:!!"#$%&'()* %%% %%%!"#$%&+()(,* 46 47 48 49 50 51 52 Fig. S4 Statistical analyses of developmental phenotypes of the hsp70-1/4 double mutant and hsp70-2/4/5 triple mutant. (a c) Both mutants showed developmental phenotypes of accelerating bolting (a), flowering (b) and branching (c). (d) The siliques of both mutants were shorter than Col-0. 30 fully expanded siliques from 6 individual plants (5 siliques from each plant) were measured. (e) The stems were thinner in both mutants than Col-0. Fifteen stem segments (5 cm long) excised from the base of the main stem were measured. Student s t-test was used to determine significance. ***P < 0.001 53 5

54! hsp70-1/4 hsp70-2/4/5 Col-0 " # $ % Col-0 hsp70-1/4 hsp70-2/4/5 & Col-0 hsp70-1/4 hsp70-2/4/5 55 6

56 57 58 59 60 61 Fig. S5 phenotypic images of the hsp70-1/4 double mutant and hsp70-2/4/5 triple mutant. (a) Both mutants began bolting, but the Col-0 did not. (b) The image was captured when the Col-0 began bolting. (c) Both mutants began flowering and branching, but the Col-0 did not. (d) The image was captured when the Col-0 began flowering and branching. The images were taken in (a) 17d, (b) 20 d, (c) 22 d, (d) 25 d of the plants. (e) The siliques were shorter in hsp70-1/4 mutants and hsp70-2/4/5 mutants than Col-0. (f) The stems were thinner in hsp70-1/4 mutants and hsp70-2/4/5 mutants than Col-0. 7

8!!"#$%!"#$%&'&()#!"#$%&*&()#!"#$%&+&()#!"#$%&,&()#!"#$%&-&()# % &% '% (% )% *%%!"#$%"&'"(()'*+,-). /0 $%,,#)(*12(,)"(* *%%+,-+./!# "!"#$%&'&()# 0+-1 *%%+,-+./!# 2%%+,-+,/3345"# 2+6+7#89":;!"#$%&*&()#!"#$%&+&()#!"#$%&,&()#!"#$%&-&()#!"#$%!"#$%&'&()#!"#$%&*&()#!"#$%&+&()#!"#$%&,&()#!"#$%&-&()#!"#$% #,"9<!"#$%!"#$%&'&()#!"#$%&*&()#!"#$%&+&()#!"#$%&,&()#!"#$%&-&()# % *% &% 2% '% =%!"#$%"&'"(()'*+,-). /0 $%,,#)(*12(,)"(* 2%%,-+-/3345"# $!"#$%!"#$%&'&()#!"#$%&*&()#!"#$%&+&()#!"#$%&,&()#!"#$%&-&()# % &% '% (% )%!"#$%"&'"(()'*+,-). /0 $%,,#)(*12(,)"(* 26+7#89":; %!"#$%!"#$%&'&()#!"#$%&*&()#!"#$%&+&()#!"#$%&,&()#!"#$%&-&()# % &% '% (% )% *%%!"#$%"&'"(()'*+,-). /0 $%,,#)(*12(,)"(* *%+>-+ & 62 63

64 65 66 67 68 69 70 71 Fig. S6 The single HSP70 overexpression lines showed similar sensitivities to salt, osmotic stress, and high glucose stress as well as exogenous ABA treatment as compared with the wide type. (a, b) The images of primary roots of the five HSP70 overexpression lines and the wild type in primary root growth inhibition assays. (c-f) Statistical data for relative primary root lengths showed in (a) and (b). The relative primary root lengths of plants treated with 100 mm NaCl (c), 300 mm mannitol (d), 3 % glucose (e), and 10 µm ABA (f) compared with those of plants grown on normal 1/2 MS plates or mock. Values are means ± SE from three independent experiments (n > 15). Student s t-test was used to determine significance. *P < 0.05; ***P < 0.001 72 9

73 74 Supplementary table Table S1 Sequencing of the qrt-pcr products of 5 individual HSP70s genes Gene Name Locus Sequencing of the q-rt PCR amplified products Alignment site cdna HSP70-1 At5g02500 GACCTCTCTCTTTCTCCTATCTCTATCTCTTTT 2077-2247 ACTTGCTTTTTTTTGATCTGTTAAGACTTTTTA TGTTGGGCTTTTTTAAAGAAGCCCATTTTGTG GTGTTTTTTGGTTAGTACTATTTTGAACAATG GTTGGTTCTATACCAGTTTAGCTACGATGACG GATAAAATT HSP70-2 At5g02490 GTGTTCTCTTAGTTATTTTGTCTTTTTATTTGA 2044-2243 ACTCTCTCAATTTAGTGTTGGATTTTATGTTCT ACATTTTCTTTGATCTAAGTACTTTCTCTCTAT TGTTTGGTCATTGGTGACCCCTTTCTCTTAAC AATGCTTTAGTGGTCACTTGGTAGAAAGCTTT GTTATGAAAATTTCTTTACATGTCAGATTCAC ATAAG HSP70-3 At3g09440 TAACTTTCTCTCTTACTCTCTTACTCTCAGTCT 2042-2216 TTATGTGTTTGTATTTCAACATTTTCCTGTTTT GTCCCCTAGTTTTTTTTTTCTTTTTCTTTCTTGT ATTGACTCTATTTTGAGGGCTCGCTTGTTTCG ATGAGCTCCTTATTTTTTTTAATCTATAACAG GAATGTTTTGA HSP70-4 At3g12580 GAGATTCTAGTTGGTTTCTTGTTCTTAGTTTTA 2087-2181 TCTTTCTATGTCACTCTGAAACTGGTGTGTGA TCATTTTGATGCTTTAAGAATTTAGCTTTAC HSP70-5 At1g16030 AGCGTGTTTAGTGTGTTAAGACGAAAGAGTG GCTTTGGACCATTAGCGAGTCTTTTCTTTGTA TTGTGTCAAATAGTGTTGTGTACTCATAGGTG TTTTGCTAGTGAACGATAGTTGTATGCTTTAC ATATTTCAGCTGTTTCAGTTGTT 2150-2299 75 76 10

77 Table S2 The sequences of primers used in this study Purpose Name Primer sequence Hsp70-1-GFP Hsp70-1(BamHI)-F CGGGATCCATGTCGGGTAAAGGAGAAGG Hsp70-1(XbaI)-R GCTCTAGAGTCGACCTCCTCGATCTTAGG Hsp70-2-GFP Hsp70-2(KpnI)-F GGGGTACCATGGCTGGTAAAGGAGAAGGTCC Hsp70-2(XbaI)-R GCTCTAGATTAGTCGACTTCCTCGATCTTGGG Hsp70-3-GFP Hsp70-3(BamHI)-F CGGGATCCATGGCTGGTAAAGGAGAAGGTC Hsp70-3(XbaI)-R GCTCTAGAGTCGACTTCCTCAATCTTGGG Hsp70-4-GFP Hsp70-4(KpnI)-F GGGGTACCATGGCGGGTAAAGGTGAAGGT Hsp70-4(XbaI)-R GCTCTAGAATCAACTTCTTCAATCTTTGGGC Hsp70-5-GFP Hsp70-5(KpnI)-F GGGGTACCATGGCGACGAAATCAGAGAAAG Hsp70-5(XbaI)-R GCTCTAGAATCCACCTCTTCGATCTTGGG ProHsp70-1:GUS phsp70-1(psti)-f AACTGCAGAGTTATCGGGTATTTGAGAAAAAA phsp70-1(bamhi)-r CGGGATCCTTTTATCGGAAGATTTGGAAACTA ProHsp70-2:GUS phsp70-2(psti)-f AACTGCAG GCGGTGCTGGACCTAAGATC phsp70-2(bamhi)-r CGGGATCCTATCACACGAAGATAGAAAAAGCTA ProHsp70-3:GUS phsp70-3(psti)-f AACTGCAGGATCAAGATTGTGGTCAGGTAAGA phsp70-3(bamhi)-r CGGGATCCTGTTAACGCTACTCAGGATTAAGC ProHsp70-4:GUS phsp70-4(psti)-f AACTGCAGTACGAAGCCACTTGAGTGATGAT phsp70-4(bamhi)-r CGGGATCCTATTAGAGATCAGAATTGTTCGCC ProHsp70-5:GUS phsp70-5(kpni)-f GGGGTACCCATCTTTTAAGTCATGGACACTG phsp70-5(saci)-r CGCGAGCTTGTTGCTAAAAAAAAGCTTCAG Genotyping Hsp70-1-F AAGGAGAAGGACCAGCTATCG Hsp70-1-R TCTTCGCTCTCTCACAGGAAG Genotyping Hsp70-2-F GGTACGACGTACTCTTGCGTC Hsp70-2-R CTCAATCTCCTGAGGGCTCTC Genotyping Hsp70-3-F GTCCACTTTGCATGCTTCTTC Hsp70-3-R ATCATCGCTATGGATCTACCG Genotyping Hsp70-4-F CCAAATACGAAGCCACTTGAG Hsp70-4-R TACCGAAGACGGTGTTGGTAG Genotyping Hsp70-5-F TCCTAACGAACATGTTCTCCG Hsp70-5-R AGGTCCAGGATCTTCTGCTTC Genotyping SALKLBb1.3 ATTTTGCCGATTTCGGAAC Genotyping SAIL LB1 GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC qrt-pcr Hsp70-1-F TTGTTGGACATTGACCTCTC Hsp70-1-R GGCAAACTTTTAATTTTATCCG qrt-pcr Hsp70-2-F GTGTTCTCTTAGTTATTTTGTC 11

Hsp70-2-R CTTATGTGAATCTGACATGTAA qrt-pcr Hsp70-3-F TAACTTTCTCTCTTACTCTCTT Hsp70-3-R CAAAACATTCCTGTTATAGATTA qrt-pcr Hsp70-4-F GCCTTTTGGCTTTTGTTTACT Hsp70-4-R AACGGTAAAGCTAAATTCTTAAA qrt-pcr Hsp70-5-F AGCGTGTTTAGTGTGTTAAGA Hsp70-5-R AACAACTGAAACAGCTGAAATA qrt-pcr FLC-F CAAATGTCAAAAATGTGAGTATCGAT FLC-R TAAGGTGGCTAATTAAGTAGTGGGAG qrt-pcr FT-F GCTACAACTGGAACAACCTTTGGCAAT FT-R CCTCTGACAATTGTAGAAAACTGCG qrt-pcr SOC1-F GAGAAAAGTGTCAAATGTATTCGAGC SOC1-R ATTTGACCAAACTTCGCTTTCATG qrt-pcr LFY-F CCAAGTATTCAGGTACGCGAAGA LFY-R AAGCCTGACGCCATGAGCCAA qrt-pcr ARR5-F GTTTTGC GTCCCGAGATGT TAGATA ARR5-R AGCTGCGAG TAGATATCA TTAGCTT qrt-pcr ARR6-F CAAATTCCGTGACTGGATCTTAG ARR6-R GGCGAGAATCATCAGTGTAGG qrt-pcr ARR15-F CTGCTTGTAAAGTGACGACTGTTG ARR15-R AGTTCATATCCTGTTAGTCCCGGC qrt-pcr DWF4-F CATTGCTCTCGCTATCTTCTTC DWF4-R GACTCTCCTAGTTCCTTCTTGG qrt-pcr CPD-F TTACCGCAAAGCCATCCAAG CPD-R TCCATCATCCGCCGCAAG qrt-pcr DET2-F ACTACGAAGACGGAAACTGG DET2-R TCCTTGAACTTGGCAATGTA qrt-pcr IAA6-F CCATAAAGTTTGAAAACCGTTGAG IAA6-R ACGACCAGTAAGGAAATACATTTG qrt-pcr GH3-1-F TTTCACTGTGGGATCTCTGTG GH3-1-R GCATTGATTTCCATCAAAGTAGAC qrt-pcr GH3-5-F TCTCCAACCAACTCTCATCAC GH3-5-R TGCAATTTCACGTTGCTTATAC qrt-pcr CBF1-F CTTGAAAAAGAATCTACCTGAAAAGA CBF1-R TCTCCGCCTTGAGGCTCGTAAT qrt-pcr CBF2-F CCTGAATTAGAAAAGAAAGATAGATAGAG CBF2-R TGTAATCACCGCCTGAGGAAA qrt-pcr CBF3-F GAGAGAAACTATTATTTCAGCAAACC 12

78 79 CBF3-R CTGCTCGCAAGCGTCGGAATA qrt-pcr RAB18-F TTGTAACGCAGTCGCATT RAB18-R GATGCTCATTACACACTCATG qrt-pcr RD20-F TTTGGACCTTACTCATAAACTTAGC RD20-R TTAGTCTTGTTTGCGAGAATTGGC qrt-pcr RD22-F ACCATTGAGGAGTGTGAAGCCAG RD22-R CTAGTAGCTGAACCACACAACATGAG qrt-pcr RD29B-F AAGAACG TCGTTGCCTCA RT-PCR RD29B-R TUB2-F TUB-R GCCCGTA AGCAGTAACAG CTCTGACCTCCGAAAGCTTGC TCACCTTCTTCATCCGCAGTT 13

80 81 82 83 84 85 86 87 88 Material and methods Confocal microscopy To investigate the subcellular localizations of the GFP-tagged HSP70-1, -2, -3, -4, and -5 proteins. Agrobacteria transformed by HSP70s-GFP constructs were injected into the leaves of Nicotiana benthamiana and grown for another 2 3 d. The leaves were incubated in buffer containing 2 g ml -1 DAPI for 30 min at room temperature and were washed 3 times by sterile water containing 0.1 % triton. GFP fluorescent signals (excited at 488 nm) and DAPI signals (excited at 359 nm) were analyzed with a Leica SP8 laser confocal microscope. Images of Nicotiana benthamiana leaves were captured with a 20 objective and zoomed in to show the details. 14