RESEARCH ARTICLE e-issn:

Similar documents
International Journal of Pharmacy and Industrial Research

Formulation and Evaluation of Floating Tablets Using Nimesulide as a Model Drug

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

Formulation and in-vitro evaluation of pregabalin mini tablets for sustained release

FORMULATION AND EVALUATION OF ROPINIROLE SUSTAINED RELEASED TABLETS BY USING NATURAL AND SYNTHETIC POLYMERS

Research Article. Formulation and in-vitro evaluation of orodispersible tablets of olanzapine for the improvement of dissolution rate

The Pharmaceutical and Chemical Journal, 2015, 2(1): Research Article

Formulation and Evaluation of Gastro Retentive Tablet of Ondansetron hydrochloride Using 3 2 Factorial Design

Preparation and Evaluation of Sustained Release Tablet of Cyproheptadine Hydrochloride Using Carbopol and HPMC

Formulation and in vitro evaluation of bosentan osmatic controlled release tablets

FORMULATION DEVELOPMENT AND EVALUATION OF FAMOTIDINE FLOATING TABLET

Pelagia Research Library

Design of Controlled Release Non-erodible Polymeric Matrix Tablet Using Microwave Oven-assisted Sintering Technique

Kollidon SR: A polyvinyl acetate based excipient for DCsustained-release

INTERNATIONAL JOURNAL OF INSTITUTIONAL PHARMACY AND LIFE SCIENCES

Journal of Global Trends in Pharmaceutical Sciences

Rajesh Kaza. et al /J. Pharm. Sci. & Res. Vol.1(4), 2009,

Formulation and Evaluation of Telmisartan with Hydrochlorothiazide Conventional Release Tablets

Mohammed Muqtader. et al. / International Journal of Biopharmaceutics. 2012; 3(1): International Journal of Biopharmaceutics

Formulation and in vitro evaluation of ofloxacin as floating drug delivery system

Formulation and Evaluation of Gastro retentive Bilayer Tablets- Glimepiride as Sustained Release and Lisinopril as Immediate Release

Taste Masked Orodispersible Formulation of Fexofenadine Hydrochloride Using Ion Exchange Resins

FORMULATION AND EVALUATION OF ACECLOFENAC MATRIX TABLETS USING ETHYL CELLULOSE AND CELLULOSE ACETATE PHTHALATE

FORMULATION AND EVALUATION OF RANITIDINE FLOATING TABLETS

International Journal of Innovative Pharmaceutical Sciences and Research

Formulation and Evaluation of Captopril. Gastroretentive Floating Drug Delivery System

INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES

Asian Journal of Research in Pharmaceutical Sciences and Biotechnology

Brahmaiah Bonthagarala *, Prasanna Kumar Desu, Sreekanth Nama, Donthiboina Sudarshan

Optimization of Perindopril Erbumine Controlled Release Floating Tablet Using 3 2 Central Composite Design

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

Indian Journal of Pharmaceutical and Biological Research (IJPBR)

The research work highlights the development and evaluation of. bioavailability of drugs. The buccal route can bypass the first-pass

Formulation and in vitro evaluation of captopril floating tablets by using natural polymers

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

Development, Characterisation and Invitro Evaluation of Buccoadhesive Bilayered Tablets for the Treatment of Hypertension

Formulation and evaluation of controlled floating tablet of Alprazolam

Research Article Pharmaceutical Sciences

INTERNATIONAL JOURNAL OF INSTITUTIONAL PHARMACY AND LIFE SCIENCES

The frictional forces in a loose powder or granules can be measured by the. A funnel was filled to the brim and the test sample was allowed to flow

Table Formula of Levodopa + Benserazide HCl capsule (batch no. 004 to 008)

FORMULATION AND EVALUATION OF ONCE-DAILY SUSTAINED RELEASE ACECLOFENAC PROSOPHIS JULIFLORA GUM MATRIX TABLETS

Process validation of clopidogrel bisulphate 75 mg tablets

International Journal of Pharma and Bio Sciences V1(2)2010 GASTRORETENTIVE DRUG DELIVERY SYSTEM OF AMOXYCILLIN: FORMULATION AND IN VITRO EVALUATION

FORMULATION AND EVALUATION OF CONTROLLED RELEASE DELIVERY OF TRAMADOL HYDROCHLORIDE USING FULL FACTORIAL DESIGN

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.7, No.1, pp ,

Formulation and Evaluation of Cefixime Trihydrate Matrix Tablets Using HPMC, Sodium CMC, Ethyl Cellulose

Formulation and Evaluation of Immediate Release Tablets of Fexofenadine Hydrochloride

International Journal of Pharma and Bio Sciences FORMULATION AND EVALUATION OF BILAYER TABLETS OF GLIMEPIRIDE AND CAPTOPRIL ABSTRACT

DESIGN AND EVALUATION OF SUSTAINED RELEASE MATRIX TABLETS OF LEVOFLOXACIN EMPLOYING ALMOND GUM

FABRICATION AND DEVELOPMENT OF ONCE-DAILY LORNOXICAM BI-LAYER MATRIX TABLETS: FOR THE EFFECTIVE TREATMENT OF ARTHRITIS

Human Journals Research Article October 2018 Vol.:13, Issue:3 All rights are reserved by Gourishyam Pasa et al.

Ramadevi K*, Mahalakshmi Y, Susheela V, Santhosh Kumar T, Chandra Sekhara Rao G,

FORMULATION AND DEVELOPMENT OF SUSTAINED RELEASE MATRIX TABLET OF NICORANDIL

Direct compression of cushion layered ethyl cellulose coated extended release pellets into rapidly disintegrating tablets

July 2013, Vol-4, Issue -3. Research Article

Investigation of a Venlafaxine HCl (37.5 mg) Extended Release Formulation Using Hypromellose (HPMC) Matrices

Formulation and Evaluation of Oro-Dispersible Tablets Containing Meclizine Hydrochloride

Ananda Kumar CH. et al. / International Journal of Biological & Pharmaceutical Research. 2012; 3(7):

Pelagia Research Library

Formulation and Evaluation of Floating Capsules of 3 rd Generation Cephalosporin

Meloxicam Loaded Floating Sustained Release Matrix Tablet

Formulation and Evaluation of Floating Microspheres of Pantoprazole Sodium

THE PHARMA INNOVATION - JOURNAL Formulation and Development of Floating and Mucoadhesive Microspheres of Clarithromycin

Singh et al Asian Journal of Pharmaceutical Research and Development. 2018; 6(5): 81-86

Research Paper. Development of Prolonged Delivery of Tramadol and Dissolution Translation by Statistical Data Treatment

PREPARATION, CHARACTERIZATION AND EVALUATION OF PGS - PVP CO-PROCESSED EXCIPIENT AS DIRECTLY COMPRESSIBLE VEHICLE IN TABLET FORMULATION

FORMULATION AND EVALUATION OF POLYMER EFFECT ON in-vitro KINETICS OF SUSTAINED RELEASE MATRIX TABLETS OF CARVEDILOL USING MODEL DEPENDENT METHODS

Asian Journal of Pharmacy and Life Science ISSN Vol.3 (1), Jan-March, Vihar moturi*, R.S.Thakur, Arshad Bashir Khan,

FORMULATION AND EVALUATION OF ENTERIC COATED SUSTAIN RELEASE TABLETS OF LANSOPRAZOLE IN A β- CYCLODEXTRIN COMPLEX TO IMPROVE THE PHOTOSTABILITY

Formulation and invitro evaluation of floating matrix tablets of mitiglinide

Preparation and evaluation of loratadine tablets by using novel polacrilin potassium

Formulation design and development of Orodispersible tablets of Levetiracetam

Dissolution Enhancement of Haloperidol Tablets using ph Modifier and Co-Solubilizer

Pelagia Research Library

Pelagia Research Library. Design fabrication and characterization of controlled released tablets of Trimetazidine di hydrochloride

FORMULATION DEVELOPMENT AND EVALUATION OF SUSTAINED RELEASE MATRIX TABLETS OF VERAPAMIL HYDROCHLORIDE

FORMULATION AND EVALUATION OF ORODISPERSIBLE TABLETS OF METOPROLOL TARTRATE WITH NATURAL AND SYNTHETIC SUPERDISINTEGRANTS

International Journal of Pharma and Bio Sciences V1(1)2010

Formulation and Evaluation of Floating Tablets of RHCL Using Natural and Synthetic Polymers

FORMULATION AND EVALUATION OF SUSTAINED RELEASE FLOATING MUCOADHESIVE TABLETS OF RANITIDINE HCl

Formulation and Evaluation of Stable Extended Release Tablets of Tapentadol Hydrochloride

Studies on Formulation and In Vitro Evaluation of Floating Matrix Tablets of Domperidone

Formulation and Evaluation of Bilayered Tablets of Cefixime trihydrate and Dicloxacillin sodium

Drug exhibiting absorption from only a. Design and Clinical Evaluation of Floating Mini Matrix Tablets of Pyridoxine Hydrochloride ORIGINAL ARTICLE

FORMULATION AND EVALUATION OF ATENOLOL ORODISPERSIBLE TABLETS BY PHASE TRANSITION TECHNOLOGY

DESIGN, DEVELOPMENT AND CHARACTERIZATION OF MOUTH DISSOLVING TABLETS OF CINNARIZINE USING SUPER-DISINTEGRANTS

Figure 4 DSC Thermogram of Paracetamol

Formulation and Evaluation of Orodispersible Tablets of Ambroxol Hydrochloride

Formulation and Evaluation of Controlled Release Floating Tablets of Venlafaxine HCl Using Almond Gum

Drug Authentication & Preformulation Study

FORMULATION DEVELOPMENT AND OPTIMIZATION OF EXTENDED RELEASE MATRIX TABLETS OF AZILSARTAN USING NATURAL AND SYNTHETIC POLYMERS

Development and Evaluation of Olmesartan Medoxomil Controlled Release Floating Microspheres using Natural Gums

Chemical Modifications and their effects on Binding/Disintegrating properties of Plectranthus esculentus starch in Chloroquine Phosphate tablets.

International Journal of Pharmacy

Volume 1 Issue 1 Page 82

Formulation and In-Vitro Evaluation of Mucoadhesive Floating Microspheres of Repaglinide Using Solvent Evaporation Method

Formulation and Evaluation of Fast Dissolving Tablets of Ondansetron Hydrochloride

Design and evaluation of entacapone controlled release trilayer matrix tablets in the management of parkinson s disease

FORMULATION AND EVALUATION OF DICLOFENAC SODIUM TABLETS BY USING MELT GRANULATION TECHNIQUE

Transcription:

Available online at www.ijtpls.com International Journal of Trends in Pharmacy and Life Sciences Vol. 2, Issue: 2, 2016: 801-812. FORMULATION AND EVALUATION OF FLOATING DRUG DELIVERY SYSTEM OF ENALAPRIL MALEATE L. V. Vamsi Krishna*, P. Jaya Chandra, T. Ragatarangini, B. Rama Lakshmi, E. Satheesh Kumar. Hindusthan Abdul Ahad & V. Sreedhar Department of Pharmaceutics, Balaji College of Pharmacy, Anantapuramu, Andhra Pradesh. E.Mail: lvvamsikrishna84@gmail.com ABSTRACT The aim of this study is to develop floating tablets of ACE inhibitor drug of Enalapril maleate which after oral administration prolongs the gastric residence time and increases bioavailability of the drug, which are predominantly absorbed. Floating drug delivery system is formulated by using excipients like Hydroxy propyl methyl cellulose (HPMC) K15, Xanthan gum, sodium alginate, poly vinyl pyrrolidine, Sodium bicarbonate, Citric acid, Microcrystalline cellulose, Magnesium stearate and Talc. The drug-polymer interactions were evaluated by using FTIR studies shows that there are no interactions. Tablets were prepared by direct compression. The prepared tablets evaluated for physical properties like weight variation, hardness, friability, floating lag time, floating duration time, swelling index, in vitro dissolution studies. 6 formulations were prepared by using various concentrations of polymers among that F1 shows that highest drug release 85.95% which contains HPMC K 15 and xanthan gum. Key words: Enalapril maleate, floating tablets, gastric residence time, floating lag time. *Corresponding Author: Mr. L. V. Vamsi Krishna Department of Pharmaceutics, Balaji college of Pharmacy, Rudrampeta bypass, Ananthapuramu-515002 Received: 06/02/2016 Revised: 20/02/2016 Accepted: 26/02/2016 INTRODUCTION Floating systems or Hydrodynamically balanced systems are low-density systems that have sufficient buoyancy to float over the gastric contents and remain buoyant in the stomach without affecting the gastric emptying rate for a prolonged period of time. While the system is floating on the gastric contents, the drug is released slowly at the desired rate from the system. After release of drug, the residual system is emptied from the stomach [1-2]. Enalapril maleate is a white to off-white crystalline powder and it s IUPAC Name :(2S)-1-[(2S)-2- [[(1S)-1-(ethoxycarbonyl)-3-phenylpropyl]amino]propanoyl]pyrrolidine-2-carboxylic acid (Z)-butenedioate. It is sparingly soluble in water, soluble in ethanol, and freely soluble in methanol. Enalapril maleate is rapidly absorbed from stomach, which makes its suitable candidate for floating drug delivery system. It is used to treat essential or renovascular hypertension and symptomatic congestive heart failure [3]. Vamsi Krishna LV et al. Int J Trends in Pharm & Life Sci. 2015: 2(2);.801-812 801

MATERIALS AND METHODS Table1: Materials used in the Formulation and Evaluation. S.NO Materials Suppliers / Manufactures 1 Enalapril maleate Gift sample from DR.REDDY S LAB 2 HPMC K15 S.D. Fine chemicals Pvt Ltd, Mumbai 3 Xanthum Gum S.D. Fine chemicals Pvt Ltd, Mumbai 4 Sodium alginate MOLY CHEMICALS., Mumbai 5 Poly vinyl pyrolidine MOLY CHEMICALS., Mumbai 6 Sodium bicarbonate NOVA FINE CHEMICALS., Hyderabad. 7 Citric acid Qualigens Fine chemicals., Mumbai 8 Microcrystalline cellulose S.D. Fine chemicals Pvt Ltd, Mumbai 9 Magnesium sterate S.D. Fine chemicals Pvt Ltd, Mumbai 10 Talc S.D. Fine chemicals Pvt Ltd, Mumbai FORMULATION DEVELOPMENT All ingredients were selected for formulation based on preformulation studies and literature Research. Brief Manufacturing procedure of Preparation of Tablets by Direct Compression Method weighed all ingredients separately API and other excipients are passed through the 60 # sieve and blended for 15 minutes. Magnesium stearate was passed through the 40 # sieve and added to the above blend and blended for 2-3 minutes. Compressed the blend into tablet by 5 mm concave punches. BB tooling on eight station rotary tablet compression machine. Table2: General composition of formulations prepared by direct compression method INGREDIENTS F1 F2 F3 F4 F5 F6 Enalapril maleate 20mg 20mg 20mg 20mg 20mg 20mg HPMC K15 5mg - 5mg - 5mg - Xanthum Gum 10mg - - 5mg - 5mg Sodium alginate - 5mg 10mg - - 10mg Poly vinyl pyrolidine - 10mg - 10mg 10mg - Sodium bicarbonate 5mg 5mg 5mg 5mg 5mg 5mg Citric acid - - 1mg 1mg 2mg 2mg Microcrystalline 8.5mg 8.5mg 7.5mg 7.5mg 6.5mg 6.5mg cellulose Magnesium sterate 0.5mg 0.5mg 0.5mg 0.5mg 0.5mg 0.5mg Talc 1mg 1mg 1mg 1mg 1mg 1mg Total wt of tablet 50mg 50mg 50mg 50mg 50mg 50mg (mg) Vamsi Krishna LV et al. Int J Trends in Pharm & Life Sci. 2015: 2(2);.801-812 802

Table3: Equipment used in the Formulation and Evaluation. S. No Instruments/ Equipment Model and Manufacturer/ supplier 1 Electronic balance AX-200, Shimadzu Corporation, Japan. 2 UV-visible spectrophotometer T60, PG Instruments., UK. 3 Hot air oven Parekh Scientifics [INDIA],Mumbai. 4 Tap density apparatus (USP) DBK Instruments, Mumbai. 5 Rotary compression machine Ceemach Minipress, Gujarat. 6 Friabilator EF-2 Friabilator, Electrolab, Mumbai. 7 Hardness tester Pfizer, Servewell Instruments and Equipments Pvt Ltd, Bangalore. 8 Dissolution apparatus DBK Instruments, Mumbai. 9 Digital ph meter 7007, Digisun Electronics, Hyderabad. 10 Vernier calipers RK Industries, Mumbai. 11 FTIR Bruker. 12 Stability Chamber Parekh Scientifics(INDIA), Mumbai. PREFORMULATION STUDIES Drug polymer compatibility [FTIR studies]: A physical mixture containing pure drug and pure polymers with ratio of 1:1was transferred into a screw capped bottle and stored at 40 2 o C RH 75% for a period of 1 month. After the study period, the samples were subjected for FTIR analysis. The study was performed on Fourier transformer infrared spectrophotometer Bruker. The samples (drug, polymers and physical mixtures) were prepared on KBrpress. The samples were scanned over wave number range of 4000 to 400 cm -1. Spectra were analyzed for drug polymer interactions and functional groups. Angle of Repose The angle of repose was measured by passing the prepared granules through a sintered glass funnel of internal diameter 27 mm on the horizontal surface. The height (h) of the heap formed was measured with a cathetometer, and the radius (r) of the cone base was also determined. The angle of repose (Ɵ) was calculated from equation [4-5]. Bulk density Angle of repose (Ɵ) = tan -1 h/r The term bulk density refers to a measure used to describe a packing of particles. It is expressed in gm/ml and was determined using a balance and measuring cylinder. Initially the weight of the measuring cylinder was tarred. Then, 4 gm presieved (40#) bulk drug were poured into the measuring cylinder using a Vamsi Krishna LV et al. Int J Trends in Pharm & Life Sci. 2015: 2(2);.801-812 803

funnel and weighed (M). Then volume of the powder (Vb) was taken. Bulk density of the granules was calculated using following formula [4-5]. Bulk density = M/Vb Tapped density Blend was tapped for a fixed number of taps. The minimum volume (Vt) occupied in the cylinder and the weight (M) of the blend was measured. The tapped density was calculated using following formula[4-5]. Tapped density = M/ Vt Compressibility (Carr s) Index : An accurate weight of granules was poured into a volumetric cylinder to occupy a volume (V 0 ) and then subjected to a standard tapping procedure onto a solid surface until a constant volume was achieved (V f ). The Carr s index was calculated using equation[4-5]. Compressiblity index = V 0 - V f *100 V 0 Hausner s ratio = tapped density / bulk density. EVALUATION OF TABLETS Weight variation test Weight variation test was carried out as per IP. Twenty tablets were randomly selected and individually weighed. The average weight and standard deviation was calculated [4-5]. Percentage deviation = [X-X*/ X] 100 X -Actual weight of the tablet X -Average weight of the tablet Hardness: The tablet hardness, which is the force required to break a tablet in a diametric compression force. The hardness tester used in the study was Monsanto hardness tester, which applies force to the tablet diametrically with the help of an inbuilt spring. It is expressed in Kg / cm 2 [4-5]. Friability: Friability of the tablets was determined using Roche friability (Electrolab, Mumbai). This device subjects the tablets to the combined effect of abrasions and shock in a plastic chamber revolving at 25 rpm and dropping the tablets at a height of 6 inches in each revolution. Preweighed sample of tablets was placed in the friabilator and were subjected to 100 revolutions. Tablets were dedusted using a soft muslin cloth and reweighed. The friability (f) is given by the formula: f = (1- W 0 / W) 100 Where, W 0 is weight of the tablets before the test and W is the weight of the tablet after the test [4-5]. Swelling index The studies were carried out gravimetrically. Swelling media used for these studies were distilled water and simulated gastric fluid (ph 1.2). The prepared tablets were introduced into the swelling media. At Vamsi Krishna LV et al. Int J Trends in Pharm & Life Sci. 2015: 2(2);.801-812 804

predetermined time intervals the tablets were removed from medium, excess water was blotted with tissue paper and immediately weighed. This procedure was repeated until the tablet reached constant weight. The swelling index was calculated using following formula W b W a Swelling Index = ---------------- x 100 Wa Where, W a =Weight of dry tablet, W b = Weight of swollen tablet [4-5]. Floating Properties of Tablets: The In vitro buoyancy was determined by floating lag time. The tablets were placed in a 100 ml glass beaker containing 0.1 N HCl. 1. Floating Lag Time: The time required for the tablet to rise to the surface of the medium and float was determined as floating lag time. 2. Floating Duration Time: The time for which the tablet remained floating on the surface of medium was determined as floating duration time[4-5]. In vitro dissolution Methodology: In-vitro drug release study was performed at 37±0.5 C using eight station USP type-ii apparatus with paddle rotating at 50 rpm. The drug release study was carried out in 0.1N HCL by taking about 900ml of the dissolution medium. The drug release study was performed in 0.1N HCL to demonstrate the availability of Enalapril maleate. About 5 ml of sample was withdrawn at specified time intervals from the dissolution medium and replaced with equal volume of fresh medium. Samples were filtered through whattmann filter paper and analyzed using UV spectrophotometer (T60, PG Instruments) at 210.0 nm [4-5]. RESULTS AND DISCUSSION Table 4: Observation for physical compatibility test. S. No Name of the Excipient Category Ratio API: Excipient At 40 2 0 C / 75%RH (30 days) 1. Enalapril maleate-api Drug 1 NCC 2. API+HPMC K15 Polymer 1 : 1 NCC 3. API+ Xanthan agum Polymer 1 : 1 NCC 4. API+ Sodium alginate Polymer 1 : 1 NCC 5. API+PVP Binder 1 : 1 NCC 6. API+ Sodium bicarbonate Gas generating agent 1 : 1 NCC Vamsi Krishna LV et al. Int J Trends in Pharm & Life Sci. 2015: 2(2);.801-812 805

7. API+ Citric acid Gas generating agent 1 : 1 NCC 8. API+ Magnesium sterate Lubricant 1 : 1 NCC 9. API +Talc Glidant 1 : 1 NCC 10. API + Micro crystalline Cellulose Diluent and Disintegrant 1 : 1 NCC Fig. 1: FTIR of enalapril maleate pure drug Fig. 2: FTIR of enalapril maleate +HPMC K15 Vamsi Krishna LV et al. Int J Trends in Pharm & Life Sci. 2015: 2(2);.801-812 806

Fig. 3: FTIR of enalapril maleate +xanthan gum Fig. 4: FTIR of enalapril maleate +sodium aliginate Vamsi Krishna LV et al. Int J Trends in Pharm & Life Sci. 2015: 2(2);.801-812 807

Fig. 5: FTIR of enalapril maleate + PVP Fig. 6: FTIR of enalapril maleate + sodium bicarbonate Vamsi Krishna LV et al. Int J Trends in Pharm & Life Sci. 2015: 2(2);.801-812 808

Absorbance RESEARCH ARTICLE e-issn: 2454-7867 Table 5: Calibration curve for Enalapril maleate Concentration Absorbance (mcg/ml) 0 0 1 0.087 2 0.102 3 0.122 4 0.145 5 0.156 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 Calibration curve of Enalapril Maleate y = 0.018x + 0.0682 R² = 0.9924 0 1 2 3 4 5 6 Concnetration (μg/ml) Fig. 7: Calibration curve for Enalapril maleate Table 6: Determination flow properties of powder. Code Bulk density g/cm 3 Tapped Angle of Carr s Hausner s density g/cm 3 repose (Ɵ) index % ratio F1 0.44 ±0.01 0.48 ±0.02 26.83 ±0.8 8.33±1 1.09 ±0.02 F2 0.32 ±0.02 0.40 ±0.01 30.2 ±1.01 20 ±1.2 1.25 ±0.01 F3 0.34 ±0.01 0.42 ±0.01 32.88 ±1 19.04±1 1.23 ±0.01 F4 0.45 ±0.02 0.5 ±0.02 17.80 ±1.1 10±1.01 1.11 ±0.03 F5 0.40 ±0.02 0.50 ±0.03 18.2 ±0.8 20 ±0.8 1.25 ±0.02 F6 0.38 ±0.03 0.48 ±0.03 32.56 ±1 20 ±1.2 1.26 ±0.01 Pure Drug 0.41 ±0.02 0.55 ± 0.01 26.19 ±0.03 23.54 ±0.01 1.34 ±0.01 The bulk density, tapped density, compressibility index and Hausner s Ratio were observed reveals that all formulations blend has excellent flow characteristics and flow rate than the raw material. The angle of repose was found to be in the range of 17.80 to 32.88, which indicate excellent flow properties of the powder mixture. The Carr s index was found to be in the range of 10 to 20, which indicates excellent to good compressibility of the powder mixture. Hausner s ratio was found in the range of 1.09 to 1.26, which indicates good flow properties as reported in table. Vamsi Krishna LV et al. Int J Trends in Pharm & Life Sci. 2015: 2(2);.801-812 809

Table 7: Floating and Swelling Properties Floating Lag Time Floating Time (hrs) Swelling index Formulation (sec) (%) F1 1.16 min 8 120% F2 3.25 min 6 70% F3 1.10 min 7.30 110% F4 3.11 min 4 78% F5 4.00 min 8 99% F6 5.15 min 4 89% Fig. 8: floating of tablets Vamsi Krishna LV et al. Int J Trends in Pharm & Life Sci. 2015: 2(2);.801-812 810

% Drug release RESEARCH ARTICLE e-issn: 2454-7867 Table 8: In-Vitro drug Release data of all the formulations [F1-F6] Time (hrs) F1 F2 F3 F4 F5 F6 0 0 0 0 0 0 0 1 21.24± 1.2 20.74 ±0.8 23.49± 1.1 16.2 ±1.2 23.49± 1 48.45±1.1 2 23.49 ±1.6 33.21 ±0.6 36 ±0.98 26.45 ±1.1 34.74 ±0.9 80.7±1.1 3 38.97 ±1.4 41.71± 1.1 45.7± 0.87 32.95 ±1 41.98 ±1 85.95±1.2 6 63 ±1.3 60.75 ±0.9 67.5 ±0.8 49.7 ±1.2 63.7 ±0.89 86.2±1.1 7 75.95±1.2 73.45 ±1 78.2 ±0.7 64.2 ±1 78.75 ±0.9 86.2±0.098 8 85.95± 1.2 75.95 ±0.6 83.7 ±0.65 82.95±1.1 80.2 ±1 86.2±0.098 100 90 80 70 60 50 40 30 20 10 F1 F2 F3 F4 F5 F6 0 0 2 4 6 8 10 Time (Hrs) Fig. 9: In-vitro drug release data of all the formulations [F1-F6] SUMMARY Systematic studies were conducted by using four different polymers in different concentrations to prepare Enalapril maleate floating tablets by direct compression method. All the prepared systems were evaluated for the different properties. By performing compatibility studies by FTIR spectroscopy, no interaction was confirmed. Formulated tablets gave satisfactory results for various evaluation parameters like tablet hardness, friability, weight variation, Thickness. Vamsi Krishna LV et al. Int J Trends in Pharm & Life Sci. 2015: 2(2);.801-812 811

Floating lag time was found to be in the range of 1.10 min to 5.15 min, F3 was found to be 1.10 min, F1 was found to be 1.16 min. Floating duration time was found to be in the range of 4 to 8 hrs,f1 and f5 was found to be 8 hrs and F3 was found to be 7.30 hrs In vitro drug release was carried out by using 0.1 N Hcl. Formulation F1 containing HPMC K15 and Xanthane gum showed drug release of 85.95% up to 8 hours, but the drug release from the formulation F2 containing sodium alginate and Poly vinyl Pyrolidine shows 75.95%.in 8 hours Formulation F3 containing HPMC K15 and Sodium alginate showed 83.70% but in formulation F4 containing Xanthane gum and polyvinyl pyrolidine, was observed that the drug release was 82.95% in 8 hours. Formulation F5 containing HPMC K15 and polyvinyl pyrolidine showed drug release of 80.20% but the formulation F6 containing xanthane gum and sodium alginate 85.95% within 4 hours. 4.2 CONCLUSION Floating drug delivery system of Enalapril maleate is prepared to increase the bioavailability of the drug by direct compression method using polymers like Hydroxy propyl methyl cellulose (HPMC) K15, Xanthan gum, sodium alginate, poly vinyl pyrrolidine. From the results obtained it can be concluded that among all the formulations with HPMC K15 and Xanthan gum, showed control release. Hence, Floating drug delivery system of Enalapril maleate is prepared to increase the bioavailability of the drug and prolonged therapeutic effect for the better management of used to treat essential or Renovascular hypertension and symptomatic congestive heart failure. ACKNOWLEDGEMENTS The authors are grateful to Management and Principal Dr. Hindustan Abdul Ahad for providing all the necessary facilities to complete this project work. REFERENCES 1. Kawashima Y, Niwa H, Takeuchi H, Hino T, Itoh Y. Hollow microspheres for use as a floating controlled drug dlivery system in the stomach. Journal of Pharmaceutical Sciences. 1992: 81; 135-40. 2. Garg R, Gupta. Progress in controlled gastroretentive delivery systems, review article. Tropoical Journal Pharmaceutical research. 2008:7(3); 1055-1066. 3. www.drugbank/drugs DB00584 browsed on 03 rd october 2015. 4. Natasha S, Dilip A, Gupta MK and Mahaveer PK. A Comprehensive review on Floating Drug delivery system- Review. International Journal Research in Pharmaceutical and Biomedical Sciences. 2011: 428-441. 5. Anil Kumar AP, Felix JV, Vishwanath BA. Formulation and evaluation of Bilayer Floating tablets of Enalapril maleate. International Journal of Pharma. 2014:1-12. Vamsi Krishna LV et al. Int J Trends in Pharm & Life Sci. 2015: 2(2);.801-812 812