Properties of Concrete Incorporating Recycled Post-Consumer Environmental Wastes

Similar documents
International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October ISSN

D. Maharaj & A. Mwasha University of the West Indies, Trinidad. Abstract

Study and Analysis of High Performance Concrete and Estimation of Concrete Strength

International Journal of Engineering Science Invention Research & Development; Vol. I Issue XI May e-issn:

Study On Properties Of High Strength Silica Fume Concrete Withpolypropylene Fibre

Department of Built and Natural Environment, Caledonian Collage of Engineering, Sultanate of Oman. * Corresponding author:

Saw Dust Ash as Partial Replacement for Cement in the Production of Sandcrete Hollow Blocks

Mechanical properties of high strength mortar for repair works

EFFECT ON MECHANICAL PROPERTIES OF CONCRETE USING NYLON FIBERS

CHAPTER 3 MATERIAL PROPERTIES AND MIX PROPORTIONS

Experimental Study on Partial Replacement of cement by Fly Ash with Glass Fiber Reinforcement

A Case Study on Strength Properties of Partially Replaced Recycled Aggregate and Steel Fibers to a Nominal Concrete

Experimental Study on Partial Replacement of Cement by Hyposludge in Concrete

Study of Properties of Concrete using GGBS and Recycled Concrete Aggregates

Effect of Steam Curing on the Strength of Concrete by Using Mineral Admixtures

CHAPTER 6 POLYPROPYLENE FIBRE REINFORCED GEOPOLYMER CONCRETE COMPOSITES

STRENGTH AND DURABILITY PROPERTIES OF HIGH PERFORMANCE CONCRETE INCORPORATING SILICA FUME

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October ISSN

Experimental Investigation of Concrete with Glass Powder as Partial Replacement of Cement

Experimental Investigation of Partial Replacement of Metakaolin, Silica Fume and M-Sand based Concrete

Fundamentals of Concrete

Properties of Concrete Containing Recycled Fine Aggregate and fly ash

A Study on Preparing Of High Performance Concrete Using Silica Fume and Fly Ash

Impact of Fly Ash and Silpozz as Alternative Cementitious Material in Crusher Dust Concrete [1]

AN EXPERIMENTAL INVESTIGATION OF PARTIAL REPLACEMENT OF CEMENT USING MICRO SILICA AND FLY ASH IN PRODUCTION OF COCONUT SHELL CONCRETE

STRENGTH PARAMETERS OF CONCRETE CONTAINING RECYCLED AGGREGATE

Application and properties of Fiber Reinforced Concrete

STRENGTH CHARACTERISTICS OF CONCRETE WITH WASHED BOTTOM ASH PARTIALLY REPLACED FOR FINE AGGREGATE

EXPERIMENTAL INVESTIGATION ON MECHANICAL PROPERTIES OF POLYPROPYLENE FIBRE INCORPORATED CONCRETE WITH SILICA FUME

An Experimental Study on Concrete by Partial Replacement of Cement by Silica Fume and With Steel Fibers

Fibrous Triple Blended Concrete Composites Study of Strength Properties

Study of the Compressive Strength Behaviour of Steel Fibre Reinforced Concrete Using Various Percentage of Steel Fibre

Experimental Study on Rice Husk Ash in Concrete by Partial Replacement

Partial replacement of cement by plant solid waste ash in concrete Production

An Experimental Study on Partial Replacement of Cement by Ggbs and Natural Sand by Quarry Sand in Concrete

Mechanical Properties of Concrete with Partial Replacement of Portland Cement by Clay Brick Powder

Experimental Study of High Performance Concrete Using Portland Pozzolana Cement with Silica Fume and Replacing Natural River Sand with Quarry Dust

Study of Mechanical and Durability Properties of High Performance Self Compacting Concrete with Varying Proportion of Alccofine and Fly Ash

Comparative Study on the Strength and Durability Properties of M 50 Grade Self Compacting Concrete with Micro Concrete

Study of High Performance Concrete with Silica Fume and Glass Fibre

The Influence of Polypropylene Fiber and Silica Fume on Compressive and Tensile Strengths of Concrete

Effect on Fiber Reinforced Concrete Using Silica Fume and Quarry Dust as Partial Replacement of Cement and Sand on High Performance Concrete

Journal of Engineering Sciences, Assiut University, Vol. 34, No. 4, pp , July 2006

Study on Strength Properties of Self Compacting Concrete using GGBS and Lime stone powder as Mineral Admixtures

STUDY OF MECHANICAL PROPERTIES OF CONCRETE USING CEMENTITIOUS MATERIALS

STUDY ON MECHANICAL PROPERTIES OF CONCRETE USING SILICA FUME AND QUARTZ SAND AS REPLACEMENTS

Durability Studies on Steel Fiber Reinforced Concrete

Strength Properties of Metakaolin Admixed Concrete

Effect of Calcium Nitrate on the Pozzolanic Properties of High Early Strength Concrete

EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY CHARACTERISTICS OF HIGH PERFORMANCE CONCRETE USING GGBS AND MSAND

International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January ISSN

Research Article The Effect of Accelerators and Mix Constituents on the High Early Strength Concrete Properties

Effect of Palm Kernel Shell (PKS) as Aggregate in Concrete with Varying Water Cement Ratio

Physical Properties of Steel Fiber Reinforced Cement Composites Made with Fly Ash

A. HIGH-STRENGTH CONCRETE (HSC)

SUITABILITY OF SINTERED FLY ASH LIGHTWEIGHT AGGREGATE IN STRUCTURAL CONCRETE

South Asian Journal of Engineering and Technology Vol.3, No.7 (2017)

IS : Dr. S. RAVIRAJ

I. INTRODUCTION. Keywords: Conventional Aggregate Concrete, Fly Ash, Silica Fume

A Study on Mechanical Properties of Sisal Fiber Reinforced Concrete

Chapter VI Mix Design of Concrete

Comparison of Properties of Fresh and Hardened Concrete Containing Finely Ground Glass Powder, Fly Ash, or Silica Fume

Index Terms- Copper Slag (CS), Silica Fume (SF), Physical Properties, Compressive Strength, Flexural Strength.

Evaluation of Performance of Hybrid Fibre Reinforced Concrete (HFRC) for M25 Grade

EFFECT OF PARTIAL REPLACEMENT OF CEMENT BY SILICA FUMES ON MECHANICAL PROPERTIES OF CONCRETE

Nelson Testing Laboratories

Pennoni Associates, Inc.

An Investigation On Strength Properties Of Glass Fiber Reinforced Concrete

STRENGTH AND RHEOLOGICAL PROPERTIES OF FIBER REINFORCED SELF COMPACTING CONCRETE WITH ALCCOFINE

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN

MECHANICAL PROPERTIES OF FIBER REINFORCED CONCRETE BY PARTIAL REPLACEMENT OF FINE AGGREGATE WITH SEA SHELLS

CONSTRUCTION AND DEMOLISION WASTE AS A REPLACEMENT OF FINE AGGREGATE IN CONCRETE

Experimental Investigation on Natural Fiber Concrete with Palm Oil Tree Fiber

EXPERIMENTAL STUDY ON REPLACEMENT OF FINE AGGREGATE BY QUARRY DUST IN CONCRETE

INVESTIGATION INTO THE USE OF MICROSILICA AND FLY ASH IN SELF COMPACTING CONCRETE

TACAMP 2014 CONCRETE. Presented by Rick Wheeler

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 2, March 2014

ALMAZENI. Civil Engineering Department, University of Basrah /Iraq / Basrah

Mechanical Properties of Concrete with Admixed Recycled Aggregate

Study on Strength and Durability of Recycled Aggregate Using Glass Powder

Effect of Palm Oil Fuel Ash (POFA) on Strength Properties of Concrete

STRENGTH PERFORMANCE OF CONCRETE USING BOTTOM ASH AS FINE AGGREGATE

EXPERIMENTAL INVESTIGATION ON PARTIAL REPLACEMENT OF FINE AGGREGATE WITH SABBATH (CUDDAPAH STONE) STONE

INVESTIGATIONS ON THE TENSILE STRENGTH OF HIGH PERFORMANCE CONCRETE INCORPORATING SILICA FUME

Experimental Investigation on The Effect Of M-Sand In High Performance Concrete

ABSTRACT Keywords: 1. INTRODUCTION 1.1 Previous work on polypropylene and alkali resistance glass fibers reinforced composites

EFFECT OF THE LIME CONTENT IN MARBLE POWDER FOR PRODUCING HIGH STRENGTH CONCRETE

STRENGTH PERFORMANCE AND BEHAVIOR OF CONCRETE CONTAINING INDUSTRIAL WASTES AS SUPPLEMENTARY CEMENTITIOUS MATERIAL (SCM)

FIBER ADDITION AND ITS EFFECT ON CONCRETE STRENGTH

An Investigation of Steel Fiber Reinforced Concrete with Fly Ash

Evaluation of Mechanical Properties of Concrete Containing Silica Fume from a Local Source in Pakistan

Characterization and Application of Rice Husk Ash As Pozzolanic Material In Concrete

High Strength Concrete With Pond-Ash as Partially Replaced by Fine Aggregate and Fine Fly-Ash, Alccofine as Cement

A Study on Strength of Concrete by Partial Replacement of Cement with Metakaolin and Fine Aggregate with Stone Dust

Experimental Study of RHA Concrete

EXPERIMENTAL INVESTIGATION OF WASTE FOUNDRY SAND ON STRENGTH PROPERTIES OF PLAIN CONCRETE AND COMPARISON WITH BINARY BLENDED CONCRETE

An Experimental Investigation on Performance of Self Compacting Concrete with Partial Replacement of Cement by using Silica Fume and Rice Husk Ash

The Effect of Local Available Materials on the Properties of Concrete

Performance of High Strength High Performance Steel Fiber Reinforced Concrete for use in Seismic Resistant Structures

Experimental Study On Rice Husk As Fine Aggregates In Concrete

Transcription:

International Journal of Concrete Structures and Materials Vol.8, No.3, pp.251 258, September 2014 DOI 10.1007/s40069-013-0065-9 ISSN 1976-0485 / eissn 2234-1315 Properties of Concrete Incorporating Recycled Post-Consumer Environmental Wastes Ahmed Eisa* (Received July 26, 2013, Accepted December 24, 2013) Abstract: The use of sustainable technologies such as supplementary cementitious materials, and/or recycled post-consumer environmental wastes is widely used in concrete industry in the last decade. This paper presents the results of a laboratory investigation of normal concrete containing sustainable technologies. Twenty one mixtures (21) were prepared with different combinations of silica fume, fly ash, olive s seed ash, and corncob ash (CCA). Fresh and hardened concrete properties were measured, as expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Based on the results obtained in this study and the analyses conducted, the following observations were drawn: replacing the cement by olive s seed ash or CCA has a significant effect on fresh concrete workability. Olive s seed ash increased the slump by more than 200 % compared to the control mixtures. The compressive strength of mixtures containing olive s seed ash showed by 45 and 75 % decrease compared to the control mixtures. The 28 days compressive strength of mixtures produced by CCA of 10 % replacement decreased by 41 % compared to the control mixture. Keywords: normal concrete, silica fume, fly ash, olive s seed ash, corncob ash. 1. Introduction Few and very limited papers found in the literature use the olive s seed ash and corncob ash (CCA) in conventional concrete industry. The following section summarizes the upto-date literature focusing on the behavior of concrete incorporating such recycled post-consumer environmental wastes. The main goal and challenge for the coming century, is to design a smaller and shallower reinforced concrete sections and for taking into consideration the economic aspects. Nowadays, the material engineers are investigating new concrete mixtures with different admixtures to reach the outmost performance and durability for severe environmental conditions. The waste-by-products and recycled materials are under a big push to be added to the conventional concrete ingredients and to replace cement content, keeping the strength and durability close to the desired specifications. The workability is considered an important factor when concrete mixtures are designed; especially in some applications where members are heavily reinforced. Thus, to lessen any difficulties associated with concrete placement in congested reinforced concrete members, concrete mixtures should be designed to workable. The Structural Engineering Department, Zagazig University, Zagazig 44519, Egypt. *Corresponding Author; E-mail: ahmedeisa@zu.edu.eg Copyright The Author(s) 2014. This article is published with open access at Springerlink.com sustainability of concrete members also is strongly related to global warming, which is a major problem for today s infrastructures. One of the most sustainable tools is the supplementary cementitious and recycled materials (SCMs) to be buried in concrete mixtures as attractive options to achieve green concrete. The mechanical properties of kenaf fiber reinforced concrete (KFRC) are studied by Elsaid et al. (2011). The study showed the findings of an experimental research program that was conducted to study the mechanical properties of a natural fiber reinforced concrete (FRC), which is produced using the bast fibers of the kenaf plant. The fiber volume contents were taken 1.2 and 2.4 %. The compressive strength, modulus of elasticity, splitting tensile strength and modulus of rupture of KFRC specimens are measured and compared to the properties of plain concrete control specimens. The experimental results indicate that the mechanical properties of KFRC are comparable to those of plain concrete control specimens, particularly when accounting for the effect of the increased w/c ratio required producing workable KFRC. Further, more distributed cracking was found and higher toughness than plain concrete. In general KFRC specimens exhibited more ductile behavior with greater energy absorption and more well distributed cracking patterns, which is typical for KFRC. Coconut fibers are one of the highest toughness natural fibers. The mechanical and dynamic properties of coconut fiber reinforced concrete (CFRC) members are performed byalietal.(2012). The damping ratio and fundamental frequency of simply supported CFRC beams are determined experimentally as well. The influence of 1, 2, 3 and 251

5 % fiber contents by mass of cement and fiber lengths of 2.5, 5 and 7.5 cm is investigated and all the results were compared to plain normal concrete. Damping of CFRC beams increases while their fundamental frequency decreases with structural damage, Ali et al. (2012). CFRC with higher fiber content has a higher damping but lower dynamic and static modulus of elasticity. It is found that CFRC with a fiber length of 5 cm and a fiber content of 5 % has the best properties to be used in normal low cost concrete structures. The mechanical properties of four types of date palm surface fibers on reinforced concrete were investigated by Kriker et al. (2005). The volume fraction and the length of fibers reinforcement were 2 3 % and 15 60 mm respectively. Increasing the length and percentage of fiber-reinforcement in both water and hot dry curing, was found to improve the post-crack flexural strength and the toughness coefficients, but decreased the first crack and the compressive strengths. In hot-dry climate a decrease of first crack strength with ageing was observed for each concrete type. Water curing decreased the global degree of the voids and cracks with time for each concrete type, but increased it in hot-dry climate. Corncob is the waste-by-product obtained from corn, which is considered one of the most important cereal crops in Egypt. According to food and agriculture organization (FAO) data, 589 million tons of maize was produced worldwide in the year 2000. The United States was the largest maize producer having 43 % of world production. The effect of using CCA (pozzolanic waste-by-product of corncobs) as a cost-effective additive in blended cement is conducted by Adesanya (1996). The effects of the blended cement in various concrete mixtures were analyzed. The results show that replacing 20 through 50 % respectively of ordinary portland cement by weight with CCA produces stabilized clay and laterite exhibiting greater strength. The results also indicate that replacing 20 % of cement with CCA in conventional concrete mixtures improves water absorption and durability. It is also found that there is no significant difference between the strength of concrete produced with and 20 % CCA as a partial cement replacement. Adesanya and Raheem (2009a) attempted to convert wasteby-product into useful material for the construction industry, the study considered the use of CCA as a pozzolan in cement production. The chemical composition of CCA was investigated and used for replacing 0, 2, 4, 6, 8, 10, 15, 20 and 25 % Replacement material Table 1 s matrix. Cubes (150 9 150 9 150) mm No. of specimens Cylinders (200 9 400) mm % of cement replaced M1 Control mixture 6 3 0 M2 Silica fume 6 3 5 M3 Silica fume 6 3 10 M4 Silica fume 6 3 15 M5 Silica fume 6 3 20 M6 Silica fume 6 3 30 M7 Olive s seed ash 6 3 5 M8 Olive s seed ash 6 3 10 M9 Olive s seed ash 6 3 15 M10 Olive s seed ash 6 3 20 M11 Olive s seed ash 6 3 30 M12 Corncob ash 6 3 5 M13 Corncob ash 6 3 10 M14 Corncob ash 6 3 15 M15 Corncob ash 6 3 20 M16 Corncob ash 6 3 30 M17 Fly ash 6 3 5 M18 Fly ash 6 3 10 M19 Fly ash 6 3 15 M20 Fly ash 6 3 20 M21 Fly ash 6 3 30 252 International Journal of Concrete Structures and Materials (Vol.8, No.3, September 2014)

% Passing 100 90 Dolomite Sand 80 70 60 50 40 30 20 10 0 1 0.1 1 10 100 Sieve Size (mm) Fig. 1 Coarse and fine aggregates gradation. by weight of ordinary portland cement clinker with CCA. The 0 % cement replacement was used as a control mixture. The results showed that CCA is a suitable material for use as a pozzolan as it satisfied the minimum requirement of combined SiO 2 and Al 2 O 3 of more than 70 %, which means a good pozzolan to manufacturer blended cement. The blended cements produced also satisfied both NIS 439 (2000) and ASTM C 150 requirements especially at lower levels (\15 %) of CCA percentage replacement. Based on the test results, it was concluded that CCA could be suitably used in blended cement production. Adesanya and Raheem (2009b, 2010), performed an investigation on the workability, Durability, and compressive strength characteristics of CCA blended cement concrete. The study showed that only up to 8 % CCA substitution is adequate where the blended cement is to be used for structural concrete. The resistance of the mortar cubes to chemical attack was improved as the addition of CCA up to 15 % replacement level, and caused a decrease in permeability and reduction in weight loss due to reaction of the specimens with HCL and H 2 SO 4 acid water. The improvement was up to about 50 % for HCL and 40 % for H 2 SO 4 acid water (Jorge et al. 2012). 2. Objectives and Tasks The objective of this study is to investigate the effect of sustainable technologies, silica fume, fly ash, olive s seed ash, and CCA, on fresh and hardened properties of conventional concrete. To achieve this objective the following two main tasks were performed: 1. preparations Table 1 summarizes the mixture proportions matrix used in this study. A total of 21 Table 2 Compositions and proportion of all mixtures. Total CMs (kg/m 3 ) Cementitious materials (CMs) (kg/m 3 ) Cement Silica fume Olive s seed ash Corn cob ash Fly ash M1 400 400 0 0 0 0 M2 400 380 20 0 0 0 M3 400 360 40 0 0 0 M4 400 340 60 0 0 0 M5 400 320 80 0 0 0 M6 400 280 120 0 0 0 M7 400 380 0 20 0 0 M8 400 360 0 40 0 0 M9 400 340 0 60 0 0 M10 400 320 0 80 0 0 M11 400 280 0 120 0 0 M12 400 380 0 0 20 0 M13 400 360 0 0 40 0 M14 400 340 0 0 60 0 M15 400 320 0 0 80 0 M16 400 280 0 0 120 0 M17 400 380 0 0 0 20 M18 400 360 0 0 0 40 M19 400 340 0 0 0 60 M20 400 320 0 0 0 80 M21 400 280 0 0 0 120 International Journal of Concrete Structures and Materials (Vol.8, No.3, September 2014) 253

Table 3 Mechanical and fresh properties of all mixtures. s Compressive strength, F cu (kg/cm 2 ) Tensile strength, Slump (cm) 7 days 28 days F t (kg/cm 2 ) M1 217.6 312.8 20.3 7.3 M2 228.1 309.8 25.3 8.0 M3 213.0 285.6 44.3 7.6 M4 164.7 300.8 17.9 6.4 M5 205.3 309.8 16.9 5.8 M6 178.7 264.4 15.0 5.3 M7 131.3 225.6 8.9 9.0 M8 106.3 189.3 15.0 16.0 M9 92.3 175.5 3.9 16.0 M10 58.1 95.2 8.9 17.5 M11 47.1 77.1 2.9 19.0 M12 99.5 200.6 8.5 12.0 M13 82.4 144.8 5.7 14.0 M14 55.6 98.6 25.6 7.4 M15 35.0 69.8 23.1 8.0 M16 23.7 53.7 24.2 9.0 M17 250.3 352.4 19.5 9.6 M18 178.4 260.6 12.9 1 M19 155.0 25 22.0 8.8 M20 147.0 23 15.0 9.5 M21 115.0 223.0 15.0 1 mixtures were prepared, and were selected such that a comparison of the effect of silica fume, fly ash, olive s seed ash, and the CCA on can be studied. 2. Laboratory testing The experimental program in this study included measuring the concrete workability through the standard slump test as a measure of fresh property. The hardened properties were studied by performing the standard compressive strength test at 7 and 28 days, and split tensile strength at 28 days. 3. Experimental Program 3.1 Materials and Proportions Crushed dolomite aggregate with nominal maximum aggregate size of 20 mm and well-graded local sand were used as coarse and fine aggregates (FAs), respectively. The aggregate gradation is performed according to ASTM C136 and illustrated in Fig. 1. The relative specific gravity and compacted density at saturated surface dry condition of the coarse aggregate (CA) were 2.64 and 1.7, respectively, whereas FA had a relative specific gravity of 2.73, and compacted density of 1.55, and a fineness modulus of 3.07. Type I Portland cement having a specific gravity of 3.15, initial and final setting times are 3.14, and 143 min, respectively and conforming to ASTM C150 requirements. Different binders incorporating ASTM Type I cement and SCMs including class C fly ash, and silica fume (SF) were also used in all mixtures other than the controls. All SCMs, including fly ash and silica fume, conform to ASTM C618 and ASTM C1240 standards, respectively. The fly ash and SF specific gravity values of 2.6, and 2.2, respectively. Table 2 shows all proportions of all concrete mixtures. The water-to-cement ratio of 0.50 was kept constant for all mixtures. The coarse and FA weights were also kept constant, and taken as 1070 and 710 kg/m 3 respectively. The corncob was produced by grinding dried corncobs to about 6.00 mm diameter to enhance adequate combustion and to reduce the carbon content which affects the pozzolanic properties. The ground corncobs were burnt in open air using a local furnace. A measured quantity of corncob was collected, sprinkled with a kerosene fuel and set on fire. The temperature of the corncob was measured during burning as it turned from cob to burn and to powder to with 254 International Journal of Concrete Structures and Materials (Vol.8, No.3, September 2014)

20 18 16 14 12 10 8 6 4 2 0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 Slump (cm) (a) s (b) 3.2 Testing Procedure of all s Testing was carried out in two different phases. The first phase consisted of evaluating the properties of all fresh concrete mixtures to ensure that the concrete is workable, they were assessed using the standard slump test (ASTM C143). In the second phase, the compressive and split tensile strengths of all concrete mixtures were measured at various ages (7 and 28 days) to investigate the effect of using SCMs on the hardened concrete properties. The compressive strength was conducted on (150 9 150 9 150) mm cubes (Egyptian code standards) and cylindrical specimens of 200 mm diameter and 400 mm height were used to perform the split tension test. Normalized Slump 3.00 2.50 4. Test Results and Discussion 2.00 1.50 1.00 0.50 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 0 s Fig. 2 a Slump for all mixtures. b Normalized slump for all mixtures. a measured temperature of 600 C in about 10 h. Olive s seeds were also prepared by washing at first then drying by placing the seeds in the oven for 24 h at temperature of 40 C. The second stage was grinding the dried seeds on three stages till it reaches the ash sizes. The compacted bulk and loose densities were measured to be 735 and 705 kg/ m3, respectively. The specific gravity was measured and taken as 1.25. 4.1 Freshly Mixed Concrete The slump test was performed for all mixtures and the results are summarized in Table 3. It is clear that mixture (M11), which has 30 % of cement, replaced by olive s seed ash experienced the largest slump value. Figure 2a shows the effect of different SCMs on the slump values for all mixtures. The least slump value is found to be for mixture (M16), which has 30 % of cement, was replaced by CCA. It is also noticed that replacing the cement by olive s seed ash and CCA has a significant effect on concrete workability. It is shown that the olive s seed ash increased the slump by more than 200 % compared to the control mixture (M1). The effect of replacing cement by fly ash is much less than other cementitious materials. Figure 2b shows the normalized slump of all mixtures compared to the control case, and it shows that as the SF content increases, the slum decreases. The results showed that the concrete slump increased by an average of 38 % as the CCA content increased from 5 to Fig. 3 Slump for mixtures with different cement replacement. International Journal of Concrete Structures and Materials (Vol.8, No.3, September 2014) 255

Fig. 4 Concrete cubes preparation, curing, and under compression testing. 30 %, indicating that concrete becomes more workable, meaning that more water is required to make the mixtures more workable. Figure 3 shows the slump test performed for some mixtures. 5. Mechanical Properties of Hardened Concrete 5.1 Effect of SCMs on the Compressive Strength The preparation of concrete cubes, curing and the compressive test of one of the samples are shown in Fig. 4. Figure 5 summarizes the effect of the inclusion of silica fume, olive s seed ash, CCA, and fly ash in all mixtures. The addition of SF with 5, 10, 15, 20 and 30 % in mixtures M2 through M6 has significant effect on the 7 and 28 days compressive strength. The 7 days compressive strength of the mixture that has 10 % SF (M3) was 97.9 % of the control mixture strength (M1), while the 28 days strength was 91.3 % of the control mixture strength respectively. The effect of olive s seed ash on the compressive strength is shown in Fig. 5b. The olive s seed ash replaced the cement content by 5, 10, 15, 20 and 30 %, respectively. The compressive strength of the mixture that has 5 % olive s seeds (M7) decreased by 39.7 and 27.9 % at 7 and 28 days compared to the control mixtures, respectively. It is concluded that the chemical composition of olive s seed ash must be investigated to address its effect on the hydration process. The CCA effect on the compressive strength is investigated by replacing the cement content by 5, 10, 15, 20, and 30 %. The 30 % replacing decreased significantly the compressive strength compared to the control mixture (M1). The CCA will be considered an emerging waste-by- product material in the near future, but it is recommended to limit of replacement to be 15 % as a result of the present study. The replacement of cement by 5 and 15 % of CCA (M12 and M14) decreased the 28 days compressive strength by 35.9 and 68.5 % compared to the control mixture as shown in Fig. 5c. Figure 5d shows the effect of fly ash replacement on the compressive strength at 7 and 28 days. The replacement ratios were 5, 10, 15, 20 and 30 % from the cement weight. The compressive strength increased by 13 % due to a 5 % of cement replacement, however increasing the fly ash content to 30 % affect adversely the compressive strength as shown in Fig. 5d. The effect of percentage replacement and mixture proportions on the compressive strength of concrete at the curing ages of 7 and 28 days are presented in Fig. 6a, b respectively. The results at 7 days for 5, 10, 15, 20, and 30 % mixture proportions are presented in Fig. 6a. The compressive strength is found to be decreasing as the percentage of cement replacement is increasing and that for the results at 7 and 28 days as well. The recorded observations indicate that blended cement concrete especially with olive s seed ash and CCA gain strength slowly at early curing age. The present study results are in agreement with the findings from previous studies, which stated that pozzolanic reaction at room temperature is slow, thus a longer curing period is needed to observe its positive effects. 5.2 Effect of SCMs on the Tensile Strength Split tensile test with typical failure mode is shown in Fig. 7. The results are arranged to study the effect of replacing cement partially by silica fume, olive s seed ash, CCA, and fly ash in ordinary Portland concrete. The results clearly indicate that the split tensile strength dropped due to the addition of all SCMs. Two different trends were dictated 256 International Journal of Concrete Structures and Materials (Vol.8, No.3, September 2014)

Compressive Strength kg/cm 2 Compressive Strength kg/cm 2 Compressive Strength kg/cm 2 Compressive Strength kg/cm 2 35 30 25 20 15 10 5 35 30 25 20 15 10 5 35 30 25 20 15 10 5 40 35 30 25 20 15 10 5 (a) 28-days 7-days M1 M2 M3 M4 M5 M6 (b) 28-days 7-days M1 M7 M8 M9 M10 M11 (c) M1 M12 M13 M14 M15 M16 (d) 28-days 7-days 28-days 7-days M1 M17 M18 M19 M20 M21 Fig. 5 Compressive strength at 7 and 28 days: a Silica fume, b Olive s seed ash, c Corncob ash, d Fly ash. in the split tensile strength reduction. In the case of mixtures with silica fume, the tensile strength decreased by increasing the percentage cement replacement from 5 to 10 %. The present study results indicate that the optimum parentage of SF to be used is 5 %. All other supplementary materials affect adversely the tensile strength as shown in Fig. 8. (a) Compressive Strength, Kg/cm 2 (b) Compressive Strength, Kg/cm 2 400 350 300 250 200 150 100 50 300 250 200 150 100 0 0 10 20 30 40 50 Percentage of Replacement Silica Fume Olive's Seeds Corncob Fly ash 0 0 10 20 30 40 Percentage of Replacement Silica Fume Olive's Seeds Corncob Fly ash Fig. 6 a Effect of cement replacement ratios on the compressive strength of concrete cubes at age 28 days. b Effect of cement replacement ratios on the compressive strength of concrete cubes at age 7 days. 6. Summary and Concluding Remarks Twenty-one (21) conventional concrete mixtures incorporating different proportions of silica fume, olives s seed ash, CCA, and fly ash were prepared and tested. The results of this study indicated a general trend of significant drop in concrete strength with the increase of some of the SCMs cement replacement. Based on the results obtained in this study and the analyses conducted, the following observations were drawn: 1. Replacing the cement by the olive s seed ash and the CCA has a significant effect on concrete workability. 2. Olive s seed ash increased the slump by more than 200 % compared to the control mixtures. 3. The 28 days compressive strength of mixtures containing 30 % replacement of olive s seed ash showed a 75 % decrease compared to the control mixture. 4. The 28 days compressive strength of mixtures produced by 5 and 30 % of cement replacement by CCA decreased from 35.9 to 82.8 %, compared to the control mixture, respectively. 5. The present study concludes that a further study should be investigated on the chemical composition of olive s seeds and CCA, to emphasize the effect of those materials on the hydration process. International Journal of Concrete Structures and Materials (Vol.8, No.3, September 2014) 257

Fig. 7 Split tensile strength test. Tensile Strength kg/cm 2 35.0 3 25.0 2 15.0 1 5.0 Control Silica Fume Corn cob 0 5 10 15 20 25 30 35 Percentage of Replacement % 6. The present study recommends the concrete includes olive s seeds and CCA not to be used in any structural members unless a durability study is performed. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. References Olives's ash Fly ash Fig. 8 Split tensile strength for all mixtures with different percentage of cement replacement. Adesanya, D. A. (1996). Evaluation of blended cement mortar, concrete and stabilized earth made from ordinary Portland cement and corncob ash. Construction and Building Materials, 10(6), 451 456. Adesanya, D. A., & Raheem, A. A. (2009a). Development of corncob ash blended cement. Construction and Building Materials, 23, 347 352. Adesanya, D. A., & Raheem, A. A. (2009b). A study of the workability and compressive strength characteristics of corncob ash blended cement concrete. Construction and Building Materials, 23, 311 317. Adesanya, D. A., & Raheem, A. A. (2010). A study of the permeability and acid attack of corncob ash blended cements. Construction and Building Materials, 24, 403 409. Ali, M., Liu, A., Sou, H., & Chouw, N. (2012). Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction and Building Materials, 30, 814 825. ASTM C136 06. (2006). Standard test method for sieve analysis of fine and coarse aggregates. Pennsylvania, PA: American Society for Testing and Materials. ASTM C143-12. (2012). Standard test method for slump of hydraulic-cement concrete. Pennsylvania, PA: American Society for Testing and Materials. ASTM C150 M12. (2012). Standard specification for Portland cement. Pennsylvania, PA: American Society for Testing and Materials. ASTM C618 12. (2012). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Pennsylvania, PA: American Society for Testing and Materials. ASTM C1240 12. (2012). Standard specification for silica fume used in cementitious matrix. Pennsylvania, PA: American Society for Testing and Materials. Elsaid, A., Dawood, M., Seracino, R., & Bobko, C. (2011). Mechanical properties of kenaf fiber reinforced concrete. Construction and Building Materials, 25, 1991 2001. Jorge, P., Barbosa, V., Hélder, P., Carlos, J., & Paulo, V. (2012). Corncob lightweight concrete for non-structural applications. Construction and Building Materials, 34, 346 351. Kriker, A., Debicki, G., Bali, A., Khenfer, M. M., & Chabannet, M. (2005). Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cement and Concrete Composites, 27, 554 564. Standards Organization of Nigeria. (2000). Standard for cement, NIS 439. Lagos, Nigeria. 258 International Journal of Concrete Structures and Materials (Vol.8, No.3, September 2014)