ARCHIVES of FOUNDRY ENGINEERING. DOI: /afe

Similar documents
Influence of the Selected Factors on the Ceramic Moulds Permeability Determined by the New Method

ÓThe Author(s). This article is published with open access at Springerlink.com DOI: /s /$19.00

Interactions at the mould modifying coating molten nickel alloy interface

Casting Process Part 2

ALD Vacuum Technologies High Tech is our Business VIM-IC. Vacuum Induction Melting Investment Casting

Rositsa Gavrilova ABSTRACT

Influence of the Al 2 O 3 Solid Phase on the Kinetics of Binding Ceramic Moulds

Effect of Atmosphere in a Foundry Mould on Casting Surface Quality

The Influence of Pressure Die Casting Parameters on the Castability of AlSi11-SiC p Composites

Distributions of grain parameters on the surface of aircraft engine turbine blades

The Effect of a Thin-Wall Casting Mould Cavity Filling Conditions on the Casting Surface Quality

Crystallization of Low-alloyed Construction Cast Steel Modified with V and Ti

Rheological Properties of Typical Ceramic Slurries Used in the Lost Wax Technology

Effect of Heat Treatment Parameters on the Toughness of Unalloyed Ausferritic Ductile Iron

Simulation of Stress Distribution in a Thick- Walled Bushing Produced by Die-Casting

Arch. Metall. Mater. 62 (2017), 3,

Increase of Heat Transfer to Reduce Build Time in Rapid Freeze Prototyping

DEVELOPMENT OF ADVANCED CORES AND CASTINGS FOR IMPROVED GAS TURBINE PERFORMANCE

The Influence of Macrostructure of Nickelbased Superalloys IN713C and MAR 247 on the Characteristics of High-temperature Creep

MODELING OF ALLOY 718 STRUCTURAL CASTINGS. K. 0. Yu*, J. J. Nicholas** and L. Hosamani***

Investigating the Effect of Different Process Parameters on Defects in A713 Aluminium Alloy Castings Produced by Investment Casting Process

Influence of Pre-heat Treatment on Mechanical Properties of Austempered Ductile Cast Iron

Cost Effective Aluminum Beryllium Mirrors for Critical Optics Applications Carissa Say a, Jack Duich a, Chris Huskamp b, Ray White b a

THE ANALYSIS OF CHOSEN TECHNOLOGICAL PARAMETERS IN THE PROCESS OF MANUFACTURING COMPONENTS OF LANDING GEAR OF STRUCTURAL POST AIRCRAFT

Reclamation of material from used ceramic moulds applied in the investment casting technology

DIRECTIONAL SOLIDIFICATION OF CMSX-3 NICKEL BASED SUPERALLOY

Model castings with composite surface layer - application

Injection Moulded Ceramics and Waxes For the Investment Casting Industry

Chromium and copper influence on the nodular cast iron with carbides microstructure

Autonomous Engineering Applied to Investment Casting Process. ICI Conference October 15-18, 2017

Properties of the Inconel 713 Alloy Within the High Temperature Brittleness Range

Studies of Gas Atmosphere Near the Metalmould Interface During Casting and Solidification of Ductile Iron

Technical Note on SGR-Win

Indo-US MIM Tec Pvt Ltd P r e c i s i o n I n v e s t m e n t C a s t i n g s P l a n t

Conditions of Thermal Reclamation Process Realization on a Sample of Spent Moulding Sand from an Aluminum Alloy Foundry Plant

Method of thermal derivative gradient analysis (TDGA)

FE Modelling of Investment Casting of a High Pressure Turbine Blade Under Directional Cooling

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling. Solidification of Silicon. Graham Patrick Benham

Gas pressure in sand mould poured with cast iron

Upgrading the alloy AlSi6Cu4 (AK64) cast to the ceramic mould

Pressing Speed, Specific Pressure and Mechanical Properties of Aluminium Cast

high-temperature properties of cast components.

The geometrical precision of the silicone matrices to the manufacturing of the models of the gear

Simulation of High Pressure Die Casting (HPDC) via STAR-Cast

Temperature & Density for Castings

Alloy Design and Innovative Manufacturing Technology of High-Strength Ni-base Wrought Alloy for Efficiency Improvement in Thermal Power Plants

Casting Simulations with STAR-Cast. Julian Gänz, CD-adapco

Temperature and microstructure characteristics of silumin casting AlSi9 made with investment casting method

Investigation of field temperature in moulds of foamed plaster

G.V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine (G.V. Kurdyumov IMP of NASU), Kyiv

3 Department of Mechanical Engineering Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Malaysia,

Influence of reaction chamber shape on cast-iron spheroidization process in-mold

Interfacial Reaction between Zirconium Alloy and Zirconia Ceramic Shell Mold

The Formation of Gaseous Atmosphere in a Molten Cast Iron/Moulding Sand Contact System

Communication. Determination of Crystal Orientation by X-Scan Method in Nickel-Based Single-Crystal Turbine Blades

A R C H I V E S of F O U N D R Y E N G I N E E R I N G

EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti Kanaujiya, Yugesh Mani Tiwari Department of Mechanical Engineering

Fuel Cycle Research and Development. Metallic Fuel Casting Development and Parameter Optimization Simulations

Water mist effect on cooling process of casting die and microstructure of AlSi9 alloy

Analysis of Mechanical and Metallurgical properties of Al-SiCp Composite by Squeeze-cum-Stir Casting

STAINLESS STEEL AND STEEL CASTINGS

Vacuum Arc Remelting (VAR)

Solidification of Metals in Molds

Improved Quality by Electro Slag Re-Melting

Part HD head control arm

COMPUTER SIMULATION AND EXPERIMENTAL RESEARCH OF CAST PISTON POROSITY

Keywords: superalloys, chemical analysis, investment casting, aerospace.

Arch. Metall. Mater. 62 (2017), 1,

AL LM6 HOLLOW CYLINDER FABRICATED USING CENTRIFUGAL CASTING

Influence of Remelting AlSi9Cu3 Alloy with Higher Iron Content on Mechanical Properties

The Application of ATD and DSC Methods to Study of the EN AC Alloy Phase Transformations

Solidification and Crystallisation 5. Formation of and control of granular structure

Italian EU Presidency & 130th anniversary of the Terni steelworks' foundation. CCMI Bureau extraordinary meeting Castel Romano 9.10.

BIMETALLIC BLISK DESIGN FOR HIGH TEMPERATURE TURBINES OF GAS TURBINE ENGINE OF DIFFERENT APPLICATION Dr. L. Magerramova

Monitoring of Manufacture Stability of Large Turbine Blades Using Infrared Thermography (IRT) in Investment Casting Technology

Arch. Metall. Mater., Vol. 61 (2016), No 1, p

Reyazul Haque KHAN Professor, Mechanical Engineering Department, Federal University of Technology, Minna, Nigeria

Characterization of Coatings on Grey Cast Iron Fabricated by Hot-dipping in Pure Al, AlSi11 and AlTi5 Alloys

Metallurgy - Lecture (2) Solidification

Arch. Metall. Mater. 62 (2017), 1,

PY2N20 Material Properties and Phase Diagrams

Effect of Precipitation Hardening on Microstructural Characteristics of 15-5 Ph Steel

EXPERIMENTAL ANALYSIS OF CYLINDRICAL RISER DESIGN FOR LM6 ALUMINIUM ALLOY CASTINGS

Preparation and Properties of High Chromium Cast Iron Matrix Composites Reinforced by Zirconium Corundum Particles

MAGMAsoft simulation applied in verification of technology to produce new range of alloy steel castings

INFLUENCE OF UNIDIRECTIONAL SOLIDIFICATION IN BRIDGMAN FURNACE ON THE MECHANICAL BEHAVIOR OF A CAST ALUMINUM ALLOY

Destruction Mechanism of ZnAl4 as Cast Alloy Subjected to Cavitational Erosion Using Different Laboratory Stands

Controlled Residual Surface Contamination of γtial, Induction Melted in Ceramic Crucibles

Statistical analysis of SiC addition on α-mg phase in the AZ91/SiC composite

Crystallization, microstructure and mechanical properties of silumins with micro-additions of Cr, Mo, W and V

Vermicular cast iron production in the Inmold technology (in the Metalpol casting house) and the assessment of its thermal fatigue resistance

ISSN (Print) Research Article. DOI: /sjet *Corresponding author Titas Nandi

Investigation on the Rate of Solidification and Mould Heating in the Casting of Commercially Pure Aluminium in Permanent Moulds of varying Thicknesses

PREDICTION OF THERMAL SHOCK OF CERAMIC SHELLS USING FUSED SILICA AS REINFORCING FILLER AT CASTING CONDITIONS

Modeling capabilities of phenomena in over-moisture zone existing in porous medium using the simplified simulation systems applied in foundry

foundry & specialized heat treatment to engineer solutions that shape the future

Solution Heat Treatment of Single Crystal Castings of CMSX-4 Nickel-base Superalloy

7. Design for Castability

D.1 High Integrity Magnesium Automotive Castings (HI-MAC)

Transcription:

ARCHIVES of FOUNDRY ENGINEERING DOI: 10.2478/afe-2013-0076 Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (2299-2944) Volume 13 Issue 4/2013 21 28 The Control of Solidification Kinetics of the Vacuum-cast Thin-wall Nickel-based Superalloys by Changing the Geometrical Characteristics of the Ceramic Mold R. Cygan a *, D. Szeliga b, P. Rokicki b, J. Sieniawski b, J.S. Suchy c a Investment Casting WSK PZL-Rzeszów S.A. b Rzeszow University of Technology c AGH University of Science and Technology Krakow * Corresponding author E-mail address: rafal.cygan@wskrz.com Received 12.02.2013; accepted in revised form 02.09.2013 Abstract This paper provides an analysis of experimental research and results of investment casting process. Temperature field in a ceramic mold is one of the problems during numerical simulation. Reducing the costs of production in precision casting involves the reduction of scraps, which is one of the fundamental problems of the foundry industry. Reducing these costs is associated with optimization of precision casting technology of aircraft engines critical parts, including control of the solidification front in thin-walled castings of nickel super alloys cast in a vacuum. It is achieved by changing the geometrical characteristics of the ceramic mold. The results of the tests were used to optimize the industrial production of aircraft components in Precision Foundry of WSK Rzeszów. Temperature distribution gained in the conducted tests allowed verification and optimization of computer simulations. Keywords: Nickel-based superalloys, Ceramic mold, Thin-walled castings, Investment casting 1. Introduction The important technological problems occurring in the production of nickel-based superalloy casts include: developing conditions for pouring and solidification of casting and, what's involved, determining the effect of all factors on the orientation of the liquid metal solidification front and the cooling of it [1-3]. The problem of defects appearance in precision castings, despite the use of advanced technology, is not yet solved. There is no comprehensive study and evaluation of changes in temperature field in the cross-section of the ceramic mold during annealing, pouring and solidification processes of molten metal in the area of thin-walled castings, such as the trailing edge of nickel-based superalloy blades cast in vacuum. These elements are used in lowpressure turbine aircraft engines. Lack of an access to knowledge about the distribution of temperature in the cross section of the ceramic mold during annealing, casting, solidification and cooling of the casting makes it impossible to determine the causes of defects, especially in thin-walled castings. This is due to a reserve of technological knowledge by global foundries which produce components for hot engines. In many precise foundries it is necessary to address these issues in case of changing types of castings as well as in the introduction of new types of materials [4-8]. ARCHIVES of FOUNDRY ENGINEERING Volume 13, Issue 4/2013, 21-28 Unauthenticated 21

The results of researches will allow to determine a precise effect of the ceramic layer thickness (the number of layers made) on the ceramic mold temperature distribution during annealing process as well as during the pre-filling process and solidification of nickel-based superalloy super thin-walled cast components. These data are necessary to determine the impact that the change of geometrical characteristics has on the temperature distribution of the ceramic mold. Hence, also on the direction of the solidification front. Obtained results will also be helpful to determine the correct annealing time of the ceramic mold. This knowledge will significantly contribute to the labour reduction, thus, to a substantial reduction of the cost of manufacturing of casting, not just airlines ones, but also other casting machine components manufactured by precise casting. 2. Methodology The molds were performed at the precise foundry WSK PZL Rzeszów. Methodology for the molds execution was similar as in the case of production ones keeping all the process parameters so that the molds were made as similar as possible to the production ones in the means of physico-chemical properties. Two model sets for casting wax plates were designed and built with dimensions shown in (Fig. 1). The shape of this cast provides enough flat surface for the precise placement of thermocouples. Four wax models with H-type gating system were combined into a model set. In order to stabilize and strengthen the model set and for better wax melting, 4 vents were applied in a further stage (Fig. 2a). a ) b) Fig. 1. Plates models a) geometrical dimensions, b) 3D model a) b) Fig. 2. a) Wax model set b) ceramic mold - after first layer application Two wax sets formed the basis for the implementation of multilayer ceramic molds. Ceramic molds were made with the use of alcohol coating. For the first layer CoAl 2 O 4 + ZrSiO 4 were used (Fig.2b). This layer is characterized by good thermal conductivity and durability, and prevents the reaction of molten metal with a ceramic material. Afterwards, the next layers were applied with placing thermocouples: Thermocouple #1 after 2nd layer, thermocouple # 2 after 3rd layer, thermocouple #3 after 4th layer and thermocouple #4 after 7th layers. Two molds fabricated with 9 and coated. B-type thermocouples with 0.8 mm wire diameter were used for the measurement. 22 ARCHIVES of FOUNDRY ENGINEERING Volume 13, Issue Unauthenticated 4/2013, 21-28

a) Thermocouples 3 and 4 mounting places b) Fig. 3. Ceramic mold a) with 9 ceramic coatings, b) with 11 ceramic coatings When all the sets of ceramic layers were ready, the assembly was dried for 48 hours at a suitable temperature and humidity. After drying the ceramic mold was placed in high-pressure autoclave to fuse out the wax. Pre-annealing was performed at 600 C for 2 h in order to remove the wax model residue. Then, insulating of the mold and pouring were performed (Fig. 4). The solidification process of nickel-based superalloy IN713C castings was performed in Research and Development Laboratory for Aerospace Materials at Rzeszów University of Technology, in a vacuum oven VIMIC 2 E - DS / SC produced by ALD Vacuum Technologies company. 6 kg load was inductively melted in vacuum - 2x10-3 [Pa]. Ceramic mold was placed in the heating chamber of the furnace and annealed at 1250 o C in 110 min time. The molds were poured with nickel-based superalloy IN713C at a temperature of 1470 o C and moved from the heating to cooling zone of the furnace in about 10 seconds. Afterwards, the cooling chamber was ventilated in about 60 seconds. The molds were cut (Fig. 5) removing the remains of the ceramic mold. a) b) Fig. 4. a) insulated ceramic mold, b) mold after pouring ARCHIVES of FOUNDRY ENGINEERING Volume 13, Issue 4/2013, 21-28 Unauthenticated 23

Fig. 5. Molds after pouring with molten metal and the removal of ceramics. 3. Results and discussion After the experiment, the temperature change on the crosssection of the mold during annealing, pouring, solidification and cooling was received. Depending on the quantity of the ceramic layers in the mold, temperature distribution was as follows (Figures 6-8): Fig. 6. Temperature distribution in the ceramic mold - 24 ARCHIVES of FOUNDRY ENGINEERING Volume 13, Issue Unauthenticated 4/2013, 21-28

Fig. 7. Temperature distribution in the ceramic mold - Temperature distribution in the ceramic mold after 2 nd layer Temperature distribution in the ceramic mold after 3 rd layer Temperature distribution in the ceramic mold after 5 th layer Temperature distribution in the ceramic mold after 7 th layer Fig. 8. Comparison of temperature distribution in the ceramic molds The next step was to analyse the distribution of temperature on the cross-section of the ceramic mold during annealing, pouring of molten metal, solidification and cooling (Fig. 9). The aim of the study was: a) Determination and comparison of the temperature distribution in tested ceramic molds during annealing process after 30, 45, 60, 75 and 90 [min]. b) Determination and comparison of the temperature distribution in tested ceramic molds during pouring of molten metal. ARCHIVES of FOUNDRY ENGINEERING Volume 13, Issue 4/2013, 21-28 Unauthenticated 25

c) Determination and comparison of the temperature distribution in tested ceramic molds during solidification and cooling processed after 0 [s], 63 [s], 93 [s], 123 [s], 153 [s], 213 [s], 49 [min] 89 [min], 189 [min] and 268 [min] from the moment of molten metal pouring. Temperature distribution after 30 seconds since filling Temperature distribution after 63 seconds since filling 26 ARCHIVES of FOUNDRY ENGINEERING Volume 13, Issue Unauthenticated 4/2013, 21-28

Temperature distribution after 93 seconds since filling Temperature distribution after 123 seconds since filling Temperature distribution after 153 seconds since filling Temperature distribution after 213 seconds since filling Fig. 9. Comparison of the temperature distribution in the studied sections of the ceramic molds 4. Summary As a result of the experiment, the temperature distribution curves of ceramic molds with 9 and (shells) were made. These curves allowed to determine the effect of selected geometric features changes on the temperature distribution in the studied ceramic mold system, during annealing, pouring, solidification and cooling processes. In the molds with 9 ceramic layers after 80 minutes of heating, temperature had been stabilized, however, it had not reached the ambient temperature (1250 o C) throughout the section. ARCHIVES of FOUNDRY ENGINEERING Volume 13, Issue 4/2013, 21-28 Unauthenticated 27

In the molds with 11 ceramic layers after 110 minutes of heating, temperature had been stabilized, however, it had not reached the ambient temperature (1250 o C) throughout the section. The temperature difference in the molds while pouring was slightly higher for the mold with 9 ceramic layers. The maximum temperature recorded by the measuring system during pouring was 1305 o C for and 1322.5 o C for 9 layers. For the mold with a much larger temperature gradient was observed. Mold with cools down much faster by handing over the accumulated heat to the surroundings. The results of the tests were used to optimize the industrial production of aircraft components in Precision Foundry of WSK Rzeszów. Temperature distribution gained in the conducted tests allowed verification and optimization of computer simulations. The results will also be used when designing the ceramic molds for new implemented products. Acknowledgements The research was conducted under the research project MNiSW 15-0072-10 /2010. References [1] Cygan, R., Sobczak, N. & Suchy, J.S. (2010). Thermal and physical properties of nickel superalloy and ceramic mold used for computer simulation. International Foundry Research, 62, No.1, 30 34. [2] Cygan, R., Sobczak, N. & Suchy, J.S. (2009). Interaction: Ceramic mold metal in nickel superalloy casting. International Foundry Research, 61, No.3, 16 21. [3] Furgał, G. & Cygan, R. (2009). Quality problems root cause identification and variability reduction in casting processes. Archives of Foundry Engineering, Volume 9, Issue 1/2009, 13 16 [4] Budzik, G., Matysiak, H., Cygan, R., Bąk, S. & Cygnar, M. (2010). Rapid prototyping process of monocrystal aircraft engine blades. Journal of Kones Powertrain and Transport, Warszawa, 81-86 [5] Moskal, G., Cwajna, J., Bińczyk, F., Cygan, R., Witala, B. (2010). Influence of measurement results of thermal conductivity and heat transfer coefficients on the simulation results of casting process of aircraft engine elements made of monocrystalline and directionally crystallized superalloys, 6th International Conference on Diffusion in Solids and Liquids: Mass Transfer, Heat Transfer and Microstructure and Properties, DSL 2010, Paris, France 5-7 July, pp. 266 [6] Sieniawski, J. (2002). Development of design methods and the assessment of the microstructure and properties of structural materials for aircraft technicians, Red. M. Hetmańczyk: Postępy nauki o materiałach i inżynierii materiałowej. Wyd. Pol. Śląskiej, Katowice (in Polish), [7] Sieniawski, J. (1995). Criteria and methods of evaluation of the components of turbine aircraft engines, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów [8] Beeley, P.R., Smart, R.F. (1995). Investment casting, University Press, Cambridge UK, 28 ARCHIVES of FOUNDRY ENGINEERING Volume 13, Issue Unauthenticated 4/2013, 21-28