Uranium concentrations in the bedrock groundwater of the Riutta area results from 2009 sampling campaign Kaija Juha & Pullinen Arto

Similar documents
Appendix C Groundwater Quality

Web Mapping Service of Natural Background Values of Groundwater in Germany

CERTIFICATE OF ANALYSIS

Worldwide Pollution Control Association

RECOMMENDED SCOPE OF ACCREDITATION (For Testing Laboratories) * Test Method / Standard against which tests are performed

Summary of Geochemical Atlas Information

A Study of Groundwater Quality from Domestic Wells in the Sussex and Elgin Regions, New Brunswick

MONITORING AND RESEARCH DEPARTMENT

Radial, Axial or Dual View ICP: Which Do You Choose? Manny Almeida Teledyne Leeman Labs, Inc. Hudson, NH

Impact of Coal Mine Reclamation Using Coal Combustion By-products (CCBs) on Groundwater Quality: Two Case Studies

A Hydrologic Study of the North Hills, Helena, Montana

Locked Cycle Leaching Test and Yellowcake Precipitation

Chemical quality of household water in Bangladesh

The Palmottu Natural Analogue Project

SCOPE OF ACCREDITATION TO ISO GUIDE 34:2009

ScienceDirect. Shallow hydrogeological and hydrochemical characterization of the Aquistore CO 2 sequestration site in Estevan, Saskatchewan, Canada

Li Mass = 7 amu Melting point C Density 0.53 g/cm 3 Color: silvery

SECTIOn 4. Claritas PPT Multi-Element Standards for ICP-MS

Water Quality of Fayoum Surface Water, Fayoum Province, Egypt

LABS & TECHNOLOGICAL SERVICES AGQ S L CTRA A-423 KM24.3 BURGUILLOS (SEVILLA) SPAIN Testing Laboratory TL-475 (Revised September 14, 2015)

Appendix C: Water Quality Data

TITLE: SABS PROFICIENCY TESTING SCHEME, RSA

EPA Primary. (mg/l as CaCO3) (mg/l as CaCO3)

Analytically Monitoring the Effect of Fracturing Activity

Groundwater Quality Changes in Response to CO 2 Leakage from Deep

ABSTRACT: Clean sampling and analysis procedures were used to quantify more than 70 inorganic chemical constituents (including 36 priority

ISL Mining in Kazakhstan and Technology Development Vienna, IAEA, April 2013

Prediction of Source Term Leachate Quality from Waste Rock Dumps: A Case Study from an Iron Ore Deposit in Northern Sweden

Core Analysis with the Tracer

BLACK STURGEON LAKES WATER QUALITY MONITORING

Table I: MCL and MRL Concentrations for Contaminants Monitored Under the Safe Drinking Water Act National Primary Drinking Water Regulations

Blank Optimization Using Ultrapure Water Suitable for Trace Ion Analysis.

AQUIFER STUDIES RELATED TO GEOLOGIC STORAGE OF CO 2

BLACK STURGEON LAKES WATER QUALITY MONITORING

Arsenic Detections. Florida 1995 to 2008 data. As exceedance (> 10 ug/l) As detection (< 10 ug/l) (Author Unknown)

CERTIFICATE OF ANALYSIS REVISED REPORT

CERTIFICATE OF ANALYSIS

SCOPE OF ACCREDITATION TO ISO 17034:2016

CERTIFICATE OF ANALYSIS 1.0 ACCREDITATION / REGISTRATION 2.0 PRODUCT DESCRIPTION

Analysis of Metals in Water, Stream Sediments and Floodplain Soils Collected March 21-23, 2005 from the Bayou Creek System. David J.

TIE and TMDL Approaches for Legacy Sediment Contaminants: Arsenic and Petrochemical Case Studies

STUDY OF ELEMENT FINGERPRINTING IN GOLD DORÉ BY GLOW DISCHARGE MASS SPECTROMETRY

Virtual Curtain Limited

(Project No. 4265) Periodic Report No. 2, Period covered: Nov Jan 31, 2011

Determination of Elemental Impurities in Graphite-based Anodes using the Agilent 5110 ICP-OES

Application of PMF analysis for assessing the intra and inter-city variability of emission source chemical profiles

CERTIFICATE OF ANALYSIS

CRAIG HYDROGEOLOGIC INC.

CERTIFICATE OF ANALYSIS

Effects of Precipitation on the Acid Mine Drainage Impacted Hewett Fork Watershed Understanding Storm Response

VHG Labs/LGC Standards Wear Metals Performance Testing Program (PTP)

Monitoring groundwater quality for the Water Framework Directive. C.R. Meinardi, RIVM

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Evaluation of Geology and Water Well Data Associated with the EPA Hydraulic Fracturing Retrospective Case Study, Bradford County, PA

Groundwater and Surface Water Overview of the Lochend Area, Alberta

Certificate of Analysis

SABS Water Check. Inorganic Chemical proficiency testing provider for water laboratories. NLA 20 September 2011

CERTIFICATE OF ANALYSIS REVISED REPORT

- Particulate matter (PM10, 2.5, 1) -Coarse region (2.5µm < dp <10µm)

CERTIFICATE OF ANALYSIS 1.0 ACCREDITATION / REGISTRATION 2.0 PRODUCT DESCRIPTION

Distillation: Waste Water Treatment for Release to Sewers Jung Bae Eckert & Ziegler Isotope Products, Valencia, California 91355

CHM101 SECOND EXAM 162. Chemistry 101 SECOND Exam (162) Name: Date: 30/4/2017

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

ElvaX ProSpector in Exploration & Mining

Automating EPA 6020 Compliant Analysis with the Agilent 7900 ICP-MS and ESI prepfast Autodilution System

Drinking of tap water is smart, but how do it better? A tap water quality research

2. GUIDELINES FOR THE EVALUATION OF DRINKING-WATER QUALITY FOR HUMAN CONSUMPTION WITH REGARD TO CHEMICAL, PHYSICAL AND BACTERIOLOGICAL QUALITY

The Agilent Atomic Spectroscopy portfolio for Environmental applications AA, MP-AES, ICP-OES, ICP-MS & ICP-QQQ

E3 Redox: Transferring electrons. Session one of two First hour: Discussion (E1) 2nd and 3rd hour: Lab (E3, Parts 1 and 2A)

The image part with relationship ID rid4 was not found in the file. Welcome

Use of Fly ash from KKAB, Sweden Sealing a landfill with only fly ash

Thirst for Knowledge: Factors to Consider in Selecting a Reusable Water Bottle

Chem : Oct. 1 - Oct. 7

ScienceDirect. Identification of saltwater intrusion/assessment scheme in groundwater using the role of empirical knowledge

METAL RECOVERY WITH CH COLLECTOR SOLUTION

Certificate of Analysis Work Order : LK [Report File No.: ]

TESTS / PROPERTIES. A.1.1 Carbon Steel 1. Density T-WI-CME Si & P ASTM E A.1.2 Stainless Steel 1. Density T-WI-CME

Where do we start? ocreate the Universe oform the Earth and elements omove the elements into their correct positions obuild the atmosphere and oceans

Metal Aerosol Emissions from Biomass Combustion

Analysis of Trace Elements in Seawater Using the Thermo Scientific icap 7000 Series ICP-OES Duo

Improved Antimony Recoveries in Soil Matrices by 3050B/6010B. DataChem Laboratories, Inc. Robert P. Di Rienzo Jeffery S. Ward John T.

Detroit Water and Sewerage Department Water Quality Division Laboratory Analysis of Water Samples Collected at Lake Huron Plant 10/14/2014

Health risk estimate for groundwater and soil contamination in the Slovak Republic a convenient tool for identification of risk areas

Al. Mickiewicza 30, Krakow, A-0 pavilion tel. (12) , Secretariat KHGI (12) , fax (012) ELABORAT # 8 page 1/pages 4

Illinois State Water Survey Division

Chem : Feb.12-17

Test Report No.: NBHL SD Date: SEP. 20, 2016 Page: 1 of 5

Chemistry*120* * Name:! Rio*Hondo*College* * * EXAMPLE*EXAM*1*!

Confined Groundwater at No. 52, Hollywood Road, Hong Kong

CERTIFICATE OF ANALYSIS

Amplifying ICPMS Productivity Using Discrete Sampling Technology

CERTIFICATE OF ANALYSIS

Exporter: SEISHIN Trading Co., Ltd.

CERTIFICATE OF ANALYSIS

Merits of EPA Method 1640:

Neutron Activation Analysis for Ecological State Assessment of Coastal Ecosystems of the Black Sea

CERTIFICATE OF ANALYSIS

Dynamic Waste Water Modeling for Coal Burning Power Plants

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 4, No 1, 2013

Groundwater Contamination Due to Irrigation of Treated Sewage Effluent in the Werribee Delta

Transcription:

Etelä-Suomen yksikkö K129/53/2004 30.9.2009 Espoo 135/2013 Public 1.1.2013 Uranium concentrations in the bedrock groundwater of the Riutta area results from 2009 sampling campaign Kaija Juha & Pullinen Arto

Geological Survey of Finland 1 Authors Juha Kaija Arto Pullinen Type of report Confidential contract work Commissioned by Areva Resources Finland Title of report Uranium concentrations in the bedrock groundwater of the Riutta area results from 2009 sampling campaign Abstract Altogether 19 groundwater samples were taken from 13 boreholes: old boreholes R324, R325, R326 and new boreholes R1-R10. The bedrock is characterized by recently recharged dilute groundwater of the Ca-HCO 3 and Ca- Na-HCO 3 type. Uranium concentrations in bedrock groundwater from boreholes R324, R325 and R326 were low, variation being from 1,29 to 18,9 μg/l. Uranium concentrations in the new boreholes varied according to the pumped volume of groundwater: concentrations in first samples varied from 0,95 μg/l to 20,3 μg/l and after pumping from 1,3 to 28,1 μg/l. The highest uranium concentrations found during this sampling campaign were close to the median uranium concentrations of the Finnish bedrock drilled wells. Keywords Eno, Riutta, uranium, bedrock, groundwater Geographical area Finland, North Karelia, Eno, Riutta Map sheet 4242 02 Other information Report serial Archive code E320/42/2008 Total pages 6 + 1 Appendis Language English Price Confidentiality Public 1.1.2013 Unit and section ESY 212 Project code 1801012 Signature/name Signature/name Juha Kaija

Geological Survey of Finland 2 TABLE OF CONTENTS 1 INTRODUCTION 3 2 GROUNDWATER SAMPLING 3 3 CHEMICAL ANALYSES 3 4 COMPOSITION OF GROUNDWATERS 3 4.1 Water types 3 4.2 Dissolved uranium 4 5 CONCLUSIONS 5 6 REFERENCES 6 APPENDIX 1. CHEMICAL ANALYSES OF RIUTTA SAMPLING CAMPAIGN MAY-JUNE 2009

Geological Survey of Finland 3 INTRODUCTION This report describes the findings of the hydrogeochemical study conducted in May-June 2009 by the GTK at the Riutta area in the municipality of Eno. Altogether 19 groundwater samples were taken from 13 boreholes: old boreholes R324, R325, R326 and new boreholes R1-R10. The research activities were carried out based on the order of the AREVA Resources Finland Oy, order number 0829 and GTK s project number 1901006 FinU1. 1 GROUNDWATER SAMPLING A series of groundwater samples were taken from 6 sections of 3 old boreholes R324, R325 and R326 (Appendix 1). Sampling technique was the same packer method that is described in Kaija et al. 2008. Groundwater samples from new boreholes R1-R10 were taken with P-10500 Monsoon pump which was lowered to the preferred sampling depth. Depth varied from 9 m to 40 m depending on the borehole conditions. In order to find out the possible changes in water chemistry first samples were taken without any excessive pumping of the groundwater (so called first strike samples), second samples were taken after 1 hour pumping from the borehole, i.e. pumped volume varied from 115 to 180 liters. All these samples represent open-hole conditions, packers were not used in sampling. 2 CHEMICAL ANALYSES Chemical components were analyzed at the chemical laboratory of Labtium. Labtium is accredited by the Centre for Metrology and Accreditation according to the SFS-EN ISO/IEC 17025 standard covering the ICP-AES analysis of major elements and ICP-MS analysis of trace elements as well as Br, Cl, NO 3, SO 4 and F analyses. According to the charge balance calculations, the quality of chemical analyses is good, average charge balance error is below ±5% (see Appendix 1). 3 COMPOSITION OF GROUNDWATERS 3.1 Water types The Riutta area bedrock is characterized by dilute groundwater of the Ca-HCO 3 and Ca- Na-HCO 3 type. Calcium is the dominant cation of this HCO 3 type groundwater zone, which is typical for recently recharged shallow bedrock groundwater. Total dissolved solids (TDS) vary from 80 to 231 mg/l.

0 Geological Survey of Finland 4 3.2 Dissolved uranium Uranium concentrations in the bedrock groundwater from isolated borehole sections of R324, R325 and R326 were low, variation being from 1,29 μg/l to 18,9 μg/l (Appendix 1). Uranium concentrations in the bedrock groundwater of the new boreholes varied according to the pumped volume of groundwater (see Figure 1 and Appendix 1). In general the first samples from open boreholes had lower uranium concentrations than after one hour pumping (115 180 liter pumped volume). Uranium concentrations of the first strike samples varied from 0,95 μg/l to 20,3 μg/l, after the pumping the variation was from 1,3 μg/l to 28,1 μg/l. The highest concentrations are close to the median uranium concentrations of the Finnish bedrock drilled wells (see e.g. Lahermo et al. 1990). Although the uranium concentrations increased during the pumping, the concentrations remained low compared for example to the bedrock groundwater of the Palmottu uranium deposit where the highest concentrations of 100-800 μg/l are found in the Ca-HCO 3 type water of the so called Eastern Granite (Blomqvist et al., 1998). Uranium μg/l 30 25 20 15 R1 R6 R7 R1 R2 R4 R5 R6 R7 R8 R9 R10 10 5 R2 R5 R8 R10 R4 R9 0 Figure 1. Uranium concentrations in the bedrock groundwater of the Riutta area boreholes R1- R10, first column represents the uranium concentration before pumping (first strike sample) and second column uranium concentrations after one hour pumping (115-180 liters).

Geological Survey of Finland 5 4 CONCLUSIONS The Riutta bedrock is characterized by dilute groundwater of the Ca-HCO 3 and Ca-Na- HCO 3 type. Calcium is the dominant cation of this HCO 3 type groundwater zone, which is typical for recently recharged shallow bedrock groundwater. The highest uranium concentrations found during this sampling campaign were close to the median uranium concentrations of the Finnish bedrock drilled wells. Although the uranium concentrations increased during the pumping, the concentrations are low compared for example to the bedrock groundwater in the Palmottu uranium deposit where the highest concentrations 100-800 μg/l are found in the Ca-HCO 3 type water of the so called Eastern Granite.

Geological Survey of Finland 6 5 REFERENCES Blomqvist, R.; Kaija, J.; Lampinen, P.; Paananen, M.; Ruskeeniemi, T.; Korkealaakso, J.; Pitkänen, P.; Ludvigson, J.-E.; Smellie, J.; Koskinen, L.; Floría, E.; Turrero, M. J.; Galarza, G.; Jakobsson, K.; Laaksoharju, M.; Casanova, J.; Grundfelt, B.; Hernan, P. 1998. The Palmottu natural analogue project. Phase I: Hydrogeological evaluation of the site. Final report - Phase I. European Commission Nuclear Science and Technology Series EUR 18202 EN. Luxembourg: Office for Official Publications of the European Communities. 98 p. Kaija, J., Ruskeeniemi, T. and Pullinen, A. 2008. Uranium concentrations in the bedrock groundwater of the Riutta area. Contract work 0829 for areva resources Finland Oy. 14 pages, 3 Appendices. Lahermo, P.; Ilmasti, M.; Juntunen, R. and Taka, M. 1990. Suomen geokemian atlas. Osa 1 : Suomen pohjavesien hydrogeokemiallinen kartoitus = The Geochemical Atlas of Finland. Part 1 : The hydrogeochemical mapping of Finnish groundwater. Espoo: Geologian tutkimuskeskus. 66 p. + 1 app.

Appendix 1. Chemical analyses of Riutta sampling campaign May-June 2009 Analysed by Labtium Oy Packered borehole length, m Laboratory ID Sample ID Date Pumped volume l Watertype TDS Charge balance T ph ph El.cond. Ca Mg ms/m, 25 C mg/l % C field lab (field) mg/l mg/l R326 74- L09057846 012APPV09 27.5.2009 12 Ca-Na-HCO 3 172 1,4 15,3 8,5 7,8 20,3 24,4 1,69 R325 25-35 L09057847 013APPV09 28.5.2009 2 Ca-Na-HCO 3 152 0,3 10,4 8,4 7,8 17,8 21,0 1,79 R325 25-35 L09057848 014APPV09 28.5.2009 25 Ca-Na-HCO 3 231-27,3 9,4 8,5 7,8 17,8 21,2 1,90 R325 35- L09057849 015APPV09 28.5.2009 4 Ca-Na-HCO 3 147 0,9 7,7 8,6 7,8 17,7 20,8 1,58 R324 0-40 L09057850 016APPV09 28.5.2009 4 Na-Ca-HCO 3 84-3,5 9,3 9,4 8,8 10,3 7,50 1,01 R324 40-50 L09057852 018APPV09 29.5.2009 4 Ca-Na-HCO 3 -SO 4 169-6,9 6,4 8,4 7,4 18,2 18,3 2,26 R324 40-50 L09057853 019APPV09 29.5.2009 25 Ca-Na-HCO 3 149-2,0 7,1-7,9 17,1 20,5 2,42 R324 50- L09057851 017APPV09 29.5.2009 4 Ca-Na-HCO 3 152 1,9 6,6 8,5 8,1 18,4 18,1 2,24 NEW BOREHOLES (open, not packered) Depth of the pump Laboratory ID Sample ID Date Pumped volume l Watertype TDS Charge balance T ph ph El.cond. Ca Mg ms/m, 25 C mg/l % C field lab (field) mg/l mg/l R1 (beginning) L09057854 020APPV09 30.5.2009 0 Ca-HCO 3 122-3,3 6,9-7,5 14,5 21,6 2,10 R1 (1 hour pumping) 31 m L09057855 021APPV09 30.5.2009 ~150 Ca-HCO 3 -SO 4 110-3,5 7,3-7,4 13,3 19,8 1,81 R2 (beginning) L09057856 022APPV09 30.5.2009 0 Ca-Na-HCO 3 169-0,1 8,4-7,6 19,4 25,2 3,25 R2 (1 hour pumping) 40 m L09057857 023APPV09 30.5.2009 150 Ca-HCO 3 80-5,4 7,1-6,5 9,0 11,9 1,38 R3 (1 hour pumping) 9 m L09057858 024APPV09 2.6.2009 ~150 Ca-Na-HCO 3 121 0,0 7,5-5,9 13,6 17,7 2,67 R4 (beginning) L09057859 025APPV09 1.6.2009 0 Na-Ca-HCO 3 198-7,3 8,1-7,3 19,3 15,2 2,11 R4 (1 hour pumping) 20 m L09057860 026APPV09 1.6.2009 ~150 Ca-Na-HCO 3 144 0,1 7,7-6,6 15,7 15,6 2,19 R5 (beginning) L09057861 027APPV09 1.6.2009 0 Ca-Na-HCO 3 171 0,5 8,2-7,1 19,5 26,7 3,48 R5 (1 hour pumping) 20 m L09057862 028APPV09 1.6.2009 ~150 Ca-Na-HCO 3 169 0,2 10,8-7,0 19,1 26,9 3,52 R6 (beginning) L09057863 029APPV09 1.6.2009 0 Ca-HCO 3 163-0,3 7,7-7,4 18,8 28,7 2,99 R6 (1 hour pumping) 20 m L09057864 030APPV09 1.6.2009 180 Ca-HCO 3 162-0,5 8,7-8,0 18,9 29,6 2,70 R7 (beginning) L09057865 031APPV09 1.6.2009 0 Ca-HCO 3 176-0,6 8,0-8,1 20,8 32,2 3,81 R7 (1 hour pumping) 20 m L09057866 032APPV09 1.6.2009 115 Ca-HCO 3 158-1,2 9-8,1 18,7 28,7 3,18 R8 (beginning) L09057867 033APPV09 31.5.2009 0 Ca-Na-HCO 3 174-4,5 9,7-8,1 18,9 20,2 1,57 R8 (1 hour pumping) 20 m L09057868 034APPV09 31.5.2009 180 Ca-Na-HCO 3 133-0,3 8,7-7,3 16,7 21,1 1,32 R9 (beginning) L09057869 035APPV09 31.5.2009 0 Ca-HCO 3 220 0,4 6,9-7,8 25,5 42,1 4,17 R9 (1 hour pumping) 20 m L09057870 036APPV09 31.5.2009 180 Ca-HCO 3 97-0,3 6,2-7,1 12,1 17,5 1,67 R10 (beginning) L09057871 037APPV09 2.6.2009 0 Ca-HCO 3 207 0,8 7,2-7,6 23,9 37,8 4,35 R10 (1 hour pumping) 36 m L09057872 038APPV09 2.6.2009 ~150 Ca-HCO 3 129 0,6 6,1-7,2 15,4 23,2 2,53 Pump type used for sampling from new boreholes was Monsoon submersible groundwater pump 1 of 3

Appendix 1. Chemical analyses of Riutta sampling campaign May-June 2009 Analysed by Labtium Oy Packered borehole length, m Na K Cl SO 4 HCO 3 NO 3 Br F Si Fe Mn Sr B Ba Li Al Rb V Cr mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l R326 74- R325 25-35 R325 25-35 R325 35- R324 0-40 R324 40-50 R324 40-50 R324 50-17,0 0,58 0,6 16 104 <0.2 <0.1 1,7 6,22 0,07 16,8 220 24,4 0,85 1,01 9,84 1,68 0,25 0,20 14,3 0,58 0,5 12 95 <0.2 <0.1 1,3 5,65 0,14 16,5 162 18,5 0,80 0,65 6,69 1,20 0,13 <0.2 12,9 0,59 0,5 12 175 <0.2 <0.1 1,2 5,50 0,11 14,4 163 17,5 0,63 0,7 5,26 1,18 0,13 <0.2 13,6 0,49 0,5 11 91 <0.2 <0.1 1,5 5,69 0,08 10,2 159 17,6 0,58 0,62 6,53 1,00 0,11 <0.2 11,2 0,69 0,5 0,2 61,6 <0.2 <0.1 1,3 0,19 <0.03 8,52 73,8 11,7 0,46 0,59 4,24 1,55 0,11 <0.2 17,6 0,37 0,5 32 89 <0.2 <0.1 2,0 6,11 0,14 8,87 156 18,6 0,67 1,43 7,89 0,91 0,16 <0.2 11,9 0,42 0,5 12 95 <0.2 <0.1 1,1 5,34 0,04 9,25 173 14,1 0,52 1,29 5,74 0,93 0,17 <0.2 17,8 0,35 0,5 14 91 <0.2 <0.1 1,6 6,18 0,04 7,43 159 19,3 0,54 1,48 7,44 0,84 0,11 <0.2 NEW BOREHOLES (open, not packered) Depth of the pump Na K Cl SO 4 HCO 3 NO 3 Br F Si Fe Mn Sr B Ba Li Al Rb V Cr R1 (beginning) R1 (1 hour pumping) 31 m R2 (beginning) R2 (1 hour pumping) 40 m R3 (1 hour pumping) 9 m R4 (beginning) R4 (1 hour pumping) 20 m R5 (beginning) R5 (1 hour pumping) 20 m R6 (beginning) R6 (1 hour pumping) 20 m R7 (beginning) R7 (1 hour pumping) 20 m R8 (beginning) R8 (1 hour pumping) 20 m R9 (beginning) R9 (1 hour pumping) 20 m R10 (beginning) R10 (1 hour pumping) 36 m mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l 3,05 0,84 0,5 13 74 <0.2 <0.1 0,2 5,74 0,72 31,6 59,4 4,71 0,99 1,23 20,4 1,73 0,30 <0.2 2,63 0,82 0,5 14 65 <0.2 <0.1 0,1 4,74 0,55 39,8 43,5 3,51 0,90 0,77 4,19 2,22 0,27 <0.2 11,3 0,38 0,5 17 102 <0.2 <0.1 1,1 8,18 0,16 19,6 165 14,2 1,34 1,31 20,8 1,44 0,19 <0.2 3,57 0,64 0,5 6,9 50,0 <0.2 <0.1 0,2 4,94 0,14 25,6 56,2 4,06 1,56 0,73 39,4 2,22 0,34 <0.2 7,17 0,31 0,5 4,2 80,5 <0.2 <0.1 0,7 6,44 0,17 15,9 111 8,53 4,91 0,44 104 1,04 0,44 0,29 25,3 0,71 0,4 10 131 <0.2 <0.1 3,2 9,61 0,03 4,61 119 25,0 1,43 1,37 9,06 1,53 0,18 <0.2 15,7 0,77 0,7 6,5 91,5 <0.2 <0.1 1,8 7,43 1,27 112 95,7 15,7 2,78 1,14 91,2 1,96 0,44 0,45 9,89 0,73 0,5 10 111 <0.2 <0.1 1,3 6,80 0,04 23,5 167 14,3 1,64 1,56 64,0 1,50 0,32 <0.2 8,88 0,76 0,4 9,3 111,0 <0.2 <0.1 1,2 6,26 0,04 31,3 155 13,4 1,61 1,71 55,9 1,53 0,26 <0.2 6,30 0,66 0,5 12 104 0,9 <0.1 0,9 5,95 0,04 9,51 165 9,12 1,87 1,02 18,6 1,73 0,34 <0.2 5,43 0,65 0,5 11 105 1,1 <0.1 0,7 5,36 0,03 18,7 120 6,54 1,67 0,78 18,4 1,92 0,47 <0.2 4,88 0,97 0,7 18 109 0,3 <0.1 0,7 4,85 0,03 6,76 136 7,67 1,87 2,68 195 2,79 0,69 <0.2 4,52 1,00 0,7 16 97 0,9 <0.1 0,6 4,42 <0.03 13,0 111 7,33 1,75 5,46 353 2,58 0,78 <0.2 18,2 1,12 2,1 7,7 117,2 <0.2 <0.1 1,2 3,81 0,31 39,5 75,9 23,5 2,92 5,20 304 2,95 0,59 <0.2 8,87 1,06 3,3 3,9 84,8 1,2 <0.1 0,4 5,15 1,98 114 51,9 10,3 7,13 4,31 72,3 3,03 0,65 0,28 4,15 2,33 4,0 1,7 153,2 <0.2 <0.1 0,2 7,32 0,46 201 117 10,2 19,8 1,81 18,8 3,46 0,57 0,36 2,05 0,95 1,7 2,6 62,2 0,7 <0.1 <0.1 4,77 2,63 119 44,5 3,77 8,64 0,97 264 1,81 0,47 0,67 5,96 1,65 2,0 2,7 145,8 <0.2 <0.1 0,5 5,34 0,51 74,8 136 17,9 20,8 1,63 35,7 3,02 0,37 0,20 3,67 1,07 1,3 3,4 86,6 0,4 <0.1 0,2 5,32 1,22 106 69,4 9,19 12,9 1,20 184 2,53 0,89 0,68 Pump type used for sampling from new boreholes was Monsoon submersible groundwater pump 2 of 3

Appendix 1. Chemical analyses of Riutta sampling campaign May-June 2009 Analysed by Labtium Oy Packered borehole length, m Co Ni Mo Cu Zn Cd Pb As Sb Th U µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l R326 74- R325 25-35 R325 25-35 R325 35- R324 0-40 R324 40-50 R324 40-50 R324 50-0,12 0,5 69,2 0,60 0,42 0,05 <0.05 0,86 0,02 0,16 2,82 0,06 0,31 37,8 0,45 <0.2 0,03 <0.05 0,08 0,02 0,06 4,89 0,05 0,25 38,6 0,69 <0.2 0,03 <0.05 <0.05 <0.02 0,03 5,46 0,04 0,24 36,4 0,40 <0.2 0,03 <0.05 <0.05 <0.02 0,02 2,33 0,02 0,15 18,8 0,42 <0.2 <0.02 <0.05 0,05 0,02 0,01 1,29 0,04 0,22 74,3 0,42 <0.2 0,05 <0.05 0,10 <0.02 0,01 9,12 0,05 0,26 49,0 0,35 <0.2 0,03 <0.05 0,05 <0.02 0,01 18,9 0,04 0,23 77,5 0,42 <0.2 0,05 <0.05 0,05 <0.02 0,01 2,15 NEW BOREHOLES (open, not packered) Depth of the pump Co Ni Mo Cu Zn Cd Pb As Sb Th U R1 (beginning) R1 (1 hour pumping) 31 m R2 (beginning) R2 (1 hour pumping) 40 m R3 (1 hour pumping) 9 m R4 (beginning) R4 (1 hour pumping) 20 m R5 (beginning) R5 (1 hour pumping) 20 m R6 (beginning) R6 (1 hour pumping) 20 m R7 (beginning) R7 (1 hour pumping) 20 m R8 (beginning) R8 (1 hour pumping) 20 m R9 (beginning) R9 (1 hour pumping) 20 m R10 (beginning) R10 (1 hour pumping) 36 m µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l 0,07 2,05 16,3 0,36 5,99 <0.02 0,11 0,11 0,03 0,02 14,6 0,30 0,67 13,6 0,24 1,27 <0.02 <0.05 0,09 0,02 <0.01 18,5 0,10 1,25 19,7 0,60 1,39 0,02 <0.05 0,07 0,02 0,03 2,86 0,19 1,08 19,9 7,42 3,28 0,02 <0.05 0,13 0,03 0,02 10,4 0,29 1,30 11,9 2,20 0,68 <0.02 <0.05 0,09 0,02 0,08 5,24 0,04 0,58 27,2 0,39 1,41 0,02 <0.05 <0.05 <0.02 0,01 0,95 0,68 3,21 19,2 1,06 4,20 <0.02 <0.05 0,27 0,11 0,07 2,75 0,10 2,07 27,0 0,43 1,68 0,02 <0.05 0,08 0,03 0,01 4,81 0,24 5,99 28,3 0,48 0,61 0,02 <0.05 0,23 0,09 0,01 10,8 0,08 0,59 69,4 1,28 1,51 0,05 0,11 0,13 0,07 0,01 20,3 0,10 0,76 66,3 0,77 0,28 0,05 <0.05 0,10 0,05 0,01 16,7 0,07 0,62 32,0 0,39 0,44 0,02 0,06 0,32 0,08 0,02 12,1 0,08 0,51 85,0 0,28 <0.2 0,06 <0.05 0,55 0,09 0,01 28,1 0,06 0,33 15,0 0,53 0,34 <0.02 <0.05 0,21 0,12 0,05 4,29 0,19 0,77 7,08 0,44 1,42 <0.02 <0.05 0,26 0,07 0,03 10,1 0,25 0,98 5,44 0,33 0,20 <0.02 <0.05 0,30 0,02 0,03 1,32 0,40 2,39 2,32 1,75 4,75 <0.02 <0.05 0,21 0,05 0,09 1,34 0,40 1,75 12,1 0,46 0,37 <0.02 <0.05 0,27 0,03 0,04 5,66 1,41 2,39 7,22 2,43 2,95 <0.02 0,07 0,48 0,05 0,17 7,60 Pump type used for sampling from new boreholes was Monsoon submersible groundwater pump 3 of 3