Chapter 8: DNA and RNA

Similar documents
Hello! Outline. Cell Biology: RNA and Protein synthesis. In all living cells, DNA molecules are the storehouses of information. 6.

Protein Synthesis ~Biology AP~

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

CHapter 14. From DNA to Protein

BIOLOGY 111. CHAPTER 6: DNA: The Molecule of Life

Chapter 14: From DNA to Protein

Bundle 5 Test Review

I. Gene Expression Figure 1: Central Dogma of Molecular Biology

DNA. Essential Question: How does the structure of the DNA molecule allow it to carry information?

1. DNA, RNA structure. 2. DNA replication. 3. Transcription, translation

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!!

Protein Synthesis

Lesson 8. DNA: The Molecule of Heredity. Gene Expression and Regulation. Introduction to Life Processes - SCI 102 1

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test

RNA, & PROTEIN SYNTHESIS. 7 th Grade, Week 4, Day 1 Monday, July 15, 2013

Comparing RNA and DNA

DNA Function: Information Transmission

From DNA to Protein: Genotype to Phenotype

13.1 RNA Lesson Objectives Contrast RNA and DNA. Explain the process of transcription.

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein

Section 10.3 Outline 10.3 How Is the Base Sequence of a Messenger RNA Molecule Translated into Protein?

Lecture for Wednesday. Dr. Prince BIOL 1408

Molecular Genetics. The flow of genetic information from DNA. DNA Replication. Two kinds of nucleic acids in cells: DNA and RNA.

Chapter 10: Gene Expression and Regulation

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes?

Ch 10 Molecular Biology of the Gene

From Gene to Protein

From Gene to Protein. Chapter 17

Videos. Lesson Overview. Fermentation

Chapter 11. Gene Expression and Regulation. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc..

Molecular Biology of the Gene

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA

DNA Structure DNA Nucleotide 3 Parts: 1. Phosphate Group 2. Sugar 3. Nitrogen Base

To truly understand genetics, biologists first had to discover the chemical nature of genes

DNA is the MASTER PLAN. RNA is the BLUEPRINT of the Master Plan

Chapter 8. Microbial Genetics. Lectures prepared by Christine L. Case. Copyright 2010 Pearson Education, Inc.

CH 17 :From Gene to Protein

Lesson Overview. Fermentation 13.1 RNA

Chapter 13. From DNA to Protein

DNA Structure and Replication, and Virus Structure and Replication Test Review

From DNA to Protein: Genotype to Phenotype

How can something so small cause problems so large?

Chapter 2. An Introduction to Genes and Genomes

Section 14.1 Structure of ribonucleic acid

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are?

Lecture Overview. Overview of the Genetic Information. Marieb s Human Anatomy and Physiology. Chapter 3 DNA & RNA Protein Synthesis Lecture 6

Protein Synthesis Honors Biology

Chapter 12 DNA & RNA

Ch 10.4 Protein Synthesis

BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D. Steve Thompson:

DNA & RNA. Chapter Twelve and Thirteen Biology One

6.C: Students will explain the purpose and process of transcription and translation using models of DNA and RNA

Big Idea 3C Basic Review

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links

BIOL 300 Foundations of Biology Summer 2017 Telleen Lecture Outline

RNA and Protein Synthesis

Neurospora mutants. Beadle & Tatum: Neurospora molds. Mutant A: Mutant B: HOW? Neurospora mutants

Name Class Date. Practice Test

Semi-conservative replication DNA Helicases DNA polymerases Transcription Codon Messenger RNA Transfer RNA. Molecular Genetics Unit

Review? - What are the four macromolecules?

Adv Biology: DNA and RNA Study Guide

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

Chapter 8 From DNA to Proteins. Chapter 8 From DNA to Proteins

March 26, 2012 NUCLEIC ACIDS AND PROTEIN SYNTHESIS

Gene Expression: Transcription, Translation, RNAs and the Genetic Code

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012

BIOLOGY. Monday 14 Mar 2016

Key Area 1.3: Gene Expression

Protein Synthesis. DNA to RNA to Protein

3. The following sequence is destined to be translated into a protein: However, a mutation occurs that results in the molecule being altered to:

Replication Transcription Translation

Videos. Bozeman Transcription and Translation: Drawing transcription and translation:

Chapter 10 - Molecular Biology of the Gene

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein

Chapter 13 - Concept Mapping

Fermentation. Lesson Overview. Lesson Overview 13.1 RNA

DNA - DEOXYRIBONUCLEIC ACID

Name: Class: Date: ID: A

Unit 1: DNA and the Genome. Sub-Topic (1.3) Gene Expression

NUCLEIC ACIDS AND PROTEIN SYNTHESIS

8.1. KEY CONCEPT DNA was identified as the genetic material through a series of experiments. 64 Reinforcement Unit 3 Resource Book

PROTEIN SYNTHESIS. copyright cmassengale

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein?

Name Date Class. The Central Dogma of Biology

DNA and RNA. Chapter 12

TRANSCRIPTION AND TRANSLATION

Genes are coded DNA instructions that control the production of proteins within a cell. The first step in decoding genetic messages is to copy a part

Notes: (Our Friend) DNA. DNA Structure DNA is composed of 2 chains of repeating. A nucleotide = + +

C. Incorrect! Threonine is an amino acid, not a nucleotide base.

Resources. How to Use This Presentation. Chapter 10. Objectives. Table of Contents. Griffith s Discovery of Transformation. Griffith s Experiments

DNA REPLICATION. DNA structure. Semiconservative replication. DNA structure. Origin of replication. Replication bubbles and forks.

Replication Review. 1. What is DNA Replication? 2. Where does DNA Replication take place in eukaryotic cells?

2. Examine the objects inside the box labeled #2. What is this called? nucleotide

NUCLEIC ACID METABOLISM. Omidiwura, B.R.O

The Structure of Proteins The Structure of Proteins. How Proteins are Made: Genetic Transcription, Translation, and Regulation

DNA/RNA. Transcription and Translation

Chapter 12-3 RNA & Protein Synthesis Notes From DNA to Protein (DNA RNA Protein)

Chapter 12. DNA TRANSCRIPTION and TRANSLATION

Transcription:

Chapter 8: DNA and RNA Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 1 8-1

DNA and the Importance of Proteins Proteins play a crucial role in the life of a cell. Microtubules, intermediate filaments, and microfilaments maintain the shape of the cell. Enzymes catalyze important reactions. The recipes for proteins are found in the cell s DNA. DNA is organized into genes. Each gene is a recipe for a different protein. 8-2

Nucleic Acid Structure and Function DNA accomplishes two things: Passes genetic information to the next generation Controls the synthesis of proteins DNA is able to accomplish these things because of its unique structure. 8-3

DNA Structure DNA is a nucleic acid. Nucleic acids Large polymers made of nucleotides A sugar molecule Deoxyribose for DNA Ribose for RNA A phosphate group A nitrogenous base Adenine Guanine Cytosine Thymine 8-4

DNA Structure DNA is doublestranded. Held together by hydrogen bonds between the bases A-T, G-C 8-5

Base Pairing Aids DNA Replication DNA replication Is the process by which DNA is copied This is done before cell division. Provides the new cells with a copy of the genetic information Relies on the base-pairing rules 8-6

Base Pairing Aids DNA Replication Is accomplished by DNA polymerase and other enzymes Helicase binds to DNA and forms a replication bubble by separating the two strands. DNA polymerase builds new DNA strands that will pair with each old DNA strand. Where there is an A on the old strand, polymerase will add a T to the new strand. When DNA polymerase finishes a segment of new DNA, it checks its work and corrects mistakes if they happen. 8-7

DNA Replication 8-8

Repairing Genetic Information If a mistake is made when building the new strand The old strand still has the correct information. This information can be used to correct the new strand. 8-9

The DNA Code The order of bases in the DNA molecules is the genetic information that codes for proteins. The sequence of nucleotides forms words that are like a recipe for proteins. Each word contains three base letters. ATGC are the four letters that are used to make the words. Each three-letter word codes for a specific amino acid. The order of amino acids in the protein is determined by the order of nucleotides in DNA. 8-10

RNA Structure and Function RNA vs. DNA RNA has ribose sugar (DNA has deoxyribose). RNA contains the bases Adenine Guanine Cytosine Uracil (DNA has thymine) 8-11

DNA vs. RNA RNA s, like DNA s, base sequence carries information. RNA is made in the nucleus and transported to the cytoplasm (DNA stays in the nucleus). The protein coding information in RNA comes from DNA. Like DNA replication, RNA synthesis follows the basepairing rules (A-U; G-C). RNA is typically single-stranded (DNA is typically doublestranded). Three types of RNA participate in protein synthesis mrna trna rrna 8-12

Protein Synthesis The sequence of nucleotides in a gene dictates the order of amino acids in a protein. Before a protein can be made The information in DNA must be copied into RNA. This process is called transcription. The information in the RNA can then be used to make the protein. This process is called translation. 8-13

Transcription During transcription DNA is used as a template to make RNA Accomplished by RNA polymerase and follows the base-pairing rules The process of transcription Occurs in the nucleus RNA polymerase separates the two strands of DNA. Only one of the two strands will be used to create the RNA. The coding strand The other DNA strand is called the non-coding strand. 8-14

Transcription of an RNA Molecule 8-15

The Process of Transcription Only a segment of the DNA strand will be used to create each RNA. These segments are called genes. Each gene starts with a promoter. The RNA polymerase binds to the promoter to start building an RNA strand. Each gene ends with a terminator sequence. The RNA polymerase will stop transcribing at the terminator sequence. 8-16

Translation Three types of RNA participate in translation. mrna carries the recipe for making the protein. trna and rrna are used to read the recipe and build the amino acid chain. Codons are sets of three nucleotides that code for specific amino acids. trna reads the codons and brings the correct amino acids. 8-17

The Genetic Code 8-18

Translation Ribosomes are organelles that build proteins. rrna is found in ribosomes. mrna is read on ribosomes. Ribosomes are found in two places in the cell. Free-floating in the cytoplasm Bound to the endoplasmic reticulum 8-19

Translation Initiation Translation begins when The small ribosomal subunit binds to the beginning of the mrna and searches for the AUG start codon. At this point, a trna brings the first amino acid. The anticodon in the trna matches with a codon on the mrna. Each trna carries a specific amino acid based on its anticodon. The start codon, AUG, binds to a trna that carries a methionine. Finally, the large ribosomal subunit joins the complex and the next step, translation elongation, can proceed. 8-20

Initiation 8-21

Translation Elongation The next trna binds with the next codon on the mrna. The ribosome adds this amino acid to the growing polypeptide. The ribosome then moves down to the next codon. The process repeats itself. For each step, a new amino acid is added to the growing protein. 8-22

Elongation 8-23

Translation Termination Elongation continues until the ribosome encounters a stop codon. UAA, UAG, UGA are stop codons. A release factor binds to the stop codon. This causes the ribosome to release the polypeptide. The ribosomal subunits separate and release the mrna. The mrna can be translated again by another ribosome. 8-24

Termination 8-25

Summary of Protein Synthesis 8-26

The Genetic Code is Nearly Universal The process of making proteins from the information in DNA is used by nearly all cells. Nearly all organisms studied to date use the same genetic code. Because of this, we are able to use bacteria as factories to make massive amounts of proteins. Insulin, growth factor, etc. 8-27

Control of Protein Synthesis 8-28 Gene expression is how the cell makes a protein from the information in a gene. Cell types are different from one another because they express different sets of genes. Therefore, have different sets of proteins Cells control gene expression in response to different environmental conditions. Cells can alter gene expression Controls the quantity of a protein Controls the amino acid sequence of a protein

Control of Protein Quantity Cells can regulate how much of a given protein is made by Controlling how much mrna is available for translation Cells do this in a number of ways: Regulating how tightly the chromatin is coiled in a certain region The more tightly the chromatin is coiled, the less likely a gene in that region will be transcribed. 8-29

Eukaryotic Genome Packaging 8-30

Control of Protein Quantity 8-31 By increasing or decreasing the rate of transcription of the gene by enhancer and silencer regions on the DNA Activation of enhancer regions increases transcription. Activation of silencer regions decreases transcription. Through the binding of transcription factors, These proteins bind to the promoter and facilitate RNA polymerase binding and transcription. By limiting the amount of time the mrna exists in the cytoplasm, Some mrna molecules are more stable and will exist longer in the cytoplasm, yielding more protein.

Different Proteins from One Gene Eukaryotic cells can use one gene to make more than one protein. In eukaryotic genes, non-coding sequences called introns, are scattered throughout the sequence. After transcription, the introns must be cut out and the coding regions, called exons, must be put back together. This is called splicing. 8-32

Transcription of mrna in Eukaryotic Cells 8-33

Alternative Splicing Different combinations of exons from a single gene can be joined to build a number of different mrnas for a number of different proteins. 8-34

Epigenetics The study of changes in gene expression caused by factors other than alterations in a cell s DNA 8-35

Mutations and Protein Synthesis A mutation is any change in the DNA sequence of an organism. Can be caused by mistakes in DNA replication Can be caused by external factors Carcinogens, radiation, drugs, viral infections Only mutations in coding regions of gene will change the proteins themselves. 8-36

Point Mutations a Change in a Single Nucleotide of the DNA Sequence Three types: A nonsense mutation changes a codon to a stop codon. This causes the ribosome to stop translation prematurely. CAA (Gln) to UAA (stop) A missense mutation causes a change in the type of amino acid added to a polypeptide. This may change the way in which a protein functions. UUU (Phe) to GUU (Val) 8-37 A silent mutation does not cause a change in the amino acid sequence. UUU to UUC; both code for Phe

Point Mutations 8-38

Sickle Cell Anemia Results from a missense mutation in the gene for hemoglobin GAA to GUA Glutamic acid to valine change Causes the hemoglobin protein to change shape The molecules stick together in low oxygen conditions. Get stuck in blood vessels, causing the vessels to break apart easily, leading to anemia Also causes blood vessels to clog, preventing oxygen delivery to tissues, which results in tissue damage Causes weakness, brain damage, painful joints, etc. 8-39

Normal and Sickled Red Blood Cells 8-40

Insertions and Deletions 8-41 An insertion mutation occurs when one or more nucleotides is added to the normal DNA sequence. A deletion mutation occurs when one or more nucleotides is removed from the normal DNA sequence. Insertions and deletions cause a frameshift. Ribosomes will read the wrong set of three nucleotides. Changes the amino acid sequence dramatically Changes the function of the protein dramatically

Frameshift 8-42

Mutations Caused by Viruses Viruses can insert their genetic material into the DNA of the host cell. The presence of the viral material may interfere with the host cell s ability to use the genetic material in that area because of this insertion. Insertion of human papillomavirus (HPV) causes an increased risk of cancer. 8-43

Chromosomal Aberrations 8-44 Involves a major change in DNA at the level of the chromosome Inversions occur when a chromosome breaks, and the broken piece becomes reattached in the wrong orientation. A translocation occurs when the broken segment becomes integrated into a different chromosome. A duplication occurs when a segment of a chromosome is replicated and attached to the original segment in sequence. A deletion occurs when a broken piece is lost or destroyed. All of these effect many genes, thus many proteins. In humans, these mutations may cause problems with fetal development.