Passivation of Porous Silicon by LaF 3 Using a Simple Single-Source Chemical Bath Technique

Similar documents
Photoluminescence Properties of LaF 3 -Coated Porous Silicon

LOW TEMPERATURE GROWTH OF SMOOTH INDIUM TIN OXIDE FILMS BY ULTRAVIOLET ASSISTED PULSED LASER DEPOSITION

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry

Simple fabrication of highly ordered AAO nanotubes

Polycrystalline and microcrystalline silicon

The Effect of Laser Wavelength on Porous Silicon Formation Mechanisms

لبا ب ةعماج / ةيساسلأا ةيبرتلا ةيلك ة لجم

PHOTOLUMINESCENCE AND SURFACE MORPHOLOGY OF NANOSTRUCTURED POROUS SILICON

Fabrication of MoS 2 Thin Film Transistors via Novel Solution Processed Selective Area Deposition

Thin film silicon substrate formation using electrochemical anodic etching method

Recrystallization in CdTe/CdS

Pre-treatment of low temperature GaN buffer layer deposited on AlN Si substrate by hydride vapor phase epitaxy

Synthesis, Characterization and Optical Properties of ZnS Thin Films

Ruthenium Oxide Films Prepared by Reactive Biased Target Sputtering

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Optical parameter determination of ZrO 2 thin films prepared by sol gel dip coating

Synthesis and Characterization of DC Magnetron Sputtered ZnO Thin Films Under High Working Pressures

Process Development for Porous Silicon Light-Emitting Devices

CHAPTER 4. SYNTHESIS OF ALUMINIUM SELENIDE (Al 2 Se 3 ) NANO PARTICLES, DEPOSITION AND CHARACTERIZATION

Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with

Rare Earth Doping of Silicon-Rich Silicon Oxide for Silicon-Based Optoelectronic Applications

Study for double-layered AZO/ATO transparent conducting thin film

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

PbS NANO THIN FILM PHOTOCONDUCTIVE DETECTOR

Synthesis and Characterization of Zinc Iron Sulphide (ZnFeS) Of Varying Zinc Ion Concentration

Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates.

Solid-Phase Synthesis of Mg2Si Thin Film on Sapphire substrate

Properties of Inverse Opal Photonic Crystals Grown By Atomic Layer Deposition

High Density Iron Silicide Nanodots Formed by Ultrathin SiO 2 Film Technique

ZnO-based Transparent Conductive Oxide Thin Films

Luminescence Properties of Eu 2+ Doped Ca-α-SiAlON Phosphor. Li Li 1,a, Zhang Cheng 2,b, Feng Tao 3, Xu Haifeng 3, Li Qiang 1,c

Australian Journal of Basic and Applied Sciences

EFFECT OF DEPOSITION TIME ON CHEMICAL BATH DEPOSITION PROCESS AND THICKNESS OF BaSe THIN FILMS.

Significant Improved Luminescence Intensity of Eu 2?+? -Doped Ca 3 SiO 4 Cl 2 Green Phosphor for White LEDs Synthesized Through Two-Stage Method

Photoelectrochemical cells based on CdSe films brush plated on high-temperature substrates

Fabrication of regular silicon microstructures by photo-electrochemical etching of silicon

Structure and Luminescence Properties of Y 2 O 3 :Eu 3+ Nanophosphors

A Multi-step Ion Exchange Approach for Fabrication of Porous BiVO 4 Nanorod Arrays on Transparent Conductive Substrate

The Effect of Gamma Irradiation on the Structural Properties of Porous Silicon

Correlation Between Energy Gap and Defect Formation of Al Doped Zinc Oxide on Carbon Doped Silicon Oxide

Design and Fabrication of Nanostructures Silicon Photodiode

Supplementary Information

All fabrication was performed on Si wafers with 285 nm of thermally grown oxide to

Deposition and characterization of sputtered ZnO films

Influence of Heat Treating for ZnS:Mn Sputtering Targets on Inorganic Electroluminescent Device Active Layer Films

Fused-Salt Electrodeposition of Thin-Layer Silicon

PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES

Influence of Annealing Temperature on the Properties of ITO Films Prepared by Electron Beam Evaporation and Ion-Assisted Deposition

Deposited by Sputtering of Sn and SnO 2

Fabrication of sub-100nm thick Nanoporous silica thin films

Bright luminescence from erbium doped nc-si=sio 2 superlattices

Passivation of SiO 2 /Si Interfaces Using High-Pressure-H 2 O-Vapor Heating

Activation Behavior of Boron and Phosphorus Atoms Implanted in Polycrystalline Silicon Films by Heat Treatment at 250 C

Silicon Rich Silicon Oxide Thin Films Fabricated by Electro-Chemical Method

CHAPTER 3. Experimental Results of Magnesium oxide (MgO) Thin Films

Amorphous Materials Exam II 180 min Exam

Department of Applied Chemistry, Faculty of Science and Technology, Keio University,

Supplementary Information

GROWTH AND CHARACTERIZATION OF NANOSTRUCTURED CdS THIN FILMS BY CHEMICAL BATH DEPOSITION TECHNIQUE

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Synthesis and Laser Processing of ZnO Nanocrystalline Thin Films. GPEC, UMR 6631 CNRS, Marseille, France.

EUV optics lifetime Radiation damage, contamination, and oxidation

The Effect of Annealing Heat Treatment on Structural and Optical Properties of Ce-doped ZnO Thin Films

for New Energy Materials and Devices; Beijing National Laboratory for Condense Matter Physics,

Available online at ScienceDirect. Materials Today: Proceedings 2 (2015 )

ZnO thin film deposition on sapphire substrates by chemical vapor deposition

Microscopic Structural Analysis of Advanced Anode Material for Lithium Battery

Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water.

Characterization of carbon nitride thin films deposited by microwave plasma chemical vapor deposition

Ultra High Barrier Coatings by PECVD

Synthesize And Investigate The Austenitic Nanostructural Propertise

STRUCTURAL AND OPTOELECTRONIC PROPERTIES OF PYRALYTICALLY SPRAYED CdZnS THIN FILMS

Characterization of Nanoscale Electrolytes for Solid Oxide Fuel Cell Membranes

Influence of In/Sn ratio on nanocrystalline indium tin oxide thin films by spray pyrolysis method

Study of The Structural and Optical Properties of Titanium dioxide Thin Films Prepared by RF Magnetron sputtering

Impurity free vacancy disordering of InGaAs quantum dots

Electronic Supplementary Information

Luminescent and Tunable 3D Photonic Crystal Structures

Fabrication of Ru/Bi 4-x La x Ti 3 O 12 /Ru Ferroelectric Capacitor Structure Using a Ru Film Deposited by Metalorganic Chemical Vapor Deposition

Enhancement of porous silicon photoluminescence using vanadium pentoxide (V 2 O 5 ) treatment

Synthesis, Structural, Optical and Electrical Properties of Cadmium sulphide Thin Films by Chemical Bath Deposition Method

Ceramic Processing Research

Studies on Structural and Optical Properties of Iron doped Cds Nanoparticles ABSTRACT

Materials Characterization

ELECTRICAL PROPERTIES OF CDS THIN FILMS SPIN COATED ON CONDUCTIVE GLASS SUBSTRATES

Laser-controlled photoluminescence characteristics of silicon nanocrystallites produced by laser-induced etching

Surface modification of thermally evaporated CdTe thin films for sensing application of organic compounds

Cathodoluminescence measurements of suboxide band-tail and Si dangling bond states at ultrathin Si SiO 2 interfaces

OUTLINE. Preparation of III Nitride thin 6/10/2010

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

Fabrication of the (Y 2 O 3 : Yb-Er)/Bi 2 S 3 Composite Film for Near- Infrared Photoresponse

Defense Technical Information Center Compilation Part Notice

Effects of Annealing on Surface Morphology and Crystallinity of Nickel doped Zinc Oxide with Nickel Seed Layer Deposited by RF Magnetron Sputtering.

Effects of N-ion-implantation and post-thermal annealing on. ZnO:Mg thin films

ZnS-based photonic crystal phosphors fabricated using atomic layer deposition

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film

Hierarchical and Well-ordered Porous Copper for Liquid Transport Properties Control

2-1 Introduction The demand for high-density, low-cost, low-power consumption,

Transcription:

International Journal of Materials and Chemistry 2012, 2(3): 111-115 DOI: 10.5923/j.ijmc.20120203.05 Passivation of Porous Silicon by LaF 3 Using a Simple Abdul Al Mortuza 1, Md. Hafizur Rahman 2, Sinthia Shabnam Mou 3, Md. Julker Nain 3, Abu Bakar Md. Ismail 3,* 1 Department of Biomedical Engineering, Gono University, Savar, Banglaesh 2 Department of Physics, Pabna University of Science & Technology, Pabna, Banglaesh 3 Department of Applied Physics and Electronic Engineering, Rajshahi University, Rajshahi, 6205, Banglaesh Abstract Passivation of porous silicon (PS) by LaF3 by a novel chemical-bath technique has been investigated in this report. The porous silicon surface has been passivated with LaF3 by reacting LaCl3 with HF in the etching chamb er at room temperature. Without removing the porous silicon from the anodizing chamber LaF3 as a result of chemical reaction between LaCl3 and HF was allowed to passivate the PS surface. Several cycles of reaction that gives the various thickness of LaF3 layer on PS have been investigated. The Scanning Electron Microscopy (SEM) on the surface of LaF3/PS/Si structure confirms the LaF3 film deposition on PS layer. The X-ray diffraction (XRD) of the deposited layer revealed a hexagonal nanocrystalline LaF3 deposition. The as-deposited thin (10-cycle) LaF3 layer contained very low concentration of lanthanum (La) and fluorine (F). The concentration of La and F started increasing with the increase in reaction cycle. But the photoluminescence (PL) of as deposited-laf3 passivated PS was lower than that of fresh PS. Annealing the just passivated PS structure recovered the PL intensity. Experimental results show that the optimized chemical bath passivation process for the LaF3 on porous silicon could enable the porous silicon to be an important material for photonic application. Keywords Porous Silicon, Passivation, Photoluminescence, Chemical Bath Deposition (CBD) 1. Introduction Porous silicon (PS) has the potentiality to emit visible light and it is expected that this material can be effectively used to fabricate silicon-based visible light emitting devices and optical interconnections. A disadvantage of this material is the aging, that is, the slow spontaneous oxidation of PS[1]. A native oxide layer forms on the surface of the pores and the thickness of this oxide layer grows with time. Due to the aging effect, the structural and optical properties of PS show continuous change with storage time [1]. Passivation of PS is very important for the stabilization and enhancement of room-temperature photoluminescence (PL) of PS.[2]. The surface defects passivation can be achieved from various chemical adsorbates by several techniques[3-5]. In this work, an attempt has been made to grow an epitaxy of Lanthanum Fluoride (LaF 3 ) on PS surface, as a passivation step, aiming to obtain stable and enhanced luminescence of PS layers. LaF 3 is a large band-gap (about 10.3 ev)[6] material having a hexagonal crystal s tructure with a refractive index of1.61[7]. LaF 3 thin films exhibit extremely good moisture * Corresponding author: ismail@ru.ac.bd (Abu Bakar Md. Ismail) Published online at http://journal.sapub.org/ijmc Copyright 2012 Scientific & Academic Publishing. All Rights Reserved resistance, therefore they are very useful, e.g., for protecting optical components[8]. As a passivating layer LaF 3 has been grown on PS in various ways such as thermal evaporation and e-beam evaporation[9]. Thin films deposited by thermal evaporation are known to possess a columnar microstructure that strongly influences many of their properties [10]. But in this process just prepared PS needs to be transferred to the vacuum coating unit for deposition. Due to extremely high reactivity of the just prepared PS, during this time of drying and transferring the PS to the coating unit oxygen passivation occurs and that is believed to degrade the PL intensity [11, 12]. Moreover it is very difficult to passivate the silicon inside the pores by physical deposition technique. In the quest of finding a way of in-situ passition of LaF 3 on the PS so that the PS needs not to be exposed to ambient air before passivation and pores are well passivated, we propose a novel technique quite similar to chemical bath deposition of LaF 3. This technique is very simple and contains only one-step. In this CBD of LaF 3 technique, LaCl 3 is allowed to react with HF which produces the LaF 3. When this reaction is done in the PS etching chamber the LaF 3 crystallizes on the PS surface and passivates the surface dangling bond of the just prepared PS. This report investigates the structural and optical properties of the novel CBD-LaF 3 /PS system. 2. Experimental

112 Abdul Al Mortuza et al.: Passivation of Porous Silicon by LaF 3 Using a Simple Anodic etching was carried out on a (100) oriented phosphorous doped n-type c-si of 1 2 Ω.cm resistivity using an electrolyte of HF (48%) and ethanol (98%) in 1:1 proportion under a constant current density of 15 ma/cm 2 for 30 min at room temperature. The electrochemical anodization of Si wafer was done using a double tank cell set-up as shown in Fig-1. The wafer was cut into pieces and these pieces of Si wafer were cleaned by successively immersing in acetone, ethanol and deionized water. The electrolyte consisted of HF: C 2 H 5 OH in the ratio of 1:1 by volume. The etching was done at a current density of 15 ma/cm 2. A 100W tungsten lamp was used for illumination from 15 cm distance. After 30 minute anodization, the etching solution and back contact solution was drained out keeping the samples in the etching chamber. The same double-tank chamber in the upright position is used for LaF 3 deposition (Fig 2). Fresh HF was then introduced in the chamber to wash out any remaining etching solution on the chamber. After draining out the HF that used for washing, 0.2 M solution of LaCl 3 and 48% HF were introduced simultaneously into the etching chamber through the HF in and LaCl 3 in channels to do the chemical reaction. seconds and resulting LaF 3 crystals were allowed to passivtate the PS layer for 4 min. After each cycle of reaction the solution was drained out through the Solution out channel and a new solution was introduced into the chamber for the next deposition cycle. In this case, the deposition results from a chemical reaction in solution, which may involve the surface silicon atoms, and in this case, we will speak of chemical grafting of the surface, and why the reaction is limited to the formation of one monolayer[14]. The whole process was repeated to obtain the various thickness of LaF 3 on to PS. After completing the required cycle the wafer was removed from the chamber, rinsed with de-ionized water and dried in air at room temperature. In the first case, 3. Results and Discussion (a) Figure 1. Schematic drawing of a double-tank chamber for PS fabrication (b) Figure 2. Double-tank chamber in upright position for chemical bath deposition of LaF 3 The chemical reaction that produces LaF 3 is pretty simple, at room temperature, the addition of hydrofluoric acid to an aqueous solution of lanthanum chloride precipitates out lanthanum fluoride, LaF 3 [13]. The formation of white precipitate (LaF 3 ) confirmed the mechanism of film formation. LaCl 3 + 3HF LaF 3 + 3HCl The solution inside the etching chamber was stirred for 10 (c) Figure 3. SEM image of the top surface of (a) 10 (b) 20 and (c) 30 reaction cycles-grown LaF 3/PS/Si structure It is interesting now to examine the growth of the LaF 3 in terms of morphology. As shown in Fig 3 the surface morphology and chemical composition of LaF 3 surface in the LaF 3 /PS/Si heterostructure were examined by SEM and

International Journal of Materials and Chemistry 2012, 2(3): 111-115 113 EDX analysis. Surface of LaF 3 for 10 deposition-cycles is shown in Fig. 3(a). Here the pores of the porous silicon are still visible indicating a very thin LaF 3 layer on PS, which is also evident from the corresponding EDX spectra as shown in Fig 4. Cl and also oxygen decreases. At the surface of 30-reaction cycle, there was no Cl but an appreciable amount of oxygen that might have incorporated during the crystallization process. Voids and large amounts of cracks were found on the thinner LaF 3 surface (Fig 3(b)). For thicker surface the voids disappeared, but a high density of cracks can be noticed. Figure 6. Growth of oxygen and Cl with reaction cycle Figure 4. EDX spectra of 10-reaction cycle LaF 3 on PS The quantitative analysis shows a very low concentration of lanthanum and fluorine (0.06 at.%) compared with the silicon concentration (64.3 at.%) and oxygen (35.56 at.%).the SEM image and the corresponding EDX spectra of 20 and 30-cycle of LaF 3 deposition has been shown in Fig 3(b) and (c). As the number of cycle of deposition increases, the LaF 3 covers the whole pores and surface and the concentration of lanthanum and fluorine increases to 0.4 at.% and 2.84 at.% respectively. Fig 5 shows the growth of La and F with deposition cycle. The structural analysis of LaF 3 thin film was carried out using X-ray diffractometer varying diffraction angle 2θ from 20 to 60. Fig. 7 shows the XRD pattern of LaF 3 thin film deposited by CBD method onto the PS. The presence of a number of peaks in pattern is the indication of polycrystalline nature of the material. Figure 7. XRD spectra of as-deposited LaF 3 thinfilm Figure 5. Growth of La and F Since in the chemical reaction our source of F was only HF, even the 10-reaction cycle could not make appreciable passivation. The resulting LaF 3 film was not stoichiometric. The fluorine to lanthanum ratio was 9 instead of 3. This is quite normal for the as-deposited films. The Fig. 6 tells us another story, as the reaction cycle increases the amount of The position and the relative intensity are identified from the ICSD file. The position of these peaks closely resembles of hexagonal (P-3c1) and polycrystalline structure with ref 01-082-0687. The comparison of the observed diffraction peak pattern with standard diffraction data confirmed that the deposited material is the hexagonal LaF 3. The individual crystalline size in the films has been determined using Scherer s formula, and was found of the order of 9-13 nm. PL of various LaF 3 -passivated PS samples were investigated. An excitation wavelength of 320 nm was used for the PL studies. We obtained Gaussian shaped PL with a

114 Abdul Al Mortuza et al.: Passivation of Porous Silicon by LaF 3 Using a Simple peak around 636 nm. The PL spectra of PS containing three different layers of LaF 3 have been compared in Fig 8. These results clearly show that no interaction between LaF 3 and PS has occurred in the LaF 3 /PS system under the described condition. The mixture of two materials did not modify their intrinsic properties. The PL intensity was lowest for the 10 reaction cycle where according to the EDX analysis, amount of La and F were very low but oxygen was highest. This reduced intensity was lack of surface passivation. The intensity was highest for the 20 reaction cycle. As the LaF 3 got thicker (30 reaction cycle) the LaF3 layer became less transparent and why the intensity was less than that of 20 reaction cycle. Porous silicon has been tried to passivate with LaF 3 deposited by a novel chemical-bath technique that involves only one-step chemical reaction of LaCl 3 and HF. The EDX analysis shows that the amount of lanthanum and fluorine increases as the reaction cycle increases. The deposited LaF 3 film was amorphous in nature. For a 320 nm excitation the PL peak appeared around 636 nm. The PL showed aging but heat treatment (annealing) could recover the PL intensity due to annealing. It can be concluded that optimized thickness of LaF 3 deposited in this novel CBD technique may enable the porous silicon to be an important photonic material. ACKNOWLEDGEMENTS This work has been supported by the TWAS and COMSTEC research grant. REFERENCES [1] Boukherroub R et al. (2000). Thermal route for chemical modification and photoluminescence stabilization of porous silicon, Phys. Stat. Sol. (A), 182, 117-121. Figure 8. PL spectra of PS passivated by LaF 3 with different reaction cycle [2] Gelloz B et al. (2003). Stabilization of porous silicon electroluminescence by surface passivation with controlled covalent bonds, Appl. Phys. Lett., 83, 2342-2344. [3] Prabakaran R et al. (2008). The effects of ZnO coating on the photoluminescence properties of porous silicon for the advanced optoelectronic devices, J. Non-Crys. Sol., 354, 2181 2185. [4] Rahmani M et al. (2008). Photoluminescence enhancement and stabiliz ation of porous silicon passivated by Iron, J. Lumi., 128, 1763-1766 [5] Macedo A. G et al. (2008). Enhanced lifetime in porous silicon light-emitting diodes with fluorine doped tin oxide electrodes, Thin Sol. Films, 517, 870-873 [6] Thoma E. D, Shields H, Zhang Y, McCollum B. C, Williams R. T (1997), EPR and Luminescence Studies of LaF3 and CeF3 under X-Ray and Laser Irradiation, J. Lumin.,71, 93-104. Figure 9. PL investigation of 20 cycle-deposited LaF 3 on PS As shown in Fig 9, the PL intensity of the as-passivated PS suffered by aging. When the whole structure was annealed at 400C for 10 minute the PL intensity was recovered. During the chemical deposition of LaF 3 oxygen was also incorporated in the LaF 3 film probably as water molecule that with time degrades the PL intensity. When heat treated, the oxygen goes away and the PL was recovered. 4. Conclusions [7] Lide D. R (2007), Physical Constants of Organic Compounds, CRC Handbook of Chemistry and Physics, (87th Edition), Taylor and Francis, Boca Raton, FL. [8] Hopkins R. H, Hoffman R.A, Kramer W. E (1975). "Moisture resistant optical films: their production and characterization", Appl. Opt., 14, 2631. [9] Khatun H, et al. (2010), Investigation on LaF 3 - /porous-silicon system for photonic application, Chin. Opt. Lett., Accepted for publication. [10] Macleod H. A (1982). "Microstructure of Optical Thin Films," Proc. Soc. Photo-Opt. Instrum. Eng. 325, 21 [11] Wolkin M. V, Joune J, and Fauchet P. M (1999), Electronic states and luminescence in porous silicon quantum dots: the role of oxygen, Phys. Rev. Lett. 82, 197-200.

International Journal of Materials and Chemistry 2012, 2(3): 111-115 115 [12] Maruyama T. and Ohtani S (1994), Photoluminescence of porous silicon exposed to ambient air, Appl. Phys. Lett. 65, 1346-1348. [14] Herino R (2000). Nanocomposite materials from porous silicon, Mater. Sc. Eng. B, 69 70, 70 76 [13] Patnaik P (2002). Handbook of Inorganic Chemicals, McGraw-Hill Professional, New York. 448.