Experiments of the LACOMECO Project at KIT

Similar documents
OVERVIEW OF SEVERE ACCIDENT RESEARCH ACTIVITIES PERFORMED IN THE LACOMECO PROJECT AT KARLSRUHE INSTITUTE OF TECHNOLOGY

Understanding the effects of reflooding in a reactor core beyond LOCA conditions

LACOMECO Experimental Platform at KIT

Post-test results of the QUENCH-16 bundle test on air ingress: complex cladding oxidation during reflood and combined hydrogen

OVERVIEW OF LWR SEVERE ACCIDENT RESEARCH ACTIVITIES AT THE KARLSRUHE INSTITUTE OF TECHNOLOGY

J. Stuckert, M. Große, M. Steinbrück

QUENCH-Debris Bundle Tests on Debris Formation and Coolability SARNET-2 WP5.1 proposal

Nuclear Safety. Lecture 3. Beyond Design Basis Accidents Severe Accidents

MODELING OF QUENCH-16 EXPERIMENT WITH MAAP4 SEVERE ACCIDENT CODE

NURETH Progress on Severe Accident Code Benchmarking in the Current OECD TMI-2 Exercise

Research on Containment Phenomena within Severe Accidents Research Network - Highlights

CONDUCT AND ANALYTICAL SUPPORT TO AIR INGRESS EXPERIMENT QUENCH-16

The PARAMETER test series

Research Article Analysis of TROI-13 Steam Explosion Experiment

Access to Large Infrastructures for Severe Accidents in Europe and in China: The ALISA Project.

E. Keim (AREVA NP GmbH) - J.-P. Van Dorsselaere (IRSN) NUGENIA R&D ON SAFETY ISSUES PERSPECTIVES IN THE DOMAINS OF AGEING AND OF SEVERE ACCIDENTS

Overview of the ASTEC V2.0-rev1 validation

Controlled management of a severe accident

Analytical support to experiment QUENCH-17 and first post-test calculations with ATHLET-CD

Modeling and Analysis of In-Vessel Melt Retention and Ex-Vessel Corium Cooling in the U. S.

Severe Accidents. Béatrice Teisseire et al. CEA post-fukushima R&D programmes on PWR. Christophe Journeau,

ALISA Project. Access to Large Infrastructures for Severe Accidents in Europe and in China

Experimental Results of the QUENCH-16 Bundle Test on Air Ingress

Simulations of Ex-vessel Fuel Coolant Interactions in a Nordic BWR using MC3D Code

QUENCH-12 VERSUS QUENCH-06 COMPARATIVE CALCULATION ANALYSIS USING SOCRAT 1.1 CODE

Deviations from the parabolic kinetics during oxidation

ÚJV Řež, a. s. Research Needs for. Improvement of Severe. Accident Management. Strategies at Czech NPPs. Jiří Duspiva

EXPERIMENTS ON AIR INGRESS DURING SEVERE ACCIDENTS

In Vessel Retention Strategy VVER 1000/320 VVER 2013 Conference

SIMULATION OF LIVE-L4 WITH ATHLET-CD

DRAFT: SEVERE FUEL DAMAGE EXPERIMENTS WITH ADVANCED CLADDING MATERIALS TO BE PERFORMED IN THE QUENCH FACILITY (QUENCH-ACM)

Experimental study on the ex-vessel corium debris bed development under two-phase natural convection flow in flooded cavity pool ( )

Scenarios and Phenomena Affecting Risk of Containment Failure and Release Characteristics

A New Method Taking into Account Physical Phenomena Related to Fuel Behaviour During LOCA

Improvement of Fuel-Coolant Interaction Models for Ex-Vessel Debris Coolability Evaluation

S. Gupta - G. Poss - M. Sonnenkalb. OECD/NEA THAI Program for Containment Safety Research: main Insights and Perspectives

SAFETY ENHANCEMENT TECHNOLOGY DEVELOPMENT WITH COLLABORATIVE INTERNATIONAL ACTIVITY

Assessing and Managing Severe Accidents in Nuclear Power Plant

QUENCH-14, QUENCH-16 and QUENCH-ALISA analysis

NUCLEAR ENERGY AGENCY

Modeling Corium Jet Breakup in Water Pool and Application to Ex-Vessel Fuel-Coolant Interaction Analysis

Overview of Containment Issues and Major Experimental Activities

severe accident progression in the BWR lower plenum and the modes of vessel failure

6th European Review Meeting on Severe Accident Research (ERMSAR-2013) Avignon (France), Palais des Papes, 2-4 October, 2013

State of the Art and Challenges in Level-2 Probabilistic Safety Assessment for New and Channel Type Reactors in India Abstract

A SARNET Benchmark on two VULCANO Molten Core Concrete Interaction Tests

The Progress of ALISA Project: Access to Large Infrastructures for Severe Accidents in Europe and in China

Analysis of WO 3 /ZrO 2 vs. UO 2 /ZrO 2 Fuel-Coolant Interaction in KROTOS Conditions

Multiphase Flow Dynamics 4

ZRO 2 AND UO 2 DISSOLUTION BY MOLTEN ZIRCALLOY

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

5.2. Phenomena liable to result in early containment failure

Validation of the FCI codes against DEFOR-A data on the mass fraction of agglomerated debris

SIMULATION OF THE QUENCH-06 EXPERIMENT WITH MELCOR 1.8.5

Status of PSI air Oxidation Model

Comparison of In-Vessel and Ex-Vessel Retention

Continued efforts to improve the robustness of the French Gen II PWRs with respect to the risks of severe accidents.

CEA ACTIVITIES SUPPORTING THE OPERATING FLEET OF NPPS

Overview of NUGENIA TA2/SARNET status

A SARNET Benchmark on two VULCANO Molten Core Concrete Interaction Tests

ASTEC Model Development for the Severe Accident Progression in a Generic AP1000-Like

Mitja Uršič, Matjaž Leskovar, Renaud Meignen, Stephane Picchi, Julie-Anne Zambaux. Fuel coolant interaction modelling in sodium cooled fast reactors

5.4. Retention and cooling of corium inside and outside the reactor vessel

Analysis of Ex-Vessel Steam Explosion with MC3D

ASSESSMENT OF REACTOR VESSEL INTEGRITY (ARVI)

High-temperature oxidation and mutual interactions of materials during severe accidents in LWRs

LFW-SG ACCIDENT SEQUENCE IN A PWR 900: CONSIDERATIONS CONCERNING RECENT MELCOR / CALCULATIONS

Validation studies of CFD codes on hydrogen combustion

CONTRIBUTION OF RESEARCH REACTORS TO THE PROGRAMMES FOR RESEARCH AND TECHNOLOGICAL DEVELOPMENT ON SAFETY

SIMULATION OF CONTAINMENT PHENOMENA DURING THE PHEBUS FPT1 TEST WITH THE CONTAIN CODE

A short introduction to SARNET Joint Programme of Activities on Molten Core Concrete Interaction (MCCI)

A SARNET Benchmark on two VULCANO Molten Core Concrete Interaction Tests

AP1000 European 19. Probabilistic Risk Assessment Design Control Document

ANALYSIS OF PROCESSES IN SPENT FUEL POOLS IN CASE OF LOSS OF HEAT REMOVAL DUE TO WATER LEAKAGE

Symposium on Risk Integrated Engineering January 21, 2019, Takeda Hall, The Univ. Tokyo Researches on Severe Accident and Risk Engineering

VESPA2012/SAFIR2014. SAFIR2014 Interim Seminar Hanasaari, Espoo. Niina Könönen (Mikko Patalainen, Kari Ikonen, Ilona Lindholm)

Phenomena Identification in Severe Accident Sequence and Safety Issues for Severe Accident Management of Light Water Reactors

steam oxidation and post-quench mechanical

Accident Progression & Source Term Analysis

NUMERICAL STUDY OF IN-VESSEL CORIUM RETENTION IN BWR REACTOR

The international program Phebus FP (fission

Corium Retention Strategy on VVER under Severe Accident Conditions

Hydrogen behavior in a large-dry pressurized water reactor containment building during a severe accident

Evaluation of AP1000 Containment Hydrogen Control Strategies for Post- Fukushima Lessons Learned

Description of the TMI-2 Accident: OECD-Benchmark final results with ASTEC

IRSN views and perspectives on in-vessel melt retention strategy for severe accident mitigation

ENERGETIC EVENT IN FUEL-COOLANT INTERACTION TEST FARO L-33

5.3. Phenomena that could lead to delayed containment failure: Molten Core-Concrete Interaction (MCCI)

nuclear science and technology

USING NEW VERSIONS OF SEVERE ACCIDENT CODES FOR VVER- 440/213 TYPE NUCLEAR POWER PLANTS

PWR and BWR plant analyses by Severe Accident Analysis Code SAMPSON for IMPACT Project

IMPORTANT SEVERE ACCIDENT RESEARCH ISSUES AFTER ACCIDENT AT FUKUSHIMA DAIICHI NUCLEAR POWER STATION

CHARACTERIZATION OF OXYGEN DISTRIBUTION IN LOCA SITUATIONS

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER S: RISK REDUCTION CATEGORIES

Forschungszentrum Karlsruhe Technik und Umwelt Interner Bericht

The DENOPI project: a research program on SFP under loss-of-cooling and loss-of-coolant accident conditions

Understanding Steam Explosion Micro Interactions: Visualization and Analysis

Research on the Mechanism of Debris Bed Stratification. in Vessel Lower Plenum

Development of Model of Zr-based Claddings Oxidation in Air and Application to Air Ingress Experiments

ALLEGRO Core Degradation Study using MELCOR 2.1

Transcription:

Experiments of the LACOMECO Project at KIT A. MIASSOEDOV 1, M. KUZNETSOV 1, M. STEINBRÜCK 1, S. KUDRIAKOV 2 Z. HÓZER 3, I. KLJENAK 4, R. MEIGNEN 5, J.M. SEILER 6, A. TEODORCZYK 7 1 KIT, Karlsruhe (DE) 2 CEA, Saclay (FR) 3 AEKI, Budapest (HU) 4 JSI, Ljubljana (SI) 5 IRSN, Fontenay-aux-Roses (FR) 6 CEA, Grenoble (FR) 7 WUT, Warsaw (PL) ERMSAR 2012, Cologne March 21 23, 2012

Background Four KIT large-scale experimental facilities QUENCH, LIVE, DISCO, and HYKA are offered to EU partners through the Transnational Access to Large Research Infrastructures (TALI) Project of the 7 th EU FWP: 1 experiment in QUENCH 1 experiment in LIVE 1 experiment in DISCO 3 experiments in HYKA Investigation of accident scenarios from core degradation to melt formation and relocation in the vessel, melt dispersion to the reactor cavity, and hydrogen related phenomena in severe accidents LACOMECO activities are strongly coupled to SARNET2 2

Selected LACOMECO experiments QUENCH: QUENCH-16: Slow oxidation of fuel rod bundles in air atmosphere (KFKI / AEKI, Budapest, Hungary together with INRNE Sofia, Bulgaria) LIVE: LIVE-CERAM: Dissolution kinetics of a pure KNO 3 crust by a KNO 3 /NaNO 3 melt (CEA, Grenoble, France) DISCO: DISCO-FCI: Ex-vessel fuel coolant interaction experiment in the DISCO facility (IRSN, Fontenay-aux-Roses, France) HYKA: UFPE: Upward flame propagation experiment in air-steamhydrogen atmosphere (JSI, Ljubljana, Slovenia) DETHYD: Detonations in partially confined layers of hydrogen-air mixtures (WUT, Warsaw, Poland) HYGRADE: Hydrogen concentration gradients effects understanding and modelling with data from experiments at HYKA (CEA, Saclay, France) 3

QUENCH facility Bundle with 21-31 fuel rod simulators of ~2.5 m length Electrically heated length: ~1 m; max. power ~70 kw Fuel simulated by ZrO 2 pellets Quenching (from the bottom) with water or saturated steam Gas analysis by mass spectrometry (H 2, steam ) Fully instrumented to measure T, p, flow rates, water level, etc. Corner rods removable during tests 4

QUENCH-16 bundle test on air ingress Consequences of possible air ingress into overheated fuel assembly after damaging of RPV or spent fuel container: acceleration in the cladding oxidation fuel rod degradation the release of some fission products, most notable ruthenium Previous integral air ingress experiments: Objectives of the QUENCH-16 test air oxidation after moderate preoxidation in steam slow transition in high temperature air with following temperature excursion role of nitrogen under oxygen-starved conditions hydrogen and nitrogen production during reflood CODEX-AIT-1 and CODEX-AIT-2 tests were performed at AEKI in 1998 and 1999 with small bundles QUENCH-10 performed 2004 at KIT: strong pre-oxidised bundle PARAMETER SF4 performed 2009 at LUCH/Podolsk: very high temperatures on reflood initiation 5

QUENCH-16: gas consumption during air ingress and gas release during reflood reflood N2 consumption air ingress O2 starvation 6

QUENCH-16 summary Compared to QUENCH-10, the QUENCH-16 test was performed with lower pre-oxidation, longer oxygen starvation during air ingress and reflood initiation at lower temperatures Maximal clad oxide thickness before air ingression 130 µm Oxygen starvation duration 835 s on the end of air ingress Temperature escalation from 1800 K to 2420 K upon reflood initiation Release of 24 g nitrogen during reflood compared to 29 g consumed during oxygen starvation period Significant hydrogen release during reflood: 128 g Solidified partially oxidised melt between 300 and 500 mm, relocated from upper elevations 500 800 mm 7

LIVE facility 1:5 scaled RPV, Ø1 m, wall thickness ~30 mm cooling vessel to allow cooling by water or air heating furnace of ~220 l volume volumetric heating system maximum temperatures of up to 1100 C central and non-central melt relocation Pouring spouts Instrumentation thermocouples boundary layer temperature measurements video (optical and IR) cameras recording of the power input extraction of melt sample 8

Background Background and objectives of LIVE-CERAM experiment Design of refractory liners for core catchers and for protection of concrete walls (applications for LWRs and for LMFBRs). Development of model calculations for corium refractory material interaction Few data on corium-refractory material interaction No detailed transient data available for the corium-refractory material interaction for 2D geometry The objective is to simulate ablation process of a high-melting temperature refractory material by low-melting temperature corium KNO 3 as refractory material (melting temperature ~334 C) and a KNO 3 +NaNO 3 melt at, initially, the eutectic composition (melting temperature ~220 C) as corium Provide data for transient corium-refractory material interaction Evolution of boundary layer temperature during ablation transient Evolution of melt pool temperature during ablation transient 9

Crust thickness, mm Crust thickness profile evolution in LIVE-CERAM 8 cm thick KNO 3 refractory wall was created by lifting the heating coils 63 mm higher power density in the lower part of the vessel 160 140 120 100 80 before ablation Ablation 1, 7 kw Ablation 2, 15 kw Ablation phase 1: 7 kw dissolved KNO 3 : 39 kg KNO 3 in melt: original melt: 51% final melt: 60% 60 40 20 0 0 10 20 30 40 50 60 70 80 90 Polar angle, Ablation phase 2: 15 kw dissolved KNO 3 : 24 kg KNO 3 in melt: original melt: 58.2% final melt: 62% 10

Temperature, C Temperature, C LIVE-CERAM: progression of melt temperatures and interface temperatures Ablation phase 1 Ablation phase 2 340 320 max. melt temp Interface temp 340 320 max. melt temp Interface temp 300 300 280 280 260 260 240 240 220 220 200 200 0 20000 40000 60000 80000 100000 120000 0 20000 40000 60000 80000 100000 120000 Time, s Time, s 11

DISCO-FCI background and objectives Experiment similar to those made for DCH, but with water in the pit data for the validation of the codes in geometrical situation closer to the reactor ones than all other available data Bridges the gap between DCH and ex-vessel FCI issues Valuable information for several SARNET2 WPs Melt fragmentation processes for high velocity melt jets obtained by a precise analysis of the size of the debris found (WP7.1, WP5.3) Pressurization of the pit and containment during the mixing (WP7.1) Debris bed characteristics important for coolability: shape, porosity, debris size distribution (WP5.3) Melt and water dispersion out of the pit during the process: initial conditions for MCCI (WP6) Oxidation of the iron to be compared with cases without water: impact of water on DCH (WP7.1) Hydrogen production and potential impact of water for combustion (WP7.2) 12

Design of the DISCO-FCI experiment V melt = 0.0026 m³ V water = 0.125 m³ V w /V m = 48 13

DISCO-FCI: Main results Particle size distribution Pressures in the cavity Containment temperatures MC3D analysis at IRSN 14

HYKA facilities for hydrogen research A3 A1 Analysis of H 2 distribution and combustion processes in severe PWR accidents and BWR incidents Provision of an adequate scientific basis for reliable hydrogen risk reduction in NPPs Parameters of the test vessels A1: 110 m 3, 100 bar A3: 30 m 3, 60 bar A6: 23 m 3, 40 bar A6 15

UFPE: Upward flame propagation experiment in hydrogen-air-steam atmosphere Objectives: Scaling of H 2 combustion in NPP containments for code validations Method: To compare dynamics of the combustion process with similar THAI tests Objects for scaling: PWR HYKA-A2 THAI Blind numerical calculations will be performed within SARNET2 Volume: 125000 m 3 (SF=2100) 220 m 3 (SF=3.7) 60 m 3 (SF=1) Diameter: 50 m (SF=16) 6 m (SF=1.9) 3.2 m (SF=1) Scaling Factor (SF) Height: 63 m (SF=7) 9.1 m (SF=1) 9 m (SF=1) H/D: 1.3 1.5 2.8 Aspect Ratio PWR HYKA-A2 THAI 16

UFPE: Upward flame propagation experiment in hydrogen-air-steam atmosphere Initial conditions: pressure p = 1.5 bar temperature t = 90 o C steam concentration 25 vol. % hydrogen concentration 10 vol. % Integral characteristics to be compared: Max. pressure: p max = 5 bar??? Max. temperature: t max = 900 o C??? Time of combustion: t c = 4.5 s??? THAI HYKA-A2 hidden before blind calculations will be finished Scientific questions: (1) if two experiments are performed in similar facilities of different volumes, with similar experimental conditions, what are the observed qualitative and quantitative differences? (2) how can experimental results obtained in scaled-down experimental facilities be extrapolated to NPP containments 17

HYGRADE: Hydrogen concentration gradients effects Objectives: (1) Flame acceleration and quenching experiments with concentration gradients in obstructed geometry in large scale offered by HYKA-A3 vessel (2) To provide high quality experimental data on overpressures and flame propagation velocities required for numerical code validations Method: to register dynamics of the combustion process, to measure energy (heat) losses (by pressure measurements) Facility: HYKA-A3 (V=33 m 3, H=8 m, D=2.35 m) Ignition A3 vessel Internal obstacles Hydrogen injection systen 18

h / mm h / mm HYGRADE: Hydrogen concentration gradients effects Current state: (1) Ten combustion experiments were performed (2) Data processing is in progress (3) Numerical simulations to be started Main results: (1) Hydrogen distribution experiments were performed in order to create a relatively stable vertical hydrogen concentration gradients from 4 to 13%H 2 and from 13 to 4% H 2 (2) Flame propagation experiments for upper and lower ignitions with positive and negative hydrogen concentration gradients showed that no quenching phenomena in large scale occurred H 2 -concentration 09.01.2012 + 10.01.2012H2 gradients Pressure and temperature records 7000 6000 5000 4000 3000 2000 1000 0 7000 6000 positive 4 5 6 7 8 9 10 11 12 13 12.01.2012 (2) H2 +13.01.2012 / % H2 h, m 7.5 7 6.5 6 5.5 5 4.5 4 3.5 3 negative gradient 12 6 % Flame trajectory 5000 4000 3000 2000 1000 0 negative 4 5 6 7 8 9 10 11 12 13 H2 / % 2.5 2 1.5 1 0.5 Ignition t, s 19

DETHYD: Detonation in partially confined layers of hydrogen-air mixtures Objectives: To find experimentally the critical conditions for DDT and detonation propagation in partially confined layers of hydrogen-air mixtures To provide high quality experimental data on overpressures and flame propagation velocities required for numerical code validations Method: To register dynamics of the detonation process, records of soot tracks (l), max. pressure (P CJ ) Facility: HYKA-A1 (V=100 m 3, L=12 m, D=3.3 m) in a box of 9x3x0.6 m Experimental set-up: Test layer 30 cm Uniform mixture (30%H 2 -air) Stratified mixtures (20-35%H 2 at the top and 0-4%H 2 in air at the bottom) 20

Overpressure Dp [bar] DETHYD: Detonation in partially confined layers of hydrogen-air mixtures Current state: (1) Ten detonation experiments are performed (2) Data processing is completed and report is issued Main results: The critical layer thickness for detonation propagation in a semi-open, uniform, stoichiometric hydrogen-air mixture is greater than approximately h* > 3 cm. This critical value corresponds to the ratio do detonation cell size λ as h* 3λ. The critical hydrogen concentration for steady-state detonation propagation in a stratified layer of H 2 -air mixture was measured of about 16.6 %. It also requires h*=8.5-14 cm of layer thickness or ~3-4 detonation cells across the layer. High speed movie Pressure-time history H 2 -concentration gradient Maximum pressure vs. distance 60 50 Maximum hydrogen concentration 31%H2 27%H2 26%H2 40 25%H2 30 20 10 Detonation cell structure Detonation cell structure 0 0 2 4 6 8 x [m] 10 Uniform mixture (30%H 2 -air) Stratified mixtures (20-35%H 2 at the top and 0-4%H 2 in air at the bottom) 21

Acknowledgements The authors gratefully acknowledge funding by Euratom to support the work within LACOMECO project 22

and finally Thank you for your attention! 23