Device Ecosystem at the Edge - Manufacturing Scenario

Similar documents
PlantConnect SFactory

MachineMetrics Production

Proposed Data Acquisition & Handling System for Pilot Emission Trading Scheme in India

Cisco Connected Asset Manager for IoT Intelligence

Smart Diagnostics Application Note Flexible and Open Integration

INDUSTRY 4.0 SMART FACTORY. Training that prepares you for the future. 1 st Edition

Overall Equipment Effectiveness Solution Real-time Machine Availability Management for Maximizing Operational Excellence

Edge Processing - A Paradigm for Instantaneous Value Realization

Content. 1. Corporate goals: machine builders / end customers 2. Solution strategies 3. Requirements 4. Solutions 5. Solution validation

PUBLIC. Copyright 2018 Rockwell Automation, Inc. All Rights Reserved.

KEBA Industry

su per viso ry shellomatic.com

Smart Factory Web: Goals. Smart Factory Web: a testbed for IIC and Industrie 4.0 8/22/2018

Fuelling progress through Technological Excellence and Domain Expertise... OG Technologies Pte. Ltd.

Accelerating Innovation in the Industrial Internet of Things

Improve the productivity of any discrete parts production process

ThingWorx Manufacturing Apps

Azure IoT Suite. Secure device connectivity and management. Data ingestion and command + control. Rich dashboards and visualizations

Platform Components Overview

Your strategic MES partner. By: Sam Chen

Intel Factories IOT JOURNEY BRINGING OT and IT Together to Succeed

Why Connecting to the Internet of Things Project List

IoT-TICKET YOUR TICKET TO INTERNET OF THINGS AND BEYOND...

PharMaster. Manufacturing Execution System (MES) EN product brochure

Leaders In Industrial Automation Control Engineering and IIoT Communication

Machine-safety in factory automation

Factory Information Integration and Utilization

Industry Digitizing the Shop Floor to Achieve Operational Excellence & Customer Successes

Performance Automation

Smart Factory Web overview

Industrial IoT Solution Architecture Design From Connectivity to Data

The IoT Solutions Space: Edge-Computing IoT architecture, the FAR EDGE Project John Professor Athens Information

PlantMaster. Our offering. Your benefits. Manufacturing Execution System (MES) EN product brochure A00558

PlantMaster. Our offering. Your benefits. Manufacturing Execution System (MES) EN product brochure A00558

The Internet of Things in the Context of Manufacturing

Cross-system Integration of an Intelligent Factory

Wonderware edna. Real-time enterprise data historian

OPC UA for machine vision

DIGITAL DISRUPTION AT THE DOOR STEPS OF INDUSTRIAL ENTERPRISE. Digitalization 2.0 and Future of Enterprises

> Solutions for. Industry 4.0

MANUFACTURING EXECUTION SYSTEM. Global Dom coordinates the whole plant by providing an integrated control and automation system.

Outcomes, Insights and Best Practices from IIC Testbeds: Smart Factory Web Testbed

THE PROFIenergy PROFILE

SENTRON Powermanager. SENTRON Powermanager. Identifying hidden potential for energy optimization and savings. Answers for industry.

Industry 4.0 Training for the factory of the future

Industry 4.0 Qualification for the factory of the future

Case Study: Implementation of EnviroConnect For Forbes Marshall Pvt. Ltd.

Alexander Hein 26 September 2017 PREPARE FOR THE NEW ERA OF IIOT USING OPC UA CONNECTIVITY

Smart Energy Software Solutions

Predicting not just detecting

Maturing IoT solutions with Microsoft Azure

THE IOT CORE INDUSTRIAL EDGE INTELLIGENCE PLATFORM

Wonderware System Platform 2017 Real-time Operations Control Platform for Supervisory, HMI, SCADA and IIoT

Machine Monitoring and Indication Solutions

Chapter 1. Introduction to Instrumentation and Process Control (Systems and Applications)

Chapter 1. Introduction to Instrumentation and Process Control (Systems and Applications)

The contribution of IoT in process manufacturing

Cisco Kinetic for Manufacturing

Sensors for Industry 4.0. ARBURG Technology Days Balluff GmbH.

Il valore dell IoT per il settore HighTech & Electronics Leonardo Cipollini Siemens Industry Software

Accelerating IIOT Adoption with OPC UA

MANAGING SMALL SPACES. How Connectivity, the Cloud, Big Data and Mobility are Revolutionizing Distributed IT and Edge Management

Outthink Complexity with Industrie 4.0 Pilot Project at John Deere Werk Mannheim, Germany

HID Location Services and Condition Monitoring. Enabled by Bluvision

Connected Automation: Showcase Manufacturing i4.0

Cisco Asset Management Solution IoT Regional Forum - Brazil. Adriano Mazza IoT Systems CSE June 2016

Industry 4.0 IT meets Industry

IoT Business Brief Industrial Manufacturing Business

Accelerating Industrial Performance. Copyright 2014 Rockwell Automation, Inc. All Rights Reserved.

Automation University Aarau 2017

(IIoT) to Improve Overall Equipment

Smart Machines & Equipment. Delivering on the Promise of The Connected Enterprise

Realize the potential of a connected factory

SAP Manufacturing Execution (SAP ME) Integrated and Real Time Production Execution. Eric Thieren Solution Sales Focused Business Solutions EMEA

Four IoT Platform Must-Haves That Can Accelerate Your IoT Deployment

HID Location Services and Condition Monitoring. Enabled by Bluvision

White Paper Realize Industrial IoT

Reimagine Your Business with Digital Transformation IoT Regional Forum Sao Paulo

Automotive Parts Supplier Launches IoT Initiative in SixWeek Sprints Powered by PTC. IoT Manufacturing Solutions. The Customer CASE STUDY

SMART Mining solution

Evolving Technology Trends Impacting Manufacturing Industry

HARTING smart Power Networks in the SmartFactory KL

Tra n s fo r m i n g Yo u r Wa re h o u s e 4. 0 B u s i n e s s w i t h T h e S m a r t C o n n e c t e d Wa re h o u s e

Service management solutions White paper. Six steps toward assuring service availability and performance.

Affordable Building Automation System Enabled by the Internet of Things (IoT)

REPLY Enabling Industry 4.0 Execution. Jason Miller, CSCP

Internet of Things and Industry 4.0 facilitating the future of Manufacturing

What Do You Need to Ensure a Successful Transition to IoT?

BACSOFT IOT PLATFORM: A COMPLETE SOLUTION FOR ADVANCED IOT AND M2M APPLICATIONS

Data collection - cloud-based analytics - enhanced productivity.

Magnus Ekbäck, VP Strategy and Business Development Sandvik Coromant

CONNECTED LOGISTICS. Denis SENPERE Inspirage Europe Vejle, October 2 nd Inspirage / Oracle All rights reserved. Courtesy Alstom / Amtrak

Online Remote Monitoring (Internet of Things IoT) and enterprise software

Improved Asset Management with Industrial IoT, PdM, and EAM

Process Line Control Solutions. Rockwell Automation Drive Systems

Baseline assessments. The Connected Enterprise Execution Model. Stage 1. Data and reporting. Network infrastructure

Digitalization Changes Everything Start your IoT Journey Today. April 12th IABSC Monthly Meeting Stephan Ihmels

Transcription:

Author: Sujata Tilak Managing Director Ascent Intellimation Pvt. Ltd. sujata.tilak@aiplindia.com IIC Journal of Innovation - 1 -

INTRODUCTION Any manufacturing setup, whether discrete or process, has a large number and variety of machines and assets. These include production machines, robots, conveyors, process equipment, utilities such as chillers, cooling towers, instruments and many others. Last but not the least, it includes people! So the Edge is pretty colorful! Smart Manufacturing denotes a manufacturing paradigm that creates and uses data generated from machines and other sources to achieve high productivity and quality as well as respond rapidly to changes in demand. This is achieved by the convergence of Operations Technology (OT), Information Technology (IT), Industrial Automation & Control Systems (IACS), Networking and Communications. Many of the Smart Manufacturing systems concentrate only on the main production equipment. But that is not enough. To make the shop floor truly Smart, an Industrial Internet of Things (IIoT) system has to include the entire manufacturing landscape in the set up consisting of machines, assets, devices and people. EDGE ECOSYSTEM Let us take a look at different types of devices living in the Edge. We will use the term device in a broad sense to represent anything that is connected to an Edge Gateway. We will categorize devices as follows: 1. Production Device These are production machines / assembly lines / process lines that carry out operations on the raw material / intermediate products to produce intermediate products / final products. 2. Supporting Device These are machines / components that help the production process such as robots, conveyor belts, etc. Supporting devices include bar code / radio frequency identification (RFID) readers, cameras, etc. 3. Utilities These provide required resources including energy for production and also chillers, cooling towers, boilers, compressors, etc. 4. Test Device Various testbeds, instruments and gauges used in testing and calibration. 5. IIoT Human Machine Interface (HMI) IIoT HMI represents people at the Edge. This can be an HMI, a mobile / tablet or even a wearable device (We call it IIoT HMI to differentiate it from the HMI of the machines). More categories may be discovered as one explores the Edge Ecosystem. Device Composition The device as perceived by a user may be comprised of multiple components, each connected separately to the gateway. For example, an Injection Moulding Machine may be comprised of the following: machine PLC (OPC UA), temperature controller (4-20 ma signal), dehumidifier (4- - 2 - September 2017

Figure 1: Edge Object Model 20 ma signal), energy meter (Modbus RTU), etc. Protocols supported by each device are shown in (parentheses). For the gateway, there are 4 physical devices, each having its own connection and protocol. But for the IIoT system user, this is a single aggregated device, injection molding machine. In fact, the user may not even be aware of the existence of these separate physical devices. Edge Object Model With the above considerations, our Edge Object Model looks something like the model reflected in Figure 1. EDGE PROCESSING Each Edge Device shown in the model above is continuously generating data about its status, values of different parameters affecting the production such as temperature, pressure, current, etc. and production data such as cycle time and parts produced, etc. But the Edge is not just about data generation. Local processing at the Edge is critical to ensure real-time decision making. Thus, a smart manufacturing system should manage among other things: - Edge workflow - Local high-level control like GO/ NO GO - Edge analytics IIC Journal of Innovation - 3 -

- Asset condition monitoring Edge Workflow This is an often neglected area. But for continued and sustained usage of the system in the long term, it is absolutely essential that the usage is integrated into shop floor standard operating procedure (SOP). For this, a smart manufacturing system has to understand shop floor workflow and sync with it. This necessitates incorporation of multiple behavior models for the above data model. Each behavior model defines behavior of each device type, their interactions with each other and with people. The data model may expand due to further specialization within a device type based on its behavior: For example, specialization of Production Devices into bulk production and tool room machines. Furthermore, a Workflow Modeler is needed to model interactions. This is comprised of a rule engine and a set of predefined or custom actions. The Workflow Modeler will manage production schedule, interlocks to control operations flow and user actions, triggers to initiate systemic and extra-systemic messaging, etc. It allows the IIoT system to take contextual decisions in real-time and exercise a required degree of control over the devices, people and their interactions. Implementation of the workflow modeler will be done in platform tier (cloud / onpremises) or Edge or, most likely, in combination. Let us look at a specific use case from discrete manufacturing. Manufacturing Use Case A factory manufacturing auto components has the following devices (only devices relevant to our discussion are listed): - Injection molding machine (Edge o Injection molding machine (Production o Dehumidifier1 & Dehumidifier2 (supporting only one active at a time and the other is on standby o Energy meter (supporting o HMI (IIoT HMI) - CNC machining center (Edge o CNC machining center (Production o Energy meter (supporting o HMI (IIoT HMI) - Surface grinder (Edge o Surface grinder (Production o Energy meter (supporting o HMI (IIoT HMI) - Cooling system (Utility) - Pick and Place Robots (supporting - Assembly line machine 1 (Production - Assembly line machine 2 (Production - Vision system (Test - Laser label printer (Production - Conveyor belt (supporting - HMI for assembly line (IIoT HMI) - 4 - September 2017

Injection molding machine Robot Metal Part Plastic Part Robot Assembl y m/c 1 Assembl y m/c 2 Vision system Laser printer CNC machining center Surface grinder Conveyor belt Cooling system IIoT System Production Schedule Operations Flow User Actions Messaging The diagram in Figure 2 depicts the workflow. The following are some of the workflow rules / behaviors that should be incorporated / captured in an IIoT system: 1. Cyclic behavior of production devices. See figure 3. 2. Sequence of operations on metal parts. 3. Timely alerts required to ensure availability of parts and additional components at each stage of assembly. Figure 2: Workflow Block Diagram 4. Ensure that the operator enters downtime reason for any device before it is restarted. 5. Capture minor stoppages of machines and raise appropriate alerts in real-time. 6. Capture the results of testing by vision system, reasons for rejection and raise appropriate real-time alerts for improvement. 7. Regulation of cooling system output depending upon the amount of equipment running. Note that cooling systems may be supplying coolant to IIC Journal of Innovation - 5 -

much more equipment than the set shown here. Let us take an example of a Workflow Modeler of a Smart Factory solution. It allows users to incorporate rules like these. For example, #4 is enforced by adding a relay in the machine start circuit. This relay is controlled by HMI based on machine status and user input. Another example is #5 minor stoppages are captured by the Edge software and sent to the server. The server analyzes the data stream and raises alerts based on the rules configured by user. IIoT HMI The workflow described in the previous section requires shop floor users to interact with the system and provide real-time inputs. How do they interact with an IIoT system without affecting their productivity? Also, how do they get the value from an IIoT system in real-time when they are working on the shop floor? IIoT HMI is the solution and an important part of the Edge Ecosystem. It will have direct connectivity (wired or wireless) to the Edge Gateway, allowing it to provide output, even when the server link is down. It shows real-time analytics to users. More importantly, users provide real-time inputs to the system via HM (e.g. product change entry, downtime reasons entry, etc.). An important characteristic of HMI is its easy accessibility to the user on the shop floor. So a mobile or wearable device is preferable. Edge Analytics The Edge Gateway should be capable of doing some minimum and essential stream analytics to ensure value to users even when Figure 3: Production Equipment Behavior the link to the server is down. In addition to network challenges, the speed of dissemination of actionable output will necessitate a local loop, rather than going via the server. Of course, we will never miss capturing this and using it for machine learning and analytics at the server level. Some of the typical conditions could include capturing actual production and comparing expected versus actual production, raising critical alarms which need instant attention, trends of parameters, etc. Asset Condition Monitoring Asset condition monitoring and predictive / prescriptive maintenance are an important part of IIoT offerings. The condition monitoring module must have the capability of handling not only production equipment, - 6 - September 2017

but all types of assets. In this context, the following are required: 1. Able to look at a group of physical devices as a single asset 2. Handle complexities like standby physical devices. 3. Consider workflow and interdependencies of assets when managing / suggesting maintenance activities. CONCLUSION In conclusion, the Edge is a very important part of any IIoT system and understanding its intricacies is crucial. Smart manufacturing systems must map the data and behavior models of the shop floor. It should also map shop floor workflow so as to take contextual decisions in real-time and exercise some degree of control over the devices, people and their interactions. Edge processing on the shop floor includes workflow, local high-level control, Edge analytics and asset condition monitoring. IIoT HMI plays a vital role in connecting users to the system without affecting their productivity. Ascent Intellimation solution PlantConnect SFactory incorporates the concepts discussed in this article. Return to IIC Journal of Innovation landing page for more articles and past editions. The views expressed in the IIC Journal of Innovation are the contributing authors views and do not necessarily represent the views of their respective employers nor those of the Industrial Internet Consortium. 2017 The Industrial Internet Consortium logo is a registered trademark of Object Management Group. Other logos, products and company names referenced in this publication are property of their respective companies. IIC Journal of Innovation - 7 -