Thin film PV Technologies Thin film Silicon PV Technology

Similar documents
An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates.

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator

Production of PV cells

Research on high efficiency and low cost thin film silicon solar cells. Xiaodan Zhang

Silicon thin film e coating per il fotovoltaico

1 Introduction 1.1 Solar energy worldwide

Polycrystalline and microcrystalline silicon

Amorphous Silicon Solar Cells

KGC SCIENTIFIC TYPES OF SOLAR CELL

Thin film solar cells

Using Mass Metrology for Process Monitoring and Control During 3D Stacking of IC s

The next thin-film PV technology we will discuss today is based on CIGS.

Modeling of Tandem solar cell a-si/a-sige using AMPS-1D program

Thin film photovoltaics: industrial strategies for increasing the efficiency and reducing costs

Amorphous silicon thin film solar cells

Review of Photovoltaic Solar Cells. Op5cs for Energy Course 11/5/13 Liz Lund

Study of a-sige:h Films and n-i-p Devices used in High Efficiency Triple Junction Solar Cells.

HANA BENEŃOVÁ 1, PETR MACH 2

The contemporary Nickel Cycle

Substrate Temperature Control of Narrow Band Gap Hydrogenated Amorphous Silicon Germanium for Solar Cells

Sensors & Transducers 2014 by IFSA Publishing, S. L.

Evidence of Performance regarding the requirements for float glass according to EN 572

Two-dimensional Computer Modeling of Single Junction a-si:h Solar Cells

13.4 Chalcogenide solar cells Chalcopyrite solar cells

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP

Where do we start? ocreate the Universe oform the Earth and elements omove the elements into their correct positions obuild the atmosphere and oceans

Thin film CdS/CdTe solar cells: Research perspectives

Temperature dependence of the optical absorption coefficient of microcrystalline silicon

7 µc-si:h n-i-p solar cells on textured Ag ZnO:Al back reflectors

Transparent oxides for selective contacts and passivation in heterojunction silicon solar cells

Recap of a-si and a-si cell technology Types of a-si manufacturing systems a-si cell and module manufacturing at Xunlight. Xunlight Corporation

Work hard. Be nice. Name: Period: Date: UNIT 2: Atomic Concepts Lesson 1: Give me an element, any element

THIN FILM SILICON PV TECHNOLOGY

PV research in Neuchâtel: from high efficiency crystalline cells to novel module concepts

Crystalline Silicon Solar Cells

Thin Film PV Transparent Conductive Oxide History, Functions, and Developments. Chris Cording AGC Flat Glass North America

E3 Redox: Transferring electrons. Session one of two First hour: Discussion (E1) 2nd and 3rd hour: Lab (E3, Parts 1 and 2A)

REAR SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL AND 2D SIMULATION STUDY

The Potential of Photovoltaics

Solar cell technologies present and future

A ZnOS Demonstrator Solar Cell and its Efficiency

CHM101 SECOND EXAM 162. Chemistry 101 SECOND Exam (162) Name: Date: 30/4/2017

New Materials from Mathematics Real and Imagined

Crystal Structure. Insulin crystals. quartz. Gallium crystals. Atoms are arranged in a periodic pattern in a crystal.

PHOTOVOLTAIC CELLS

Lecture 8 : Solar cell technologies, world records and some new concepts. Prof Ken Durose University of Liverpool

Properties of Inclined Silicon Carbide Thin Films Deposited by Vacuum Thermal Evaporation

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 7: Chemical systems

Thermophotovoltaic Cells Based on Low-Bandgap Compounds

systematic table of elements

Nanoparticle generation using sputtering plasmas

Chem : Oct. 1 - Oct. 7

Precursors with Metal-Nitrogen Bonds for ALD of Metals, Nitrides and Oxides

Nanoscience in (Solar) Energy Research

Polycrystalline CdS/CdTe solar cells

FRONT END PROCESSES - CLEANING, LITHOGRAPHY, OXIDATION ION IMPLANTATION, DIFFUSION, DEPOSITION AND ETCHING

Introduction of the a-sic:h/a-si:h heterojunction solar cell and update on thin film Si:H solar modules

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers

Chemistry*120* * Name:! Rio*Hondo*College* * * EXAMPLE*EXAM*1*!

Chem : Feb.12-17

Hybrid sputtering/evaporation deposition of Cu(In,Ga)Se 2 thin film solar cells

New Applications of Old Materials From Paint to Solar Cells

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material

Grid-Tied PV System with Energy Optimization

Winter College on Optics and Energy February Thin Film Technologies. D. Bagnall Southampton University U.K.

Available online at ScienceDirect. Energy Procedia 102 (2016 ) 64 69

Materials, Electronics and Renewable Energy

Complementary Metal-Oxide-Semiconductor Very Large-Scale Integrated Circuit Design

Introduction. 1.1 Solar energy

Solar Cell: From Research to Manufacture

Marina Foti IMS R&D. Convegno su Tecnologie, tecniche impiantistiche e mercato del fotovoltaico. 15 Ottobre2012 Mondello(PA)

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

The Laser Ablation as a perspective technique for the deposition of metal-silicide nanoparticles in situ embedded in PECVD of Si:H thin films

State-of-the-art Flame Synthesis of Nanoparticles

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.9, No.01 pp , 2016

Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839)

Gallium Arsenide monocrystalline

PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS

Thin-film Silicon Photovoltaics Miro Zeman

Introduction to Solar Cell Materials-I

Li Mass = 7 amu Melting point C Density 0.53 g/cm 3 Color: silvery

New Materials from Mathematics Real and Imagined

ROLL TO ROLL FABRICATION PROCESS OF THIN FILM SILICON SOLAR CELLS ON STEEL FOIL

Material Needs for Thin-Film and Concentrator Photovoltaic Modules

DEPTH SELECTIVE LASER SCRIBING OF THIN FILMS FOR ROLL-TO-ROLL PRODUCTION OF SILICON SOLAR CELLS Paper M902

Nanoparticle Solar Cells

Available online at ScienceDirect. Energy Procedia 84 (2015 ) 17 24

From theoretical chemistry to nuclear physics and back

Families on the Periodic Table

5 Stability of a-sige:h as material, single junction and tandem solar cells

Amorphous Silicon Based Solar Cells

Summary and Scope for further study

Lecture 10: Semiconductors

Solar electricity from and for buildings

Si Quantum Dots for Solar Cell Applications

Growth and Characterization of Thin Film Nanocrystalline Silicon Materials and Solar Cells

Insights to high efficiency CIGS thin-film solar cells and tandem devices with Perovskites

Technologie Evolutives et Disruptives pour les prochaines générations de cellules solaires Silicium

Amorphous silicon thin film solar cells deposited entirely by Hot-Wire Chemical. Vapour Deposition at low temperature (<150 ºC)

Transcription:

Thin film PV Technologies Thin film Silicon PV Technology Week 5.2 Arno Smets

Thin film Silicon solar cell

Semiconductor Materials IV semiconductors: Si, Ge Rn Xe Kr Ar Ne He At I Br Cl F Po Te Se S O Bi Sb As P N Pb Sn Ge Si C Tl In Ga Al B Hg Cd Zn Au Ag Cu VlllA VllA VlA VA lva lllva llb lb 2 10 18 36 34 86 9 17 35 53 85 8 16 34 52 84 7 15 33 51 83 6 14 32 50 82 5 13 31 49 81 30 48 80 29 47 97 4.003 20.183 39.948 83.80 131 30 (222) 35.453 79.909 126 904 (210) 18.998 32.064 78.96 127 60 (210) 15.999 30.974 74.922 121.75 208.980 14.007 28.086 72.59 118 69 207.19 12.011 26.982 69.72 204.37 10.811 65.37 112.40 200.59 63.54 107.870 196.967 114 82 1 H

Semiconductor Materials IV semiconductors: Si, Ge Rn Xe Kr Ar Ne He At I Br Cl F Po Te Se S O Bi Sb As P N Pb Sn Ge Si C Tl In Ga Al B Hg Cd Zn Au Ag Cu VlllA VllA VlA VA lva lllva llb lb 2 10 18 36 34 86 9 17 35 53 85 8 16 34 52 84 7 15 33 51 83 6 14 32 50 82 5 13 31 49 81 30 48 80 29 47 97 4.003 20.183 39.948 83.80 131 30 (222) 35.453 79.909 126 904 (210) 18.998 32.064 78.96 127 60 (210) 15.999 30.974 74.922 121.75 208.980 14.007 28.086 72.59 118 69 207.19 12.011 26.982 69.72 204.37 10.811 65.37 112.40 200.59 63.54 107.870 196.967 114 82 1 H

Semiconductor Materials IV semiconductors: Si, Ge Rn Xe Kr Ar Ne He At I Br Cl F Po Te Se S O Bi Sb As P N Pb Sn Ge Si C Tl In Ga Al B Hg Cd Zn Au Ag Cu VlllA VllA VlA VA lva lllva llb lb 2 10 18 36 34 86 9 17 35 53 85 8 16 34 52 84 7 15 33 51 83 6 14 32 50 82 5 13 31 49 81 30 48 80 29 47 97 4.003 20.183 39.948 83.80 131 30 (222) 35.453 79.909 126 904 (210) 18.998 32.064 78.96 127 60 (210) 15.999 30.974 74.922 121.75 208.980 14.007 28.086 72.59 118 69 207.19 12.011 26.982 69.72 204.37 10.811 65.37 112.40 200.59 63.54 107.870 196.967 114 82 1 H

Semiconductor Materials IV semiconductors: Si, Ge Rn Xe Kr Ar Ne He At I Br Cl F Po Te Se S O Bi Sb As P N Pb Sn Ge Si C Tl In Ga Al B Hg Cd Zn Au Ag Cu VlllA VllA VlA VA lva lllva llb lb 2 10 18 36 34 86 9 17 35 53 85 8 16 34 52 84 7 15 33 51 83 6 14 32 50 82 5 13 31 49 81 30 48 80 29 47 97 4.003 20.183 39.948 83.80 131 30 (222) 35.453 79.909 126 904 (210) 18.998 32.064 78.96 127 60 (210) 15.999 30.974 74.922 121.75 208.980 14.007 28.086 72.59 118 69 207.19 12.011 26.982 69.72 204.37 10.811 65.37 112.40 200.59 63.54 107.870 196.967 114 82 1 H

Semiconductor Materials IV semiconductors: Si, Ge VlllA 1 H 29 lb Cu 63.54 30 llb Zn 65.37 lllva 5 13 31 B 10.811 Al 26.982 Ga 69.72 6 lva 14 32 C 12.011 Si 28.086 Ge 72.59 7 15 33 VA N 14.007 P 30.974 As 74.922 8 VlA 16 34 O 15.999 S 32.064 Se 78.96 9 VllA 17 35 F 18.998 Cl 35.453 Br 79.909 2 10 18 36 He 4.003 Ne 20.183 Ar 39.948 Kr 83.80 a- Si x Ge 1- x :H nc- Si x Ge 1- x :H 47 97 Ag 107.870 Au 196.967 48 80 Cd 112.40 Hg 200.59 49 81 In 114 82 Tl 204.37 50 82 Sn 118 69 Pb 207.19 51 83 Sb 121.75 Bi 208.980 52 84 Te 127 60 Po (210) 53 85 I 126 904 At (210) 34 86 Xe 131 30 Rn (222)

Semiconductor Materials IV semiconductors: Si, Ge VlllA 1 H 29 lb Cu 63.54 30 llb Zn 65.37 lllva 5 13 31 B 10.811 Al 26.982 Ga 69.72 6 lva 14 32 C 12.011 Si 28.086 Ge 72.59 7 15 33 VA N 14.007 P 30.974 As 74.922 8 VlA 16 34 O 15.999 S 32.064 Se 78.96 9 VllA 17 35 F 18.998 Cl 35.453 Br 79.909 2 10 18 36 He 4.003 Ne 20.183 Ar 39.948 Kr 83.80 a- Si x Ge 1- x :H nc- Si x Ge 1- x :H a-si x C 1-x :H 47 97 Ag 107.870 Au 196.967 48 80 Cd 112.40 Hg 200.59 49 81 In 114 82 Tl 204.37 50 82 Sn 118 69 Pb 207.19 51 83 Sb 121.75 Bi 208.980 52 84 Te 127 60 Po (210) 53 85 I 126 904 At (210) 34 86 Xe 131 30 Rn (222)

Semiconductor Materials IV semiconductors: Si, Ge VlllA 1 H 29 47 97 lb Cu 63.54 Ag 107.870 Au 196.967 30 48 80 llb Zn 65.37 Cd 112.40 Hg 200.59 lllva 5 13 31 49 81 B 10.811 Al 26.982 Ga 69.72 In 114 82 Tl 204.37 6 lva 14 32 50 82 C 12.011 Si 28.086 Ge 72.59 Sn 118 69 Pb 207.19 7 15 33 51 83 VA N 14.007 P 30.974 As 74.922 Sb 121.75 Bi 208.980 8 VlA 16 34 52 84 O 15.999 S 32.064 Se 78.96 Te 127 60 Po (210) 9 VllA 17 35 53 85 F 18.998 Cl 35.453 Br 79.909 I 126 904 At (210) 2 10 18 36 34 86 He 4.003 Ne 20.183 Ar 39.948 Kr 83.80 Xe 131 30 Rn (222) a- Si x Ge 1- x :H nc- Si x Ge 1- x :H a- Si x C 1- x :H nc- Si x O 1- x :H

Amorphous Network Source: www.youtube.com/watch?v=oyvumucwhpo

2 Material Phases: amorphous and microcrystalline silicon Several 100nm ~30-50 nm sta[onary columnar growth incuba[on zone substrate

Indirect band gap Energy photon phonon Momentum

10-1 0.5 1.0 1.5 2.0 2.5 3.0 Comparison with c- Si: ladce Wavenlength [micrometers] 2.48 1.24 0.83 0.62 0.50 0.41 10 6 Absorp[on coefficient [cm - 1 ] 10 5 10 4 10 3 10 2 10 1 10 0 a- Si Ge:H c- Si Photon [ev]

absorp[on no absorp[on 2.00 alloy Band gap 1.75 1.6-1.9 ev P(λ) (x10 9 W m - 2 m - 1 ) 1.50 1.25 1.00 0.75 0.50 AM 1.5 0.25 0.00 0 500 1000 1500 2000 2500 Wavenlength (x10-9 m)

absorp[on no absorp[on 2.00 alloy Band gap 1.75 a-si:h 1.6-1.9 ev 1.1-1.3 ev P(λ) (x10 9 W m - 2 m - 1 ) 1.50 1.25 1.00 0.75 0.50 AM 1.5 0.25 0.00 0 500 1000 1500 2000 2500 Wavenlength (x10-9 m)

absorp[on no absorp[on 2.00 alloy Band gap 1.75 a-si:h a-sige:h 1.6-1.9 ev 1.1-1.3 ev 1.4-1.6 ev P(λ) (x10 9 W m - 2 m - 1 ) 1.50 1.25 1.00 0.75 0.50 AM 1.5 0.25 0.00 0 500 1000 1500 2000 2500 Wavenlength (x10-9 m)

absorp[on no absorp[on 2.00 alloy Band gap 1.75 a-si:h a-sige:h a-sic:h 1.6-1.9 ev 1.1-1.3 ev 1.4-1.6 ev >1.9 ev P(λ) (x10 9 W m - 2 m - 1 ) 1.50 1.25 1.00 0.75 0.50 AM 1.5 0.25 0.00 0 500 1000 1500 2000 2500 Wavenlength (x10-9 m)

absorp[on no absorp[on 2.00 alloy Band gap 1.75 a-si:h a-sige:h a-sic:h nc-sio:h 1.6-1.9 ev 1.1-1.3 ev 1.4-1.6 ev >1.9 ev >2.0 ev P(λ) (x10 9 W m - 2 m - 1 ) 1.50 1.25 1.00 0.75 0.50 AM 1.5 0.25 0.00 0 500 1000 1500 2000 2500 Wavenlength (x10-9 m)

Defects in the ladce

An p- i- n juncion Back Reflector TCO Glass

: drij mechanism required for transport p- a- SiC:H Intrinsic n- E Fermi

Principle of p- i- n juncion p- a- SiC:H Intrinsic n- Conduc[on band E Fermi Valence band

A typical p- i- n juncion Back Reflector n i p TCO TCO Glass

Spectral Irradiance (W/m 2 /nm) 2.5 2 1.5 1 0.5 0 UV O 3 AbsorpIon Visible Solar RadiaIon Spectrum O 2 Infrared Sunlight Top of the Atmosphere H 2 O 5800 K Blackbody Spectrum H 2 O H 2 O Radia[on at Sea Level H 2 O AbsorpIon Bands CO 2 H 2 O 250 500 750 1000 1250 1500 1750 2000 2250 2500 Wavelength (nm) Does not cover en[re spectrum! Back Reflector TCO Glass

Spectral Irradiance (W/m 2 /nm) Solar RadiaIon Spectrum 2.5 UV Visible Infrared 2 Sunlight Top of the Atmosphere 5800 K Blackbody Spectrum 1.5 1 H 2 O Radia[on at Sea Level 0.5 H 2 O AbsorpIon Bands O 2 H 2 O CO O 2 H 2 O 3 H 0 2 O 250 500 750 1000 1250 1500 1750 2000 2250 2500 Wavelength (nm) AbsorpIon Does not cover en[re spectrum! Back Reflector TCO Glass

Back Reflector Solar RadiaIon Spectrum 2.5 UV Visible Infrared Spectral Irradiance (W/m 2 /nm) 2 1.5 1 0.5 0 O 3 AbsorpIon A- Si:H O 2 Sunlight Top of the Atmosphere H 2 O 5800 K Blackbody Spectrum H 2 O H 2 O Radia[on at Sea Level H 2 O AbsorpIon Bands CO 2 H 2 O 250 500 750 1000 1250 1500 1750 2000 2250 2500 Wavelength (nm) AbsorpIon Beler spectrum coverage! µc- Si:H TCO Glass

The / tandem E Fermi 150-300 nm 1000-2000 nm

p- a- SiC:H Intrinsic n- p- n- Conduc[on band E Fermi Valence band 150-300 nm 1000-2000 nm

Double- juncion approach 30 Single pin 30 Tandem 30 25 Back Reflector 25 The / Back Reflector 25 J (ma/cm 2 ) 20 15 10 5 TCO Glass flexible substrate J (ma/cm 2 ) 20 15 10 5? µc- Si:H TCO Glass 20 15 10 5 0 0.0 0.2 0.4 0.6 0.8 1.0 1.4 1.6 0 0.0 0.2 0.4 0.6 0.8 1.0 1.4 1.6 0 Voltage (V) Voltage (V)

Double- juncion approach 30 Single pin 30 Tandem 30 25 Back Reflector 25 The / Back Reflector 25 J (ma/cm 2 ) 20 15 10 5 TCO Glass flexible substrate J (ma/cm 2 ) 20 15 10 5 µc- Si:H TCO Glass 20 15 10 5 0 0.0 0.2 0.4 0.6 0.8 1.0 1.4 1.6 0 0.0 0.2 0.4 0.6 0.8 1.0 1.4 1.6 0 Voltage (V) Voltage (V)

MulI- juncion based solar cells Ag Ag Ag Ag 180 Ito Ito 160 ΖnΟ Ag Flexible SS / / n- i- p / n- i- p / n- i- p a- Si:Ge:H a- Si:Ge:H ΖnΟ Ag Flexible SS a- Si:Ge:H / a- Si:Ge:H / n- i- p / n- i- p / n- i- p AM 1.5 spectum (mw/(cm 2 μm)) 140 120 100 80 60 40 20 0 400 500 600 700 800 900 1000 1100 1200 Wavelength (nm)

/a- SiGe:H/ mul5- junc5ons United Solar: IniIal efficiency: 16.3 % B. Yan, Appl. Phys. Le1. 99, 113512 (2011).

MulI- juncion approach 10.1% 12.3% Ag 13.4% 16.3% (ini[al) Ag lto Ito Ito Back Reflector Ag Ag Ag Ag Back Reflector a- Si:Ge:H a- Si:Ge:H a- Si:Ge:H TCO TCO ΖnΟ ΖnΟ ΖnΟ Glass Flexible substrate Glass Ag Flexible SS Ag Flexible SS Ag Flexible SS p- i- n / p- i- n / p- i- n / p- i- n / / n- i- p / n- i- p / n- i- p a- Si:Ge:H / a- Si:Ge:H / n- i- p / n- i- p / n- i- p / a- Si:Ge:H / n- i- p / n- i- p / n- i- p

MulI- juncion approach 12.3% Ag 13.4% lto Back Reflector Ag TCO Glass / p- i- n / p- i- n ΖnΟ Ag Flexible SS / / n- i- p / n- i- p / n- i- p

MulI- juncion approach 12.3% Ag 13.4% lto Back Reflector Ag TCO Glass / p- i- n / p- i- n ΖnΟ Ag Flexible SS / / n- i- p / n- i- p / n- i- p

Glass Front TCO A- Si:H Black metal Encapsulant

TF silicon modules manufacturing Glass Front TCO Black metal Encapsulant

TF silicon modules manufacturing 1. Glass plates used as substrate carrier Glass

TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition Glass Front TCO

TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 Glass Front TCO

TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 4. Si:H layers deposition Glass Front TCO

TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 4. Si:H layers deposition 5. Laser scribing: L2 Glass Front TCO

TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 4. Si:H layers deposition 5. Laser scribing: L2 Glass Front TCO Black metal 6. Back metal deposition

TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 4. Si:H layers deposition 5. Laser scribing: L2 Glass Front TCO Black metal 6. Back metal deposition 7. Laser scribing: L3

TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 4. Si:H layers deposition 5. Laser scribing: L2 6. Back metal deposition Glass Front TCO Black metal Encapsulant 7. Laser scribing: L3 8. Encapsulant

TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 4. Si:H layers deposition 5. Laser scribing: L2 6. Back metal deposition Glass Front TCO Black metal Encapsulant 7. Laser scribing: L3 8. Encapsulant

Micromorph Tandem Module

HyET Solar Manufacturing sequence: Al foil + TCO + + back contact + carrier foil Al foil + series connect + contact wires + curng + encapsulant

Flexible Products

Thank you for your azenion!