STRENGTH STUDY ON LATERITE CONCRETE WITH AND WITHOUT SILICA FUME

Similar documents
EFFECT OF SILICA FUME ON STRENGTH AND DURABILITY PARAMETERS OF CONCRETE

Effect of Micro Silica on the properties of hardened concrete

A Study on the Influence of Mineral Admixtures in Cementitious System Containing Chemical Admixtures

Combinational Study of Mineral Admixture and Super Plasticizer in Usual Concrete

An Experimental Investigation on Strength Properties of Concrete Replacing Natural Sand by M-Sand Using Silica Fume as an Admixture

CONSTRUCTION AND DEMOLISION WASTE AS A REPLACEMENT OF FINE AGGREGATE IN CONCRETE

Laboratory Analysis of Fly Ash Mix Cement Concrete for Rigid Pavement.

Fundamentals of Concrete

NATURAL POLYMER AS WATERPROOFING COMPOUND IN CEMENT CONCRETE

EXPERIMENTAL INVESTIGATION ON LONG TERM STRENGTH OF BLENDED AND O.P.C. CONCRETES- A COMPARISON

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April ISSN

AN EXPERIMENTAL STUDY ON GLASS FIBRE REINFORCED CONCRETE

Course Concrete Technology Course Code Theory Term Work POE Total Max. Marks Contact Hours/ week

STRENGTH PERFORMANCE OF CONCRETE USING BOTTOM ASH AS FINE AGGREGATE

Effect of Zinc Oxide Nanoparticle on Strength of Cement Mortar

Experimental Investigation on Self Compacting Concrete by Partial Replacement of Fine Aggregate with Quarry Dust and Cement with Fly Ash

An Experimental Study on Crushed Glass Material for the Partial Replacement of Natural Sand in Concrete

Anil Kumar Nanda, Jaspal Singh. Evaluation of Relation between Split Tensile and Compressive Strength of OPC Concrete

Effects of Fly Ash and Super Plasticiser on Cement Content in M30 Grade Concrete

International Journal of Advance Research in Engineering, Science & Technology

Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete

Strength Characteristics of Concrete Mix by Replacing Fine Aggregates with Industrial Sand

Size and Dosage of Micro Silica Fume Behaviour for Partial replacement of Cement in Concrete

Experimental Study on Concrete and Cement Plaster Using Partial Replacement of Quarry Rock Dust as Fine Aggregate

STRENGTH AND BEHAVIOUR OF GEOPOLYMER CONCRETE BEAMS

Dr.M.Swaroopa Rani Associate Professor, Civil Engineering Depatrment JNTUK, Kakinada Andhra Pradesh, India

Experimental Study on Partial Replacement of Natural Sand with M- Sand and Cement with Lime Stone Powder

IJRASET: All Rights are Reserved

IMPROVEMENT OF CONCRETE DURABILITY BY COMPLEX MINERAL SUPER-FINE POWDER

PROPERTIES OF GREEN CONCRETE CONTAINING QUARRY ROCK DUST AND MARBLE SLUDGE POWDER AS FINE AGGREGATE

Properties of Concrete Incorporating Recycled Post-Consumer Environmental Wastes

SELF COMPACTING CONCRETE WITH QUARRY DUST AS PARTIAL REPLACEMENT FOR FINE AGGREGATE AND FLYASH FOR CEMENT WITH FIBRE REINFORCEMENT

The Effect of Local Available Materials on the Properties of Concrete

Saw Dust Ash as Partial Replacement for Cement in the Production of Sandcrete Hollow Blocks

STUDY ON THE PERMEABILITY OF THE RECYCLED AGGREGATE CONCRETE USING FLY ASH

A Study on Properties of Light Weight Cinder Aggregate Concrete with Silica Fume and Fly Ash as Admixtures

Associate Professor, Dept. of Civil Engineering, NIT Warangal, India 2. Senior year undergraduate, Dept. of Civil Engineering, NIT Warangal, India 3

EFFECT OF COAL BOTTOM ASH AS SAND REPLACEMENT ON THE PROPERTIES OF CONCRETE WITH DIFFERENT W/C RATIO

e t A Study on the Effect of Fly Ash and Rice Husk Ash on Strength Parameters of Pavement Quality Concrete

STUDY OF RUBBER AGGREGATES IN CONCRETE: AN EXPERIMENTAL INVESTIGATION

Making of concrete mixtures with minimum amount of cement Hanish Kumar 1, Dr. Arvind Dewangan 2

A-4 TEST DATA FOR MATERIALS v) Cement used : OPC 43 grade confirming to IS 8112 w) Specific gravity of cement : 3.15 x) Specific gravity of

A Study on Strength Properties of Geopolymer Concrete with Addition of G.G.B.S

MATHEMATICAL MODELING FOR DURABILITY CHARACTERISTICS OF FLY ASH CONCRETE

EVOLUTION OF HIGH STRENGTH CONCRETE OF M80 GRADE

EFFECT OF WATER CEMENT RATIO ON THE WORKABILITY AND STRENGTH OF LOW STRENGTH QUARRY DUST CONCRETE

EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH METAKAOLIN AND SAND WITH QUARRY DUST OF REINFORCED CONCRETE BEAM.

Investigation of Natural Plasticizers in Concrete

TENSILE STRENGTH OF FLY ASH BASED GEOPOLYMER MORTAR

Physical Properties of Steel Fiber Reinforced Cement Composites Made with Fly Ash

A Review on the Study of Green Concrete

A Comparative Study of the Methods of Concrete Mix Design Using Crushed and Uncrushed Coarse Aggregates

ECS. High Strength Concrete. North Harbour Stadium Influences on Concrete Strength Performance. ECS High Strength Concretes

FEASIBILITY STUDY ON CONVENTIONAL CONCRETE AND CELLULAR LIGHT WEIGHT CONCRETE (FOAMED CONCRETE)

Effect of Different Coarse Aggregate Sizes on the Strength Characteristics of Laterized Concrete

International Journal on Emerging Technologies 6(1): (2015) ISSN No. (Print) : ISSN No. (Online) :

Strength of Normal Concrete Using Metallic and Synthetic Fibers Vikrant S. Vairagade* a and Kavita S. Kene b

COMPRESSIVE STRENGTH OF CONCRETE WITH FLY ASH, NANOSILICA AND RECYCLED AGGREGATE

EXPERIMENTAL STUDY ON THE BEHAVIOUR OF SELF HEALING CONCRETE BY USING BACILLUS SUBTILIS

Mix Design For Concrete Roads As Per IRC

Abstract Concrete is most used construction material. enhance the strength to the concrete. Fibers act as crack

Utilization of Stone Dust as Fine Aggregate Replacement in Concrete

Reinforcing efficiency of glass fibres in low volume class F fly ash concrete

Influence of Silica Fume, Fly Ash, Super Pozz, and High Slag Cement on Water Permeability and Strength of Concrete

EXPERIMENTAL INVESTIGATION ON CONCRETE BY PARTIAL REPLACING OF COARSE AGGREGATE WITH RECYCLED COARSE AGGREGATE AND FINE AGGREGATE WITH CRUSHED GLASS

Impact of Admixture and Rice Husk Ash in Concrete Mix Design

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013

High Volume Fly Ash Concrete for Paver Blocks Som Nath Sachdeva, Vanita Aggarwal, S. M. Gupta

Experimental Investigation on Properties of Concrete Using Human Hair & Sugarcane Bagasse Ash

MECHANICAL PROPERTIES OF HIGH-PERFORMANCE CLASS C FLY ASH CONCRETE SYSTEMS

Performance of Normal Concrete with Eco Sand (Finely Graded Silica) As Fine Aggregate

Available online at ScienceDirect. Procedia Engineering 145 (2016 ) 66 73

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN

Effect of Granite Powder on Strength Properties of Concrete

Aggregates in Concrete

STRENGTH APPRAISAL BY FIBRE EINFORCEMENT IN CONCRETE

EFFECT OF COPPER SLAG AS A SAND REPLACEMENT ON THE PROPERTIES OF CONCRETE

RECYCLING DEMOLITION WASTE SANDCRETE BLOCKS AS AGGREGATE IN CONCRETE

STRENGTH APPRAISAL OF CONCRETE CONTAINING WASTE TYRE CRUMB RUBBER

COMPARATIVE STUDY OF TWO COMMERCIALLY AVAILABLE SUPERPLASTICIZERS ON THE PROPERTIES OF CONCRETE

The Utilization of Quarry Dust as Fine Aggregates in Concrete

Development of Paver Blocks from Industrial Wastes

Concrete. Chapter 10 Properties of Fresh Concrete. Materials of Construction-Concrete 1. Wikipedia.org

THE EFFECT OF ADDITION OF LIMESTONE POWDER ON THE PROPERTIES OF SELF-COMPACTING CONCRETE

Investigations on Some Properties of no-fines Concrete

MINERAL ADMIXTURES IN CONCRETE

STRENGTH PARAMETERS OF COMPRESSED STABILIZED EARTH BLOCKS USING FURNACE BOTTOM ASH AS A CEMENT REPLACEMENT

Investigation on the Properties of the Reactive Powder Concrete Using Silica Fume and Kaoline

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 07 July p-issn:

Environmentally-friendly concretes for sustainable building

Strength and Durability of Concrete Containing Quarry Dust as Partial Replacement of Cement

A Study on Mechanical Properties of Sisal Fiber Reinforced Concrete

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 07, 2014 ISSN (online):

Strength evaluation of concrete using Marble Powder and Waste Crushed Tile Aggregates

Assessment of Concrete Produced with Foundry Waste as Partial Replacement for River Sand

Performance of Light Weight Concrete using Fly Ash Pellets as Coarse Aggregate Replacement

STRENGTH PERFORMANCE AND BEHAVIOR OF CONCRETE CONTAINING INDUSTRIAL WASTES AS SUPPLEMENTARY CEMENTITIOUS MATERIAL (SCM)

EVALUATION REPORT OF HESS PUMICE

Production and Properties of High Strength Concrete for Heightening Concrete Dam in Sudan

FIBER ADDITION AND ITS EFFECT ON CONCRETE STRENGTH

Transcription:

STRENGTH STUDY ON LATERITE CONCRETE WITH AND WITHOUT SILICA FUME Lekshmy Rajan 1, Anup Joy 2 1 PG Scholar, Structural Engineering, Department of Civil Engineering, Sree Buddha College of Engineering, Pattoor, Alappuzha, Kerala 2 Assistant Professor, Department of Civil Engineering, Sree Buddha College of Engineering, Pattoor, Alappuzha, Kerala Abstract Concrete is the one of the most widely used man-made material. Concrete is a composite material composed of coarse aggregate bonded together with fluid cement which hardens over time. Most concretes used are lime-based concretes such as Portland cement concrete. Cement and aggregates are the basic needs for any construction industry. Sand is a prime material used for preparation of mortar and concrete and which plays a major role in mix design. Now a day s erosion of rivers and considering environmental issues, there is a scarcity of river sand. The non-availability or shortage of river sand will affect the construction industry. Hence there is a need to find the new alternative material to replace the river sand. M-Sand is one of the major alternatives to river sand. But it s over exploitation causes serious environmental issues. Many researchers are finding different materials to replace fine aggregate and one of the major materials is locally available soil. Laterite soil is one of the easily available local soils and using different proportion of this available soil along with M-sand the required concrete mix can be obtained. This paper presents a review on the study of effect of silica fume on laterised concrete (concrete in which the fine aggregate is replaced with ). Initially the optimum percentage of laterite soil is determined. Then with optimum percentage of silica fume, replacement of fine aggregate with locally available with different percentages (10%, 20%, 30% & 40%) is done. Tests on workability, compressive strength, flexural resistance, split tensile strength and modulus of elasticity were conducted on specimens. The result is then compared with that of laterised concrete and control concrete. Silica fume improves the bonding as well as compressive strength of concrete. Properties of are as good as the regular river sand and M-Sand. Keywords ; silica fume; cementitious material; locally available soil, alternative material I. INTRODUCTION Concrete is a commonly used construction material due to its structural stability and strength performance. Now a days, concrete constructions are more costly and creating many environmental problems. In order to make the concrete construction more environmental friendly, we have to reduce the use of harmful constituents in concrete. Mineral admixture are widely used in concrete for various reasons especially for reducing the amount of cement required for making concrete which shows to a reduction in construction cost and make the constructions more eco-friendly. Moreover most pozzolanic materials are by-product materials. The use of these materials shows the reduction in waste, freeing up valuable land, save in energy consumption to produce cement and save the environment. Durability of Portland cement concrete is defined as its ability to resist weathering action, chemical attack, abrasion, fire or another process of deterioration. In other words, cement concrete will be termed durable, when it keeps its form and shape within the allowable limits, while exposed to different environmental conditions. @IJRTER-2016, All Rights Reserved 127

The Ordinary Portland Cement (OPC) is one of the main ingredients used for the production of concrete and has no alternative material in the civil construction industry. Unfortunately, production of cement involves emission of large quantities of carbon-dioxide gas into the atmosphere, a major contributor for green house effect and the global warming. Hence it is inevitable either to search for another material or partly replace it by some other material. Substantial energy and cost savings can result when industrial by products are used as a partial replacement of cement. Addition of silica fume to concrete has many advantages like high strength, durability and reduction in cement production. When pozzolanic materials are incorporated to concrete, the silica present in these materials react with the calcium hydroxide released during the hydration of cement and forms additional calcium silicate hydrate (C S H), which improve durability and the mechanical properties of concrete. River sand has been used as one of the major components of concrete due to the ready availability and its well-graded nature with the sand grains of different sizes well distributed. River sand is mainly used for all kinds of civil engineering constructions. The excessive excavation of river sand is becoming a serious environmental issue. Hence it is necessary to explore possible alternatives to minimize the use of river sand. A number of attempts have been made to replace the river sand with other materials which are waste in the environment and to utilize those materials which are disposed without being used. Manufactured sand is one of the major alternatives to river sand. But it s over exploitation causes serious environmental issues. Laterite soil is one of the easily available local soils and using different proportion of this available soil along with manufactured sand the required concrete mix can be obtained. In this thesis work the optimum percentages of silica fume and that can be used for replacing cement and fine aggregate respectively are finding out. The properties of concrete in fresh and hardened states are studied. An experimental program is carried out to explore its effects on workability, compressive, flexural, split tensile strength and modulus of elasticity of concrete. The focus of a good national development is to look inwards with intent to mobilize all natural resources for economic purposes. II. LITERATURE REVIEW Asiedu Emmanuel and Agbenyega Allan (2014) [2] This paper focuses on the utilisation of laterite fines as replacement for sand in the production of Sandcrete bricks as masonry units. With a mix ratio and a water/cement ratio of 1:6 and 0.50 respectively, batches with 0% (control specimens), 10%, 20%, 30%, 40% and 50% laterite fines replacing the sand were adopted in this study. In all, 96 bricks were cast, tested and compared with those of conventional Sandcrete bricks (control specimens). Tests studied were density, compressive strengths (wet and dry) and water absorption. Data results revealed that the laterite fines used could satisfactorily replace the sand up to 30% for the production of structural masonry units even though bricks need to be protected when used in waterlogged areas or below ground level. Biju Mathew, Benny Joseph & C. Freeda Christy (2013) [3] conducted a study that, natural M- Sand was replaced with laterite at the rate of 10%, 20% and 30 % by weight for design mix of M25 controlled concrete. A total of 36 specimens prepared to determine the cube compressive strength, and flexural strength. From the studies, addition of laterite reduces workability in concrete. Compressive strength decrees with increases in percentage of laterite replacement with sand. The flexural strength has only slight variation with controlled concrete. Laterite of 20 % by weight of sand content has shown the best results, thus indicating possibility of using laterite as a partial replacement. J. Santhiyaa Jenifer and S. Ramasundarm (2015) [8] studied the physical properties of laterite namely specific gravity, particle size distribution and density. An attempt was made to use of @IJRTER-2016, All Rights Reserved 128

laterite as a fine aggregate in concrete. The quantity of laterite varies from 0% to 100% at interval of 25% in this study. The 1:1.5:3 mix of concrete is used for determining the mechanical strength and durability characteristics. The density of laterite mixed concrete increases when percentage of laterite increases. The results of laterite sand mixed concrete are compared with conventional concrete. At 50 percentage replacement of sand by laterite sand produces high compressive strength. The tensile and flexural strength increases when the percentage of laterite sand increases. Vishal S. and Pranita S. Bhandari (2014) [10] here an attempt is made to partially replace Portland cement by silica fume. The main objective of this research work was to determine the optimum replacement percentages of silica fume. To fulfill the objective various properties of concrete using silica fume have been evaluated. Further to determine the optimum replacement percentage comparison between the regular concrete and concrete containing silica fume is done.it has been seen that when cement is replaced by silica fume compressive strength increases up to certain percentage (10% replacement of cement by silica fume).but higher replacement of cement by silica fume gives lower strength. III. OBJECTIVE & SCOPE OF THE WORK The scope of this study is more about the determination of the strength of concrete with replacement of M-Sand by laterite and find out the effect of silica fume on concrete in which fine aggregate is replaces with. This study will therefore introduce new alternatives for fine aggregate. IV. TESTS OF MATERIALS Table 1. Material testing results Materials Tests Result Cement [OPC 43] Specific gravity 3.2 Fine aggregate [M-sand] Specific gravity 2.61 Fine aggregate [Laterite soil] Specific gravity 2.56 Clay content [%] 8 Coarse aggregate Specific gravity 2.77 Water absorption [%] 0.5 4.1 Silica fume Table 2. Silica fume chemical analysis results Sl. No. Chemical requirements Result 1 SiO2 92 2 Moisture content <2 3 Loss on ignition[max] 4 4 Alkalies as Na2 O <1 5 ph value 8 Table 3. Silica fume physical analysis results Physical Analysis 1 Specific surface, m 2 /g 20 2 Maximum % retained on IS 45 micron Sieve 10 3 Compressive strength at 7 days as percentage of control sample[n/mm 2 ] 87.26 @IJRTER-2016, All Rights Reserved 129

4.2 Super plasticizer In this investigation super plasticizer- CONPLAST-SP 430 was used to improve the workability of concrete. The properties of super plasticizer are shown in Table 4. Supply form Table 4. Properties of super plasticizer Liquid Colour Brown Specific gravity 1.20 Usage Chloride content 0.3 to 0.6% of cement free V. EXPERIMENTAL INVESTIGATION 5. 1 Overall Scheme of Experimental Investigation The mix proportion for M30 concrete designed as per provisions in IS Codes were considered for this investigation. In this study the parameters considered are workability, cube compressive strength, flexural strength and split tensile strength. To study the effect of silica fume on laterised concrete initially mixes having fine aggregate replaced with of different percentage was prepared and its optimum amount was also determined. Then concrete mixes are prepared with optimum amount of silica fume and fine aggregate is replaced with different percentages of laterite soil. The results are then compared. 5.2 Materials Used Ordinary Portland cement 43 grades, locally available good quality M-Sand of specific gravity 2.61 passing through 4.75mm IS sieve conforming to zone II, coarse aggregate of specific gravity 2.77, laterite of specific gravity 2.56, Silica fume and Potable water were used for making the various concrete mixes considered in this study. 5.3 Mix Design M30 concrete mix was designed as per IS 10262-2009. The mix obtained as per IS code design is of proportion 1: 1.579: 2.5: 0.45. The quantity required for 1m 3 concrete as given in Table 5. For all replacement level, the same mix ratio for normal concrete was followed. 5.4 Preparation of Test Specimen Slump test and compaction factor tests was conducted for each mix to assess the workability. Concrete cubes (150mm) for determining compressive strength, beams (100 mmx100mmx500mm) for determining flexural strength and cylinders for split tensile strength are casted. Concrete cube specimens were tested at 7 and 28 days to obtain the compressive strength of concrete. VI. EXPERIMENTAL RESULTS AND DISCUSSION 6.1 Optimization of 6.1.1 Workability. Compaction factor test and slump test are conducted for finding the workability of the concrete. The workability of all the mixes were assessed as per the IS 1199:1959 specification. The workability of the concrete is decreased with increase in content. The workability reduced below the target value after 20% replacement. Table 5. Slump test values of mixes having fine aggregate replaced with @IJRTER-2016, All Rights Reserved 130

Sl. No. Mix Slump value [mm] 1 A0,0 105 2 A0,10 104 3 A0,20 101 4 A0,30 97 5 A0,40 93 Figure 1. Slump test values of mixes having fine aggregate replaced with Table 6. Compaction factor for mixes having fine aggregate replaced with Sl. No. Mix Compaction factor 1 A0,0 0.97 2 A0,10 0.95 3 A0,20 0.94 4 A0,30 0.89 5 A0,40 0.86 Figure 2. Compaction factor for mixes having fine aggregate replaced with The workability for mixes having 10% and 20% replacement by is almost nearer to the control mix. 6.1.2 Strength Study. Compressive Strength Table 7. Compressive strength of mixes having fine aggregate replaced with @IJRTER-2016, All Rights Reserved 131

Figure 3. Compressive strength of mixes having fine aggregate replaced with The result shows that the compressive strength increases with increase in content up to 20%. The target strength is achieved at 10& 20% replacement levels. The maximum strength is observed at 20% of replacement by. After that the strength decreases below the strength of control concrete. 6.2 Optimization of laterite in optimum replacement of silica fume 6.2.1 Workability. Compaction factor test and slump test are conducted for finding the workability of the concrete. The workability of all the mixes were assessed as per the IS 1199:1959 specification. Table 8. Slump test values of mixes with optimum percentage of silica fume and variable percentage of @IJRTER-2016, All Rights Reserved 132

Figure 4. Slump test values of mixes optimum percentage of silica fume and variable percentage of laterite soil Table 9. Compaction factor values of mixes optimum percentage of silica fume and variable percentage of Figure 5. Compaction factor values for mixes optimum percentage of silica fume and variable %percentage of Considering the workability of the replaced concrete, the workability decreases with increase in Laterite soil content. Super plasticizers are added to maintain the workability without changing the water cement ratio. The compaction factor for 10% and 20% Laterite soil are almost nearer to the ordinary mix after the addition of super plasticizers. @IJRTER-2016, All Rights Reserved 133

6.2.2 Strength Study Compressive Strength In this section of different percentage added with optimum replacement of silica fume for the fine aggregate in concrete. Table 10. Compressive strength of mixes with optimum percentage of silica fume and variable percentage of Figure 6. Compression value of mixes with optimum percentage of silica fume and variable percentage of Split Tensile Strength Table 11. Split tensile strength of mixes with optimum percentage of silica fume and variable percentage of @IJRTER-2016, All Rights Reserved 134

Figure 7. Split tensile strength of mixes with optimum percentage of silica fume and variable percentage of Flexural Strength Table 12. Flexural strength of mixes with optimum percentage of silica fume and variable percentage of Figure 8. Flexural strength of mixes with optimum percentage of silica fume and variable percentage of VII. CONCLUSION The experimental investigation was carried out to study the effect of silica fume on concrete in which the fine aggregate is partially replaced with. The optimum percentage replacement of cement with silica fume was found to be10%. The workability of concrete mix reduced below the target value when exceeds 20%. The optimum percentage replacement of fine aggregate with was found to be 20%. And the compressive, split and flexural strength are 4.65%, 9.66% and 5.62% higher than that of control mix. @IJRTER-2016, All Rights Reserved 135

The mixes having optimum percentage of silica fume and of 20% and 30% are found to be preferable for use in construction purposes. Silica fume addition in laterised concrete improves the compressive strength by 16.28% than control mix and 11.11% than laterite concrete without silica fume. Split tensile strength improves 43.6% than control and 30.95% than laterised concrete. Flexural strength improves 14.61% than control mix and 8.5% than laterised concrete. REFERENCES 1. Amar R. Dongapure and Shivaraj S. Mangalgi, Study on strength of concrete using lateritic sand and quarry dust as fine aggregates International Journal of Engineering Research & Technology (IJERT), Vol. 3 Issue 12, December- 2014. 2. Asiedu Emmanuel and Agbenyega Allan, Suitability of laterite fines as a partial replacement of sand in the production of Sandcrete bricks, International Journal of Emerging Technology and Advanced Engineering, Vol. 4, Issue 10, October 2014. 3. Bayasi, Zing, Zhou, Jing, Properties of silica fume concrete and mortar, ACI Materials Journal, Vol. 90, No. 4, pp. 349 356, 1993. 4. Bhanja Santanu, and Sengupta Bratish, Optimum Silica Fume Content and Its Mode of Action on Concrete, ACI Materials Journal, Vol. 100, No. 5, pp. 407-412, September-2003. 5. Bhikshma, K.Nitturkar and Y.Venkatesham, Investigations on mechanical properties of high strength silica fume concrete. Asian journal of civil engineering (building and housing), Vol. 10, No. 3, pp.335-346, 2009. 6. Biju Mathew, Benny Joseph and C. Freeda Christy, Strength performance of concrete using laterite as sand replacement, International Journal of Civil Engineering Research & Applications (IJCERA), Vol. 1 Issue 3, August 2013. 7. Debabrata Pradhan and D. Dutta, Influence of silica fume on normal concrete, Int. Journal of Engineering Research and Applications, Vol. 3, Issue 5, Sep-Oct 2013. 8. Emmanuel, A. Allan, Suitability of Laterite fines as a partial replacement for sand in the production of Sandcrete bricks, International Journal of Emerging Technology and Advanced Engineering, Vol. 4, 2014. 9. Faseyemi Victor Ajileye, Investigations on micro silica (silica fume) as partial cement replacement in concrete Global Journal of researches in engineering Civil and Structural engineering, Vol. 12, Issue 1,Version 1.0, January 2012. 10. Funso Falade and Efe Ikponmwosa, The potential of laterite as fine aggregate in foamed concrete production, Journal of Civil and Environmental Research, Vol. 3, No. 10, 2013. @IJRTER-2016, All Rights Reserved 136