DNA, RNA, PROTEIN SYNTHESIS, AND MUTATIONS UNIT GUIDE Due December 9 th. Monday Tuesday Wednesday Thursday Friday 16 CBA History of DNA video

Similar documents
NON MENDELIAN GENETICS. DNA, PROTEIN SYNTHESIS, MUTATIONS DUE DECEMBER 8TH

Chapter 13 - Concept Mapping

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are?

DNA vs. RNA B-4.1. Compare DNA and RNA in terms of structure, nucleotides and base pairs.

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links

Adv Biology: DNA and RNA Study Guide

DNA RNA PROTEIN SYNTHESIS -NOTES-

Nucleic Acids: DNA and RNA

DNA- THE MOLECULE OF LIFE

DNA and RNA. Chapter 12

DNA and RNA. Chapter 12

STUDY GUIDE SECTION 10-1 Discovery of DNA

RNA & PROTEIN SYNTHESIS

DNA, Replication and RNA

DNA Replication and Protein Synthesis

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

Nucleic acids and protein synthesis

Frederick Griffith. Dead Smooth Bacteria. Live Smooth Bacteria. Live Rough Bacteria. Live R+ dead S Bacteria

Summary 12 1 DNA RNA and Protein Synthesis Chromosomes and DNA Replication. Name Class Date

Bundle 5 Test Review

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide

DNA and RNA 2/14/2017. What is a Nucleic Acid? Parts of Nucleic Acid. DNA Structure. RNA Structure. DNA vs RNA. Nitrogen bases.

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein

Replication Review. 1. What is DNA Replication? 2. Where does DNA Replication take place in eukaryotic cells?

DNA - The Double Helix

DNA- THE MOLECULE OF LIFE. Link

DNA - The Double Helix

Name: Date: Pd: Nucleic acids

Unit VII DNA to RNA to protein The Central Dogma

DNA - The Double Helix

DNA - The Double Helix

Chapter 13. From DNA to Protein

Chapter 17 Nucleic Acids and Protein Synthesis

Study Guide for Chapter 12 Exam DNA, RNA, & Protein Synthesis

DNA, RNA and Protein Synthesis

Chapter 10 - Molecular Biology of the Gene

Activity A: Build a DNA molecule

Nucleic acids. What important polymer is located in the nucleus? is the instructions for making a cell's.

AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes?

1.5 Nucleic Acids and Their Functions Page 1 S. Preston 1

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein?

Review of ORGANIC CHEMISTRY

THE COMPONENTS & STRUCTURE OF DNA

RNA and Protein Synthesis

DNA & Protein Synthesis UNIT D & E

Protein Synthesis

Protein Synthesis: Transcription and Translation

DNA Structure and Protein synthesis

DNA DNA Profiling 18. Discuss the stages involved in DNA profiling 19. Define the process of DNA profiling 20. Give two uses of DNA profiling

CHAPTER 11 DNA NOTES PT. 4: PROTEIN SYNTHESIS TRANSCRIPTION & TRANSLATION

Vocabulary. Nucleic Acid Nucleotide Base pairing Complementary Template Strand Semiconservative Replication Polymerase

Chapter 15 DNA and RNA

Pre-Lab: Molecular Biology

Click here to read the case study about protein synthesis.

DNA Structure & the Genome. Bio160 General Biology

Bundle 6 Test Review

CHAPTER 22: Nucleic Acids & Protein Synthesis. General, Organic, & Biological Chemistry Janice Gorzynski Smith

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY

PROTEIN SYNTHESIS. copyright cmassengale

Gene Expression Transcription/Translation Protein Synthesis

PowerPoint Notes on Chapter 9 - DNA: The Genetic Material

What is DNA??? DNA = Deoxyribonucleic acid IT is a molecule that contains the code for an organism s growth and function

Name Class Date. Practice Test

Student Exploration: RNA and Protein Synthesis Due Wednesday 11/27/13

Read and take notes on pages

UNIT 4. DNA, RNA, and Gene Expression

GENETICS and the DNA code NOTES

DNA Structure and Analysis. Chapter 4: Background

DNA: The Molecule of Heredity

Comparing RNA and DNA

Transcription Eukaryotic Cells

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes

Molecular Biology of the Gene

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology

Protein Synthesis. OpenStax College

From Gene to Protein Transcription and Translation

Chapter 10. DNA: The Molecule of Heredity. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

DNA: The Molecule of Heredity

The Double Helix. DNA and RNA, part 2. Part A. Hint 1. The difference between purines and pyrimidines. Hint 2. Distinguish purines from pyrimidines

Chapter 8: DNA and RNA

Transcription and Translation

Central Dogma. 1. Human genetic material is represented in the diagram below.

Introduction. Everyone knew the winner would get a dynamite prize. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

DNA, RNA, protein synthesis. Sections , , and

BIOCHEMISTRY Nucleic Acids

12-1 DNA The Structure of DNA (Pages )

The Central Dogma of Molecular Biology

DNA & DNA Replication

Prokaryotic Transcription

Molecular Genetics I DNA

DNA and RNA

DNA: Structure and Replication - 1

Name Class Date. Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance?

Division Ave. High School Ms. Foglia AP Biology. Nucleic acids. AP Biology Nucleic Acids. Information storage

Transcription:

DNA, RNA, PROTEIN SYNTHESIS, AND MUTATIONS UNIT GUIDE Due December 9 th Monday Tuesday Wednesday Thursday Friday 16 CBA History of DNA video 17 History of DNA 18 Lecture: DNA Structure Worksheet 19 Lecture: DNA replication Worksheet UG Questions 20 Reading check quiz: 8.2, 8.3,8.4 Build model 30 Replicate DNA model 7 Practice DNA replication, transcription & translation RNA 14 Finals and review week Dec 1 Into to RNA Comparison to DNA 8 Lecture: DNA mutation Vocab Quiz 2 Protein Synthesis Overview Video Lecture: Transcription 9 Practice DNA mutation UNIT GUIDE DUE (ALL Questions due) 1-7 3 Practice Transcription Problems Lecture: Translation UG Questions 8-15 10 Review of DNA 4 Reading check quiz 8.5, 8.6,8.7 Translation Practice 11 Test 15 16 17 18 Read: Chapter 8 UNIT TEST: December 11 Watch (Supplemental Resource): DNA structure and replication: Crash Course Biology #10 Bozeman Science DNA and RNA parts 1 and 2 Book online at : http://my.hrw.com Use your username and password to get to the biology book or Username: students26761 Password: n8j2x Coach Wallace s website: www.mrskwallace.weebly.com DNA, RNA, Protein Synthesis, and Mutations Unit Guide Page 1

What the state of Texas wants you to know! TEKS 3F: Research and describe the history of biology and contributions of scientists. TEKS 4B: Investigate and explain cellular processes, including the synthesis of new molecules. TEKS 6A: Identify components of DNA, and describe how information for specifying traits of an organism is carried in the DNA. TEKS 6B: Recognize that components that make up the genetic code are common to all organisms. TEKS 6C: Explain the purpose and process of transcription and translation using models of DNA and RNA. TEKS 6E: Identify and illustrate changes in DNA and evaluate the significance of these changes DNA, RNA, Protein Synthesis, and Mutations Unit Guide Page 2

Nucleus: organelle composed of double membrane that acts as the storehouse for most of a cell s DNA. DNA: Deoxyribonucleic Acid- molecule that stores genetic information in all organisms. RNA: Ribonucleic Acid- molecule that allows for transmission of genetic information and protein synthesis. Nucleotide: monomer that forms DNA and has a phosphate group, sugar and nitrogen- containing base. Double Helix: model that compares the structure of a DNA molecule, in which two strands wind around one another, to that of a twisted ladder. Replication: process by which DNA is copied. DNA polymerase: enzyme that makes bonds between nucleotides, forming an identical strand of DNA during replication. DNA strand: DNA side Complementary side/strand: either of the two sides that make up a double helix of DNA. Adenine: nitrogenous base found in DNA- matches with Thymine and Uracil. Guanine: nitrogenous base found in DNA- matches with Cytosine. Cytosine: nitrogenous base found in DNA- matches with Guanine. Thymine: nitrogenous base found in DNA- matches with Adenine. Uracil: nitrogenous base found in RNA- matches with Adenine Purine: Type of nitrogenous base, has two circular ring structures, A,G match with a pyrimidine. Pyrimidine: type of nitrogenous base, has one circular ring structure, C,T match with a purine. Ribosome: organelle that links amino acids together to form proteins. Transcription: process of copying a nucleotide sequence of DNA to form a complementary strand of mrna. Translation: process by which mrna is decoded and a protein is produced. RNA polymerase: enzyme that catalyzes the synthesis of a complementary strand of RNA from a DNA template. Messenger RNA: form of RNA that carries genetic information from the nucleus to the cytoplasm, where it serves as a template for protein synthesis. Ribosomal RNA: RNA that is in the ribosome and guides the translation of mrna into a protein; also used as a molecular clock. Transfer RNA: form of RNA that brings amino acids to ribosomes during protein synthesis. Codon or triplet codon: sequence of three nucleotides that codes for one amino acid. Anticodon: set of three nucleotides in a trna molecule that binds to a complementary mrna codon during translation. Amino Acid: molecule that makes up proteins, composed of carbon, hydrogen, oxygen, nitrogen and sometimes sulfur. Protein: polymer composed of amino acids linked by peptide bonds; folds into a particular structure depending on bonds between amino acids. DNA, RNA, Protein Synthesis, and Mutations Unit Guide Page 3

Recall and Review: ANSWER ALL THE QUESTIONS IN COMPLETE SENTENCES. Use the video and your textbook to help you answer the following questions in your binder. A. Chapter 8 (Section 1) 1. Transform means to change. Predict why Griffith called the mystery material the transforming principle? 2. State three reasons Avery concluded that the mystery material was DNA, not protein. DNA, RNA, Protein Synthesis, and Mutations Unit Guide Page 4

3. Explain how Hershey and Chase s research with bacteriophages helped to confirm that DNA was the genetic material. B. Chapter 8 (Section 2) 4. Draw a nucleotide and label the phosphate group, the nitrogen- containing base, and the deoxyribose sugar. 5. Describe how the four DNA nucleotides differ in structure. 6. Draw a DNA double helix. Label the sugar- phosphate backbone, the nitrogen- containing bases, and the hydrogen bonds. DNA, RNA, Protein Synthesis, and Mutations Unit Guide Page 5

7. State which part of a DNA molecule carries the genetic instructions that are unique for each individual? Explain. C. Chapter 8 (Section 3) 8. State the end product of replication. 9. Explain. What does it mean that a DNA strand is used as a template in replication. 10. List two examples of how enzymes and other proteins help in the process of replication. 11. Infer. Why is it important that human chromosomes have many origins of replication? Chapter 8 (Section 4) 12. Compare and contrast DNA and RNA. DNA Both RNA DNA, RNA, Protein Synthesis, and Mutations Unit Guide Page 6

13. Explain why transcription occurs in the nucleus of eukaryotes. 14. Compare and contrast transcription and replication. Transcription Both Replication 15. Apply. If a DNA segment has the nucleotides AGCTTAT, predict the sequence of the mrna strand that results after transcription. Chapter 8 (Section 5) 16. Explain the relationship between a codon and an amino acid. 17. Calculate. Suppose an mrna molecule in the cytoplasm had 300 nucleotides. How many amino acids would be in the resulting protein? Explain 18. Explain the role of trna in translation. Chapter 8 (Section 7) 19. Differentiate between gene and chromosome mutations. Provide an example of each DNA, RNA, Protein Synthesis, and Mutations Unit Guide Page 7

20. Explain the difference between a point and frameshift mutation. Point Mutation Frameshift Mutation 21. Describe one mutation that would not have an effect on an organism s phenotype. 22- Sample Questions 1. Who first proposed the double- helix structure of the DNA molecule? a. Pauling b. McClintock c. Watson and Crick d. Harris and Watkins 2. Scientists have developed a way to analyze and compare DNA sequences between humans. Using this genetic information would be most beneficial for a. Identifying individuals b. Dating the age of fossils c. Creating new gene sequences d. Determining proteins produced in skin cells 3. If the DNA strand sequence is ATCGATCGA, what is the complementary stand s sequence? a. ATCGATCGA b. TAGCTAGCT c. AUCGAUCGA d. GCTAGCYAG 4. Which of these shows the steps by which proteins are coded and synthesized? a. RNAà DNAà protein b. DNAà RNAà protein c. Proteinà RNAà DNA d. Proteinà DNAà RNA DNA, RNA, Protein Synthesis, and Mutations Unit Guide Page 8