Hydrogen-Rich Gas Production from Plasmatron Reforming of Biofuels

Similar documents
Onboard Plasmatron Hydrogen Production for Improved Vehicles

HYDROGEN PRODUCTION VIA METHANE REFORMING USING VARIOUS MICROWAVE PLASMA SOURCES

Controlling NOx and other Engine Emissions

POLLUTION FROM MOTOR VEHICLES

BURNER FLAME TEMPERATURE DURING WARM UP AND HOT STANDBY. Alan D. Mosher KPS Technology & Engineering LLC

Conversion of Hydrocarbons into Syn-Gas Stimulated by Non-thermal Atmospheric Pressure Plasma

American Journal of Chemical Engineering

DRI Production Using Coke Oven Gas (COG): Results of the MIDREX Thermal Reactor System TM (TRS ) Testing and Future Commercial Application

Partial Oxidation and Autothermal Reforming of Heavy Hydrocarbon Fuels with Non- Equilibrium Gliding Arc Plasma for Fuel Cell Applications.

Syngas Makes any Vehicle Green

Carbon Dioxide Conversions in Microreactors

To Hydrogen or not to Hydrogen. Potential as a Ship Fuel. Dr. John Emmanuel Kokarakis. Emmanuel John Kokarakis University of Crete

Research on the reforming of ethanol

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014

MILESTONE REPORT. Energy & Environmental Research Center, University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND

Hydrogen Production via Biomethane Reforming in DBD Reactor

Downsizing a Claus Sulfur Recovery Unit

HYDROGEN PRODUCTION in PLASMA ASSISTED GASIFICATION PROCESSES

Biomass Boiler Emission Abatement Technologies. Simon Wakefield

GASIFICATION THE WASTE-TO-ENERGY SOLUTION SYNGAS WASTE STEAM CONSUMER PRODUCTS TRANSPORTATION FUELS HYDROGEN FOR OIL REFINING FERTILIZERS CHEMICALS

H. Gomaa / ICEHM2000, Cairo University, Egypt, September, 2000, page

The Energy Challenge

Transportation in a Greenhouse Gas Constrained World

Evaluating the effective diffusion coefficient within the automobile catalysts

FT-GTL UNLOCKS VALUE FROM NATURAL GAS

HYDROGEN MEMBRANE OVERVIEW

TruePeak TDLS200. NH 3 Slip Measurement. <Document Number> Copyright Yokogawa Electric Corporation <date/time>

WESTINGHOUSE PLASMA GASIFICATION

Final DRAFT API TECHNICAL REPORT. Carbon Content, Sampling, & Calculation

REDUCTION OF CO 2 EMISSION TO METHANE USING HYDROGENATION WITH NICKEL (110) SURFACE CATALYST

Jing Su and Chang-Won Park Dept. of Chemical Engineering, University of Florida, Gainesville, FL 32611

Gasification of Municipal Solid Waste

Carbon To X. Processes

Techno-Economic Analysis for Ethylene and Oxygenates Products from the Oxidative Coupling of Methane Process

MultiZon incinerator for batch operation

Catalytic air pollution control systems for the removal of volatile organic compounds (VOCs)

PERP/PERP ABSTRACTS Carbon Monoxide PERP 09/10S11

MP-400. The most thermally efficient, robust and reliable medical incinerators on the market. Simply Built Better!

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

This presentation is an executive summary and intended for introduction purposes only. For full details on MagneGas and its technology, please review

Temperature Measurement, Low Temperature Shift Bed Safety and Optimization

Hydrogen Production by Bio-ethanol reforming for Small-scale Fuel Cell Applications

Innovative Design of a Compact Reformer for PEMFC

Universities of Leeds, Sheffield and York

MP-300. The most thermally efficient, robust and reliable medical incinerators on the market. Simply Built Better!

Organica is a registered trademark of the Keter Group Energy Division.

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies

This is a draft revision of the briefing, and any comments are welcome please them to Becky Slater on

PRODUCTION OF BIO METHANE FROM WOOD USING THE MILENA GASIFCATION TECHNOLOGY

Fuel cells do not depend on wind or sunshine, and generate more electricity per unit of fuel than almost any other distributed energy source.

AN EXPERIMENTAL STUDY OF A COMPACT AUTOTHERMAL GASOLINE REFORMER FOR THE PRODUCTION OF HYDROGEN

The Sustainable Energy Challenge

Performance and Efficiency of a Biogas CHP System Utilizing a Stirling Engine

MATERIALS OF CONSTRUCTION

Topsoe s Emission Management Solution--DeNOx

Wet Cells, Dry Cells, Fuel Cells

Author: Marcello De Falco, Associate Professor, University UCBM Rome (Italy)

Biomass Part I: Resources and uses. William H. Green Sustainable Energy MIT November 16, 2010

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc.

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR

For highest levels of purity

PRISM Membrane Systems for petrochemical applications... tell me more

Biomass Conversion to Drop-in Fuels

Carpet Waste Gasification:

Potential of a Chemical Heat Storage as a Heat for a Catalytic Converter

Conversion of Biomass Particles

Fuel Cells in Energy Technology (9) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU München summer term 2013

Reforming and burning of ammonia in micro hydrogen and power generation systems

Steam Reformation & Water Gas Shift. Team 1 Gabrielle Carbone, Kathleen Cooley, David Hessler, and Jacob Prucnal

Solid State Ammonia Synthesis NHThree LLC

Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems

Auto-Thermal Reforming Using Mixed Ion-Electronic Conducting Ceramic Membranes for a Small-Scale H 2 Production Plant

GLYFINERY. Life cycle assessment of green chemicals and bioenergy from glycerol: Environmental life cycle assessment. Dr Maria Müller-Lindenlauf

Technical Description Package Micro Auto Gasification System (MAGS )

Hydrogen Production by Non Thermal Plasma Steam Reforming of alkanes and ethanol

ABB MEASUREMENT & ANALYTICS ANALYTICAL MEASUREMENT. Ethylene plant production excels with the PGC1000

Synthesis Gas Processes for Synfuels Production

Development of Ceria-Zirconia Solid Solutions and Future Trends

A 10 kw class natural gas-pemfc distributed heat and power cogeneration system

Metal Transitions HIGH TEMPERATURE

A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY

APPLICATION NOTE. UOP : Analysis of Trace CO and CO 2 in bulk H 2 and Light Gaseous Hydrocarbons by GC

Plant construction and waste heat systems for the chemical industry

WESTINGHOUSE PLASMA GASIFICATION. Hazardous Waste Management

THE DEVELOPMENT OF THE POTENTIAL AND ACADEMIC PROGRAMMES OF WROCŁAW UNIVERSITY OF TECHNOLOGY

Laser assisted Cold Spray

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Evaluation of Pyrolysis and Steam Gasification Processes of Sugarcane Bagasse in a Fixed Bed Reactor

Online Gas Analyzer / Monitor

The Formation of Carbon Monoxide from Diffusion Flames

MRU Instruments, Inc. Houston, Texas Tel.: (844) (Toll Free)

Development of a novel reformer for tar-free syngas production

ADECOS II. Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 Separation

City of Toronto Solid Waste Management Services

Combined Methane Decomposition and Ammonia Formation Cell

CO 2 Capture and Storage: Options and Challenges for the Cement Industry

What is Bioenergy? William Robinson B9 Solutions Limited

Emission Challenges in Cement Making due to alternative Fuels

Plastic to Fuel Technologies

Transcription:

PSFC/JA-4-22 Hydrogen-Rich Gas Production from Plasmatron Reforming of Biofuels Hadidi, K., Bromberg, L., Cohn, D.R., Rabinovich, A. Alexeev *, N., Samokhin *, A. Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 2139 USA * Laboratory for Plasma Process and Material Treatment. Moscow, Russia This work was supported by the Office of Freedom car and Vehicle Technologies, US Department of Energy. Grant No DE-AC26-99EE5565. Reproduction, translation, publication, use and disposal, in whole or part, by or for the United States government is permitted. Submitted for publication to: To be determined

HYDROGEN-RICH GAS PRODUCTION FROM PLASMATRON REFORMING OF BIOFUELS K. Hadidi *, L. Bromberg *, D.R. Cohn *, A. Rabinovich * N. Alexeev **, A. Samokhin ** * Plasma Science and Fusion Center, Massachusetts Institute of Technology ** Laboratory of Plasma Process and Material treatment. Moscow, Russia I. INTRODUCTION Throughout the world it may be economically possible to cultivate crops that can be harvested for the manufacturing of biofuels that could potentially have a significant impact result in reducing emissions of greenhouse gases. Use of renewable fuels such as bio-fuels can also reduce the US dependence on foreign energy sources. Plasma enhanced reforming is a promising approach for vehicular application involving onboard generation of hydrogen-rich gas (H 2, CO, light hydrocarbons) from renewable energy biofuels. The hydrogen-rich gas can be used in internal combustion engine vehicles to increase engine efficiency and reduce pollution 1. The compact plasmatron fuel reformer technology presently under development at MIT uses special low current plasmas 2. This type of plasma can be used to enhance partial oxidation reformation of a wide range of biofuels. Plasma enhanced reforming provides advantages of rapid response, capability to reform difficult to convert fuels (such as diesel and bio oils) and relaxation or elimination of catalyst requirements. The low current plasma has the advantage of low power consumption and long electrode life. This paper reports further investigations of plasma enhanced partial oxidation reforming of biofuels that include corn, canola and soybean oils, and ethanol. Results were obtained for both homogeneous (non-catalytic) and catalytic reforming. II. EXPERIMENTAL SETUP The plasmatron reformer used in the biofuel conversion experiments is a modification of a plasmatron fuel reformer that had been optimized for diesel fuel operation 2. The unit was operated mainly at 7 W of electrical power. Limited tests were conducted at W. The power supplies were operated as constant current sources operating between khz and 26 khz. Reforming experiments at different oxygen-to-carbon (O/C) ratios were carried out. In the case of ethanol, some of the oxygen required for the reformation is provided by the fuel itself. In this case, the includes this oxygen. The free oxygen was provided by supplying compressed air from building compressed air supply. The bio-oils used in the experiments were commercially available oils Figure 1 depicts the experimental setup used to reform vegetable oils and ethanol. The plasmatron was mounted on a steel reaction chamber that allows the homogeneous partial oxidation reactions to take place with enough residence time. The dimensions of this chamber are 5 cm diameter by 12.5 cm long. The products of reaction from this chamber go into a 5 cm diameter by 17.5-cm long chamber packed with nickel-based catalyst on an alumina substrate. The chamber is thermally insulated by a half-inch thermal insulation made of porous alumina ceramic. 1

Two sample ports are used for sampling the reformate gases. The first one is located on the reaction chamber immediately upstream from the catalyst and the second one is located at the exhaust, downstream from the catalyst chamber. Both sampling lines are water cooled. The temperature inside the reactor is measured by a thermocouple located inside the catalyst. Calibrated mass flow controllers are used to control the multiple air inputs into the plasmatron. The system is controlled by a LabView software developed in our laboratory. The software continuously acquires and stores several parameters such as temperature, air and fuel flow rates during operation. The fuel is injected from the top of the plasmatron through a commerciallyavailable nozzle. Directly downstream from the fuel nozzle there is an orifice. The high velocity of the air downstream from this orifice further atomizes the fuel into a fine mist. To prevent the fuel from striking the solid surfaces inside the plasmatron and produce soot by pyrolysis, wall air is introduced through an annular gap between the electrode and the atomization air plug. This wall air creates a sheath along the inner walls of the plasmatron and prevents the fuel from hitting the wall. A third air stream, the plasma air, is introduced with a large tangential component in the gap between the two cylindrical electrodes where the electric discharge takes place. The tangential motion of the plasma air prevents the plasma from attaching to one spot on the electrodes, by moving the discharge and its roots. The plasma air pushes the discharge into the main volume of the plasmatron, producing a discharge that in an average sense fills this region. Samples from the reformat gases are drawn into syringes and analyzed using an MTI- gas chromatograph (GC). The unit has a molecular sieve column for analyzing hydrogen, oxygen, nitrogen, methane, and carbon monoxide, and a second column that can analyze carbon dioxide, C 2 H 2, C 2 H 4, and C 2 H 6, and other heavier hydrocarbons. A WAGNER opacity meter was used to monitor the production of soot. Water is not monitored. The corn and soy bean catalytic experiments were done with a volume of 85 cm 3 of catalyst, whereas only 25 cm 3 of catalyst were used during the canola oil experiments. III. RESULTS AND DISCUSSION A) BIO OILS Figure 2 shows results for hydrogen yields from the reformation of canola, corn, and soybean oils as a function of for catalytic and homogeneous (non-catalytic) reforming. The hydrogen yield is defined as the ratio of the mass flow rate of hydrogen in the reformat gases to the mass flow rate of hydrogen in the fuel. The bio-oil flow rate was.4 g/s, which corresponds to about 17 kw of chemical power. 2

The hydrogen yield for the reformation of corn and soybean oils are very similar in the presence of a catalyst. The difference between the two falls within the error bar due to sampling and GC analysis uncertainties. On the other hand, the hydrogen yield for canola oil in the presence of a catalyst appears to be lower than for corn and soybean oils, especially at the higher values of O/C. This may be due to the use of less catalyst in the case of canola, or to issues with the air-fuel injection (for example, misalignments of the injector where the oil spray hit the walls). In the case of corn and soybean oils, the hydrogen yield peaks at an close to 1.5; this is due to the fact that some of the fuel needs to be combusted in order to provide the heat necessary to drive the partial oxidation reaction. Comparison between homogeneous (non-catalytic) and catalytic reforming was carried out for the case of corn, canola and soybean oil. Figure 3 shows the effect of catalyst on the hydrogen yield, for a fixed soybean oil flow rate of.37 g/s. The hydrogen H2 yield, % 1 8 6 4 H2 yield, % 1 8 6 4 Figure 3. Hydrogen yield as a function of for partial oxidation reforming of soybean oil catalytic 1. 1.2 1.4 1.6 1.8 homogeneous Figure 2. Hydrogen concentration for catalytic reformation of corn, canola, and soy bean oils Corn oil (catalytic) Soy bean oil Canola (catalytic) Canola (homogeneous) 1. 1.2 1.4 1.6 1.8 2. yield is the ratio of hydrogen in the form of H 2 to the hydrogen in the biofuel. For homogeneous reformation of soybean oil, the hydrogen yields are about 3%, while the yield increases to about 8% in the presence of a catalyst. The peak yield occurs at O/C ~ 1.5. The difference between the yield of 8% and the ideal yield of 1% is due primarily to loses of hydrogen resulting from full oxidation into water. For homogeneous reformation, the ratio of the heating value of the hydrogen, CO and light hydrocarbons byproducts to the heating value of the fuel was typically between 6 and 7%. Hydrogen concentration in the reformate as a function of for the processing of canola, corn, and soybean oils is given by Figure 4. Here again, the hydrogen concentration during the reformation of corn and soybean oils are identical and larger than the results with canola oil. It is likely that the difference between the canola and the soybean/corn results are due to the difference in catalyst volume. The hydrogen concentration for the three oils is higher at lower s and decreases when increases. This is because as increases, some of the oxygen reacts with the hydrogen to form water and the reaction tends to move toward 3

combustion. Even though the hydrogen yield increases at the higher s, the addition of combustion products decreases the actual hydrogen concentration. H2, vol. % 15 1 5 Figure 4. H 2 concentration for catalytic reformation of corn, canola, and soybean oils 1. 1.2 1.4 1.6 1.8 ratio O/C Corn oil Soy bean oil Canola oil reforming (notice that the CO 2 concentration is decreased downstream the catalyst; water, on the other hand, is not monitored). It should be stressed that the performance of the system was not optimized, and higher hydrogen yields could be possible by converting the substantial amounts of C2 s present in the gas downstream from the catalyst. For all the experiments performed with veggie oils, the opacity was.1, which is the sensitivity limit of the instrument and which indicates that at most very small amounts of soot were produced. B) ETHANOL The same experiments as for the veggie oils have been carried out for ethanol, but at lower power levels. Figure 5 gives the hydrogen yield for catalytic reformation of neat ethanol at W as 1..8.6 a function of the oxygen to carbon (O/C) ratio. Homogeneous reformation of.4 ethanol is difficult to achieve because of the presence of oxygen in the molecule, leading to a very mildly exothermic reaction. It appears however that the.. results of the plasma catalytic reformation of ethanol are comparable to those obtained for veggie oils and at the same s. H2 yield The composition of the gas reformation upstream and downstream the catalyst for soybean oil for an O/C ratio of 1.8 is shown in Table 1 bellow. The plasmatron converts homogeneously the high hydrocarbons into hydrogen, carbon monoxide and light hydrocarbons, with minimal soot production and eliminating all free oxygen. The catalyst then takes the oxygen-free plasmatron gas and basically doubles the hydrogen yield performing CO 2 and possibly steam Homogeneous Catalytic % vol % vol H 2 9 16 CO 12 17 CO 2 7.4 5.2 N 2 63 56 CH 4 1.4 1 C 2 H 4 5.7 3 C 2 H 2.1.5 O 2.7.7 Table 1. Composition of the reformate gas Figure 5. Hydrogen yield for the reformation of ethanol in the presence of a catalyst vs 1. 1. 1.4 1.6 1.8 2. 4

The hydrogen yield peaks at around O/C ~ 1.5 1.7, slightly higher than that for the bio oils. As mentioned previously, the includes the oxygen that is carried out by the fuel, which in the case of ethanol is very substantial. The opacity measured during ethanol reforming was <.1, which indicates that no soot was produced. C) ENERGY CONSUMPTION In order to make plasma reformation of fuels into syngas attractive, the energy consumption of the process has to be as minimal as possible. Figure 6 gives the electrical energy consumption for corn, soybean oils, and ethanol versus at a power level of 7 W. For a maximum hydrogen yield at an O/C of 1.5, the electric energy consumption is 1 MJ per kg of hydrogen produced for corn and soybean oils. This is approximately 8 % of the energy in the hydrogen. The flow rate of fuel was limited by the size of the exhaust system being used, and it has not been established that the fuel flow rates at the 7 W level has been maximized. Instead of increasing the flow rate, a few experiments at lower power levels have been performed. As shown on Figure 6, the power consumption for canola and corn oils at respectively an O/C of 1.2 and 1.5 is about 2.5 MJ per kg of hydrogen. This is an important result since it shows that high fuel conversion factors can be achieved with low electrical energy consumption. Energy consumption for the reformation of ethanol appears to be comparable to the energy consumption with veggie oils. V. CONCLUSIONS Low-current plasmatron fuel reformer technology has been used to convert both bio-oils and ethanol into a hydrogen-rich gas with high hydrogen yields (7 to 8%) where a catalyst is positioned after the homogeneous reforming zone. For homogeneous reforming alone hydrogen yields are typically about half those obtained with catalytic reforming. However, the conversion rate into H 2, CO and light hydrocarbons is still relatively high (close to 7%) for homogeneous reforming. More work is needed to further lower the energy consumption and increase the hydrogen yield by operating the plasmatron fuel reformer closer to an of 1. References Energy consumption, MJ/kg H2 Figure 6. Energy consumption for reformation of veggie oils and ethanol in the presence of catalyst 1 L. Bromberg, D.R. Cohn, A. Rabinovich, J.E. Surma, and J. Virdin. Int l J. of Hydro. Ener. 24(1999), p. 341-35 2 L. Bromberg, S. Crane, A. Rabinovich, Y. Kong, D.R. Cohn, J. Heywood, N. Alexeev, and A. Samokin. Diesel Engine Emissions Reduction Workshop, 3, Newport RI. Aug. 24-28, 3 Work supported by the Office of Freedom car and Vehicle Technologies, US Department of Energy. 3 1 Soy bean oil 7 W Corn oil Ethanol Corn oil W Canola ( 1. 1.2 1.4 1.6 1.8 2. 5