Shieldhall Tunnel construction of the first shaft, service chamber, cut and cover and the tunnel boring machine launch chamber at Craigton

Similar documents
Update On Our Investment in Glasgow Summer/Autumn 2015

Pipe Jacking/Microtunnelling. Dr. Mark Knight. Centre for Advancement of Trenchless Technologies (CATT) University of Waterloo.

The 114m Preston Tunnel and Rising Main improvement scheme has been completed as part of United Utilities

D7: TUNNEL CONSTRUCTION AND METHODOLOGY

PIPE JACKING. An introduction to pipe jacking prepared by the Pipe Jacking Association

Selection of Proprietary Shoring Equipment

Trenchless Technology

PAUL ZICK, PE NORTH SHORE CONSTRUCTORS JV

Trenchless Pipeline Crossings

LARGE DIAMETER PIPE ROOF BOX EXCAVATION FOR PASSENGER LINKWAY TUNNEL

DESIGN AND INSTALLATION OF THE SHORING AND DECKING FOR TTC YONGE STATION

Expert in Tunneling Systems & Trenchless Technology (HDD, Microtunneling, Pipe Jacking, Thrustboring, Sheet Piling)

Concrete Pipe Jacking

King County Uses Trenchless Methods to Construct a Large Siphon Under Seattle s Ship Canal

From Colonia Jardín to Cuatro Vientos

ROTARY DRILLING TECHNIQUES LARGE DIAMETER

An indicative program for works to be conducted within the Sydney Park construction compound is provided in Table 6-20.

An introduction to. pipe jacking

Pipe Jacking Association An introduction to pipe jacking and microtunnelling

Lee Tunnel Flow Transfer System twin 2.4m diameter elevated steel gravity pipelines to transfer stormwater across Beckton STW

Case study The construction of the West Rail Tsing Kwai Tunnel from Mei Foo to Tsuen Wan

TRENCHLESS CONSTRUCTION (BORING, JACKING, AND TUNNELING)

UNDERPINNING A CRANE FOUNDATION

Behavior of Surrounding Soil during Construction and Its Countermeasures Using Pipe Jacking Method in Deep Strata

USE OF MICROTUNNELING TO INSTALL PIPES IN AN ENVIRONMENTALLY SENSISTIVE AREA. Miranda Roman D. *, LaFaso Edward

Design and development of a decline shaft through poorly consolidated Kalahari deposits at Ghaghoo Diamond Mine.

SPECIAL CONDITIONS FOR PIPE JACKING (PJ) October, 2006

TRENCHLESS TECHNOLOGY. Department of Civil Engineering.

CROSSRAIL INFORMATION PAPER D8 TUNNEL CONSTRUCTON METHODOLOGY

Introduction to Tunnel Construction

Pipejacking Tunnel Boring Machines TBMs. Michael Frenke, LOVAT Inc.

Diaphragm wall Construction

1. All underground utilities under railroad tracks shall be encased in a larger pipe or conduit called the casing pipe.

Venice Pumping Plant Dual Force Main Project Draft EIR

COMPETITIVENESS OF PIPE-JACKING TUNNEL LININGS

HUDSON TUNNEL PROJECT

1. Introduction Selection of Pile Type Soil Report / Boreholes Obstructions Design and Installation of Piling Mat 3

Tunnels. Introduction in Shield tunnelling Pipe jacking & tunnelling Slurry & hydroshield Slurry versus EPB Principles of support pressure

Hardrock Tunnel Boring Machines

Design Data 4M. Jacking Concrete Pipe

Tunnel Works. How we got here - Fort Wayne s Consent Decree. Tunnel Works Program Frequently Asked Questions

Pipe Jacking. Progress is built on ideas.

Box Culverts. Easy to install, suitable for very shallow or deep fill, ideal for use in a wide variety of civil engineering applications.

introduction Introduction to Bridge and Tunnel Engineering Characteristics of ideal bridge Ideal location Factors affecting bridge type Classification

Moncton Watermain Relocation Moncton, New Brunswick. TRS 2010 Dr Mark Knight University of Waterloo

IMPACTS OF TUNNELS IN THE UK. Non-technical summary

INDEX FOR SPECIFICATIONS FOR JACKING CULVERTS THROUGH EMBANKMENTS SCOPE... 2

4D grouting pressure model of a bored tunnel in 3D Tunnel

4th International Engineering and Construction Conference - July 28, 2006

Soil Mechanics Lateral Earth Pressures page Lateral Earth Pressures in case of inclined ground surface or friction at wall-ground interface

4D grouting pressure model PLAXIS

COMMUNITY BOARD EIGHT

Instrumentation and Data Management for the Zurich Zimmerberg Railway Tunnel Construction Daniel Naterop Solexperts Ltd.

SPECIFICATION : BORING AND JACKING

SECTION TRENCHLESS INSTALLATION

Pipe Jacking. Japan Sewage Works Association

SEMINAR. Introduction to Continuous Flight Auger (CFA) piling Thursday 21/8/2013. Facilitator: Martin Larisch

2.0 PROJ ECT D ESCRI PTION

CROSSTOWN LRT Construction Liaison Committee November 1, 2017

Topic: Site Formation

Stabilization of Running Granular Soils in TBM Alignment with Sodium Silicate Grout

Wet Speed-Mixing WSM - Soil Mixing Procedure in Twinmix Design

SITE SERVICES GUELPH TRANSIT OPERATIONS & MAINTENANCE SECTION WATSON ROAD FACILITY PAGE 1 OF 6 WATER RECLAMATION PROJECT JUNE 2013

UNDERGROUND CONSTRUCTION ISSUE TRAUTWEIN TACKLES NEWHOPE PLACENTIA TRUNK SEWER REPLACEMENT PROJECT CONSTRUCTION, INC. PG. 6

Anchorplex retaining wall construction guide. Building. Anchorplex. Retaining Wall Systems

PIPEJACKING AND MICR OTUNNELLIN G. James C. Thomson, C. Eng., Eur. Ing. Chairman Jasoo Consultancy Group London- Geneva- Washington DC

Design Data 4. Jacking Concrete Pipe

Annex F Scoping Checklist

TBM Selection and Specification

A case study of twin bored tunnelling under mixed-face soil - Bendemeer MRT station project (Downtown Line 3), Singapore

HCC completes up-line tunnel for DMRC CC30

RAINWATER HARVESTING SYSTEMS

Horizontal Directional Drilling

DEEP FOUNDATIONS. Rio de Janeiro Subway Line 4: An OPA Finalist. Battered Piles. Sheet Piling. Challenging SOE

Performance review of a pipe jacking project in Hong Kong

S.No Description Unit Quantity Rate (Rs) Amount (Rs)

TRENCHLESS INSTALLATION OF ROAD DRAINAGE & SERVICE DUCTS

Construction OS&H Project planning and control for safe OS&H

Temporary Structures. Excavations and Excavation Supports

Major Pipe Jacking for Perth Desalination and Main Sewer Projects

KIEWIT FOUNDATIONS GROUP

Building the Foundations of Australia

SPECIFICATION FOR PIPE CULVERT CONSTRUCTION

Risk Management based Ground deformation monitoring during Queens Bored Tunnels project

The Technical and Contractual Matters of Bored Piling Works. By Wallace Yeung Vibro (H.K.) Ltd.

STANDARD SPECIFICATIONS SECTION BORING AND JACKING. A. Section includes requirements for boring and jacking casing pipe.

KIEWIT FOUNDATIONS GROUP

13/05/2016. Introductions of Pipe Roof. Focuses. Application of Rectangular Shield Jacking

Preferred Elevated Tank Site

Australasian Society for Trenchless Technology Standard for Microtunnelling & Pipe Jacking

Slope Stabilisation and the Beauty Of Shotcrete AN OVERVIEW

Case study of deep excavation in existing underground structure of three-story basement and diaphragm wall

Liquid Waste Coordination Committee

INFRASTRUCTURE TUNNELS

Field Instruction. All Horizon Power workers who work in and around excavations.

Prof. Eng. Daniele PEILA

Drainage, Sewerage System, Groundwater and Surface Water drainage

Transcription:

www.waterprojectsonline.com Shieldhall Tunnel construction of the first shaft, service chamber, cut and cover and the tunnel boring machine launch chamber at Craigton C onstruction of the Shieldhall Tunnel, the biggest investment in the Glasgow wastewater network since Victorian times, is well underway. Once complete, it will improve river water quality and the natural environment of the River Clyde and its tributaries, enable the Greater Glasgow area to grow and develop, alleviate sewer flooding key locations and deal with the effects of increased rainfall and climate change in the area served by the Shieldhall WwTW. The Shieldhall Tunnel will be 3.1 miles long (more than five times as long as the Clyde Tunnel that takes a dual carriageway beneath the river) and 4.70m in diameter, big enough to fit a double-decker bus inside. It will be the biggest wastewater tunnel in Scotland, with a storage capacity equivalent to 36 Olympic-sized swimming pools. Daisy, the Shieldhall Tunnel TBM - Courtesy of Herrenknecht Planning The investment follows years of collaboration and studies by the Metropolitan Glasgow Strategic Drainage Partnership (MGSDP), whose members include Scottish Water, the Scottish Environment Protection Agency (SEPA), Glasgow City Council and Scottish Canals. CVJV have been carrying out preparatory work, including mine working consolidation, utility diversion work, constructing the first shaft, service chamber, cut and cover and the tunnel boring machine (TBM) launch chamber at Craigton in advance of tunnelling beginning. The improvements are required to meet European directives and SEPA recommendations and will contribute towards the Scottish Government s objective to comply with the Urban Waste Water Treatment Directive and to achieve Water Framework Directive good ecological status or good ecological potential for more than 40 miles of the River Clyde and its tributaries. Tunnel route The tunnel is being launched from a former tram depot site in the Craigton area of Glasgow, in the south-west of the city. The route of the tunnel will go under Bellahouston Park, Pollok Park, beneath Titwood Road and then under Queen s Park where it will connect with the main sewer system. A shaft will be sunk at Queen s Park to allow the TBM to be recovered when the tunnelling is completed. Undertakings The team involved in the Shieldhall Tunnel for Scottish Water, known as the Glasgow Tunnel Partnership, is a commercial joint venture between Costain and VINCI Construction Grands Projets (CVJV). Page 1 of 5 The route for the tunnel will take advantage of the large amount of parkland and the wide roads on Glasgow s southside. This was selected to cut down on noise and other disruptions to the area s businesses and residents. UK Water Projects 2016

There s more to Innovative safety products developed in collaboration with the UK water industry Excavation Bracing Systems Trench Boxes Supershaft Plus Super Shaftbrace Bracing Struts Single Sided Support Hydraulic Walers Manhole Brace Manhole Box Backhoe Box Super Trench Box Dragbox Rolling Strut Box High Clearance Trench Sheeting & Light Piling Temporary Roadways Trench Sheets Light Piling Sheet Access Sheetguard Trench Sheet Accessories TuffTrak EuroMat Trench Crossing Units ShoreSafe Auxillary Products Sheetguard MabeyGuard Stair Access Ladder Access Manhole Safety Platform Pipelifter Piling Attachments Ladders Extractor Plus Q-Kap End Panels www.mabey.com 0845 741 3040

www.waterprojectsonline.com New roadway The launch site is very close to local housing, the M8 motorway and the rail commuter line to Paisley. One of the first tasks for the team was to build a new roadway for the lorries removing the spoil from the site to minimise noise for nearby residents. The existing access roads within Craigton area could not accept the additional 100 lorries per day necessary for servicing the TBM works. All supplies (concrete segments, pipes, cement, bentonite, rails) and excavated materials are routed through the Craigton main compound. Ground conditions Running a tunnel under a major city inevitably means problems for the project team and the Shieldhall Tunnel is no exception. Cut off curtain grout boreholes 100mm dia at 1.75m centers 17.5m 3.5m Central grout boreholes 70mm dia at 3.5m centers Galleries and pillars through coal seam Ground level Varies Ground conditions combined with the shallow depth of the tunnel means this project in terms of tunnelling techniques has it all; piled shafts, top down constructed shafts, sprayed concrete linings, pipe jacking, grouting, cut and cover and bored solutions. There was contamination in the soil from the tram works and this had to be removed before any work could begin. The area has a number of old coal mine-works, some dating back hundreds of years. Old charts were consulted and geotechnical surveys and drilling rigs used to determine potential problems and deal with them. The coal mines treatment extent covers up to 12m below the tunnel invert within a corridor of 18m in plan. The coal seam position can vary from a few metres below the invert up to a few metres above the crown. The tunnel team also had to locate and, where necessary, divert other utilities that lay across the route. Cut and cover entrance to the tunnel Soil conditions of clay and glacial tills overlaying mudstone and sandstone and the relatively shallow depth for the tunnel meant that the entrance for the TBM was a curved trench. The opening was made using a cut-and-cover method, and goes down to approximately 8-10m with a width of 6m approximately, within contiguous or secant concrete bored pile retaining walls. The construction method involved drilling/forming the piles, then excavating the first metre or so before installing temporary works, beams and hydraulic props, to withstand the lateral forces and prevent the piled walls collapsing as the excavation was dug to its final depth. Concrete was sprayed to stem any material or water ingress into the trench and allow the cut and cover entrance to the tunnel to be installed. The length of the cut and cover between the Shaft 1 and the start of the TBM tunnel is about 250m, long enough to allow the commissioning of the TBM in one go. The diameter of the cut and cover tunnel was modified to be the same as the bored tunnel. The two ends of the cut and cover are used for assembling the TBM parts: the launch chamber for the shield and cutter head, and the Shaft 1 entrance is used to lower all the back-up elements (the bridge plus 11 gantries) and shift them toward the TBM head through the cut and cover tunnel. The intention is for all the approximately 300,000 tonnes of excavated material from the TBM tunnel to be recycled, either in the Shieldhall Tunnel project itself or elsewhere. Progress Craigton Shaft 1: The Shaft 1 has been sunk at the Craigton site that will eventually connect the Shieldhall Tunnel with the existing Victorian-era sewer when the TBMs work is completed. This is a challenge to connect to a live sewer with 1 to 8m 3 /sec of flow. 12m 1m 4.65m ID tunnel position Maximum drill depth of 12m below tunnel if no seam found Typical coal seam Drill and grout 1m minimum below coal seam/feature Section of the tunnel showing construction methods Courtesy of Scottish Water Route of the tunnel - Courtesy of Scottish Water Page 3 of 5 UK Water Projects 2016

www.waterprojectsonline.com HERRENKNECHT AG UTILITY TUNNELLING TRAFFIC TUNNELLING PIONEERING UNDERGROUND TECHNOLOGIES. Herrenknecht is the technology and market leader in the field of mechanised tunnelling and the only company worldwide to deliver high-tech tunnel boring machines for all ground conditions and all diameters ranging from 0.10 to 19 meters. Herrenknecht also develops solutions for vertical and inclined shafts. Herrenknecht International Ltd. provides sale and rental of: Microtunnelling Machines Tunnel Boring Machines Guided Auger Boring Machines Horizontal Directional Drilling Rigs (HDD) Vertical Shaft Sinking Machines (VSM) Direct Pipe (HDD / Microtunnelling Combination) Mobile Vertical Drilling Rigs Raise Boring Rigs Boxhole Boring Machines Herrenknecht International Ltd. Wearfield, Sunderland Enterprise Park Sunderland, Tyne & Wear, SR5 2TZ United Kingdom Phone +44 191 5489191 enquiries@herrenknecht.co.uk www.herrenknecht.com HK1942_ANZ_HK_International_Ltd_Image_185x130mm_GB_20131204.indd 1 04.12.13 10:16 GEORGE LESLIE LTD Civil Engineering Contractors www.georgeleslie.co.uk Blackbyres Road, Barrhead, Glasgow G78 1DU T: 0141 881 9131 F: 0141 881 8265 Email: mail@georgeleslie.co.uk Working in Partnership with Scottish Water throughout Scotland Page 4 of 5 UK Water Projects 2016

www.waterprojectsonline.com Tunnel boring machine: The slurry TBM began to arrive in sections from the manufacturers, Herrenknecht, in southern Germany. The loads came by sea to Rosyth in Fife, then overland in special convoys to the Craigton site. In keeping with tradition, the custom-built machine has been named Daisy by a local schoolboy. The front section was lowered into the launch chamber by crane and the subsequent sections are being lowered in Shaft 1, then shifted toward the launching chamber inside the cut and cover section as the work progresses. The TBMs 5.51m cutting head will have a sealed chamber to protect tunnel workers from coming into contact with potential hazards such as old mine gas or water. The TBM has been designed specifically to treat the issue of gas. It allows collection and diversion through the slurry circuit, or evacuation through the ventilation system, of any gas that infiltrates inside the working chamber. The TBM is equipped with gas detectors to control concentration rates and adopt the necessary measures. Geology The TBM is mining in a varying geology (from very soft soil to hard and abrasive sand stone) and mixed faces with the possibility of untreated coal seams, or old mine shafts, constitute a high-level TBM mining exercise for CVJV. The choice of slurry TBM and its data acquisition system (CAP system + Tim), allows the full control of all TBM mining parameters in real time. Slurry treatment plant: A slurry treatment plant (STP) with a capacity of 1,200m 3 /h of slurry flow and a treatment capacity in line with the programmed progress rate in each type of ground is installed at Craigton main compound area. All excavated materials are pumped from the TBM excavation chamber inside slurry pipes until reaching the STP outside the tunnel. This avoids any direct contact or possible contamination of the working space inside the tunnel with gas. The STP has been designed to deal with any presence of gas during the slurry treatment works. It has also been designed to reuse, as much as is possible, the processed water and reduce the amount of rejected bentonite. The rejected bentonite will be in form of fines mixed with the fines coming from the ground and filtered and pressed to become a solid tiles and evacuated. How the TBM s sealed chamber cutting head operates Courtesy of Scottish Water Tunnel lining geometry: The tunnel lining geometry brings innovation in the methodology of tunnel lining building. The precast segments have all trapezoidal or parallelogram shapes without a small key stone. This is believed to increase the quality of ring built and the productivity. Summary Dominic Flanagan, senior project manager at Scottish Water, said: The Shieldhall Strategic Tunnel set us a number of challenges and I m delighted the work done so far has overcome these. I wish to congratulate the team we have here on the excellent progress. The TBM, which weighs about 1,000 tonnes and is 180m long, was launched on 6 July 2016. The 100m project is due for completion in early 2018. The special fibre reinforcement for the concrete being used is expected to help give the tunnel a life of 100 years. Slurry treatment plant - Courtesy of Scottish Water The editor and publishers thank Scottish Water and the CVJV (a joint partnership between Costain and VINCI Construction Grands Projets) for providing the above article for publication. Constructing the cut and cover entrance with contiguous piling and props - Courtesy of Scottish Water Page 5 of 5 UK Water Projects 2016