Some representative viruses

Similar documents
CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

2054, Chap. 14, page 1

Bio 121 Practice Exam 3

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication.

AP Biology Gene Expression/Biotechnology REVIEW

Multiple choice questions (numbers in brackets indicate the number of correct answers)

2. Outline the levels of DNA packing in the eukaryotic nucleus below next to the diagram provided.

2054, Chap. 13, page 1

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology.

Chapter 8 Recombinant DNA Technology. 10/1/ MDufilho

AP Biology Reading Guide BI #3 Chapter 19: Viruses

Chapter 9 Genetic Engineering

Viruses 11/30/2015. Chapter 19. Key Concepts in Chapter 19

CHAPTER 08: RECOMBINANT DNA TECHNOLOGY Pearson Education, Inc.

Bio 101 Sample questions: Chapter 10

Chapter 20: Biotechnology

Chapter 15 Gene Technologies and Human Applications

Chapter 18. Viral Genetics. AP Biology

CHAPTER 9 DNA Technologies

Genetic Engineering & Recombinant DNA

AP Biology. Chapter 20. Biotechnology: DNA Technology & Genomics. Biotechnology. The BIG Questions. Evolution & breeding of food plants

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

DNA Technology. B. Using Bacteria to Clone Genes: Overview:

Learning Objectives :

Biology 201 (Genetics) Exam #3 120 points 20 November Read the question carefully before answering. Think before you write.

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Genetics Lecture 21 Recombinant DNA

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Lecture 25 (11/15/17)

Viruses and Bacteria Notes

Chapter 18 Review Page 1

Lecture Four. Molecular Approaches I: Nucleic Acids

CHAPTER 21 LECTURE SLIDES

The Polymerase Chain Reaction. Chapter 6: Background

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

The Polymerase Chain Reaction. Chapter 6: Background

Molecular Genetics Student Objectives

LECTURE TOPICS 3) DNA SEQUENCING, RNA SEQUENCING, DNA SYNTHESIS 5) RECOMBINANT DNA CONSTRUCTION AND GENE CLONING

Genomes summary. Bacterial genome sizes

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

Chapter 20: Biotechnology

Lecture 3 Mutagens and Mutagenesis. 1. Mutagens A. Physical and Chemical mutagens B. Transposons and retrotransposons C. T-DNA

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype)

Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, ; ; 330 PCR, ; 329.

3I03 - Eukaryotic Genetics Repetitive DNA

number Done by Corrected by Doctor Hamed Al Zoubi

Computational Biology I LSM5191

CHAPTERS , 17: Eukaryotic Genetics

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome.

DNA Structure and Analysis. Chapter 4: Background

BIOTECHNOLOGY. Course Syllabus. Section A: Engineering Mathematics. Subject Code: BT. Course Structure. Engineering Mathematics. General Biotechnology

Biotechnology. Chapter 17 section 1 (only)

Bacterial DNA replication

BACTERIA. NO or membrane bound WHAT ARE THE TWO TYPES OF PROKARYOTES? TYPES EUBACTERIA ARCHAEBACTERIA. bilayer embedded with

Unit 6: Gene Activity and Biotechnology

M Keramatipour 2. M Keramatipour 1. M Keramatipour 4. M Keramatipour 3. M Keramatipour 5. M Keramatipour

A Level. A Level Biology. DNA Technology Questions. AQA, OCR, Edexcel. Name: Total Marks: Page 1

Lectures of Dr.Mohammad Alfaham. The Bacterial Genetics

Genomics and Gene Recognition Genes and Blue Genes

2 Gene Technologies in Our Lives

Name Per AP: CHAPTER 27: PROKARYOTES (Bacteria) p559,

Practice Test #3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates.

DO NOT OPEN UNTIL TOLD TO START

AP Biology Chapter 18 Notes:

DNA Technology. Asilomar Singer, Zinder, Brenner, Berg

I. Prokaryotic Gene Regulation. Figure 1: Operon. Operon:

Biotechnology Unit: Viruses

BIOTECHNOLOGY OLD BIOTECHNOLOGY (TRADITIONAL BIOTECHNOLOGY) MODERN BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY.

3. human genomics clone genes associated with genetic disorders. 4. many projects generate ordered clones that cover genome

7 Gene Isolation and Analysis of Multiple

Biotechnology. Chapter 13

Biology Test Review Microorganisms

Problem Set 8. Answer Key

Chapter 10 Analytical Biotechnology and the Human Genome

The Mosaic Nature of Genomes

Name Class Date. Practice Test

CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? CHAPTER 2A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved.

Recombinant DNA Technology

1. What is the structure and function of DNA? Describe in words or a drawing the structure of a DNA molecule. Be as detailed as possible.

Bio 311 Learning Objectives

Gene Transfer 11/4/13. Fredrick Griffith in the 1920s did an experiment. Not until 1944 was DNA shown to be the moveable element

Immune System. Viruses vs. Bacteria

AP Biology TEST #4 - Chapters 11-14, 16 - REVIEW SHEET

b. Genetic engineering techniques can manipulate the heritable information of DNA and, in special cases, RNA. To demonstrate student understanding of

Transcription & Translation. From Gene to Protein

UNIT 3: GENETICS Chapter 9: Frontiers of Biotechnology

CONNECTION: Many viruses cause disease in animals and plants

Chapter 11: Regulation of Gene Expression

Genome research in eukaryotes

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION

Exam 2 BIO200, Winter 2012

O C. 5 th C. 3 rd C. the national health museum

PACING Guide SY Timeline & Resources Q1 Lesson 1.1 The Mystery Infection

Transcription:

Viruses (Ch. 18) Structure Not cells, not alive. genome, capsid, envelope Function entry, replication, gene expression, selfassembly Some assimilate into host genome Origin as runaway genes Some representative viruses 1

Even smaller- virioids Virioids: RNA with no capsid, and no structural (protein) genes Form sirna s (small interfering RNA s) via dicer Some cause important plant diseaseshighly contagious Life cycles of bacteriophages 2

The lytic cycle of phage T4 Lysogenic and lytic cycles of phage λ, a temperate phage 3

Retroviruses RNA genome Reverse transcriptase makes DNA using RNA as a pattern Includes Human Immunodeficiency Virus (HIV) which causes Acute Immunodeficiency Syndrome (AIDS) HIV, a retrovirus See Figure 18.4 Brooker 4

5

Viral diseases of man AIDS, herpes, influenza, colds, polio, mumps, measles, smallpox, SARS, ebola, hantavirus, others Severity depends on the cells affected cold virus nasal epithelia polio virus- motor neurons HIV virus - helper T-cells Viral genes can make bacteria toxic (e.g. diptheria, scarlet fever, botulism) Some viruses cause cancer Can t use antibiotics against virus (why)? Vaccination- exposure to inactivated virus to sensitize immune system. 6

Prions: infective proteins (not viri) transmissible spongiform encephalopathies Zombies? Stanley Prusiner How did viruses evolve? Many viruses can become part of host chromosome- prophage or provirus may have originated from mobile genetic elements basically, genes that can move between cells or between chromosomes These elements may have evolved because they facilitate genetic recombination 7

Genetic recombination Creates new combinations of alleles Eukaryotes use meiotic sex Prokaryotes have other ways to exchange and recombine genes: plasmids, transformation, transduction, conjugation, transposons Bacterium releasing DNA with plasmids 8

Bacterium releasing DNA with plasmids Plasmids Bacterial conjugation Conjugation tube Plasmids, or chromosomal DNA can be passed from donor cell to recipient. Genes from donor can become part of recipient cell chromosome 9

Detecting genetic recombination in bacteria (compare with Brooker 18.15) R-plasmids Antibiotic resistance plasmids carry from 1-10 different antibiotic resistance genes Evolution caused by use of antibiotics in medicine, livestock How could several resistance genes end up together in one plasmid? 10

Transposons (Chap 21) Genetic elements that can move Occur in both prokaryotes and eukaryotes Simplest form is insertion sequence that inserts randomly, causes mutation Insertion sequences ( transposable elements ) the simplest transposons 11

Insertion of a transposon and creation of direct repeats Transposons (jumping genes ) were discovered by Barbara McClintock via mutations in corn embryos that cause color patterns Transposition causes mutation by interrupting genes Any given transposon doesn t jump often it may become a permanent part of the genome. Eukaryote genomes are littered with them (half or more of DNA) 12

A composite transposon with an antibiotic resistance gene Complex transposon = two insertion sequences bracket & move other genes, can alter position (linkage) of genes Chromatin in a developing salamander ovum 13

Eukaryote genomes (Chap 21) LOTS of DNA in eukaryotes mostly non-coding Repetitive elements 59% Introns & regulatory elements, other noncoding DNA 39% Structural genes only ~1.5% of DNA 14

Repetitive DNA: 59% of genome Satellite DNA micro (1-3 bp) & mini (10-40 bp) tandem repeats (includes telomeres, centromeres) Transposon related (SINEs & LINEs) including Alu elements Moderately repetitive DNA (large sequences, including genes for ribosomes, trnas) Pseudogenes Alu elements (10-11% of genome) a very abundant class of short interspersed repetitive DNA, similar to the gene for RNA of the signal recognition particle that binds ribosomes to ER 300 bp over & over...11% of human genome Naming: cut by restriction enzyme Alu-1 Arthrobacter luteus. Significance as genetic markers in forensics, phylogenetics 15

Retrotransposons How did human genome end up with 1.5 million Alu elements? Genetic elements are replicated and moved by retrotransposition. Retrotransposons ( copy and paste transposons) are similar to retroviruses Retrotransposon movement 16

Repetitive DNA (59%) Simple sequence (satellite) DNA (3%) Multiple, tandem copies of short sequences Why satellite? AT vs GC density Telomeres & centromeres Significance in forensics, phylogenetics Gene duplication & gene families Many protein coding genes have also undergone replication in genome Pseudogenes- recognizably homologous with functional genes but not transcribed. multigene families, e.g. globin gene families. The genome is an untidy scene, littered with clues to evolutionary history 17

The evolution of human α-globin and β-globin gene families What about the coding genes? (1.5%) Functions of protein-coding genes in Drosophila (sums to 80%) 13,449 genes 18,941 mrnas 18

DNA and Biotechnology (Ch. 20) Biotechnology: methods for investigating and manipulating DNA in research, medicine, agriculture, criminal law, industry Genomics: study of genomes, including mapping, sequencing and gene function. Structural genomics Functional genomics Comparative genomics Bioinformatics Recombinant DNA overview genes from two different sources are artificially combined, often in a bacterial plasmid or yeast chromosome recombinant DNA put into bacteria, yeast, or other easily cultured cells cells multiply and therefore produce more copies of the gene ( cloning the gene) cells manufacture the gene product (protein) 19

Using restriction enzymes to make recombinant DNA Restriction enzymes cut DNA at particular palindromic recognition sequences. sticky ends of fragments can combine due to complementarity mix DNA fragments from two sources cut with same restriction enzyme complete annealing of recombinant DNA with ligase Using a restriction enzyme to make recombinant DNA Chromosome or plasmid DNA with palindromic recognition sequence Restriction enzyme cuts the DNA Cut ends bond because they are complementary Add a DNA fragment from another source, cut with same restriction enzyme. DNA ligase seals the strands 20

Using recombinant plasmids in biotechnology Identifying cells with recombinant plasmids This plasmid has a couple of reporter genes that confer antibiotic resistance. Restriction sites (red arrows) lie within the reporter genes 21

22

Amp R gene: labels cells that possess the reporter plasmid they are able to grow despite ampicilllin in the growth medium LacZ gene makes colonies blue. Loss of LacZ labels recombinants 23

Ways to get the recombinant DNA into cells Bacterial plasmids Transformation transduction with virus Plant cells Ti plasmid from Agrobacter tumifaciens ballistic method Yeast Yeast artificial chromosomes (YAC s) Selection of recombinant cells with particular genes of interest recombinant methods are haphazard- They produce recombinant libraries multiple clones carrying different parts of the DNA. Must identify clones with genes of interest test enzyme activity label with monoclonal antibodies use labeled complementary DNA probe 24

Using a nucleic acid probe to identify a cloned gene Many colonies, each containing a recombinant plasmid Which colonies have gene of interest? DNA probe is SS DNA complementary to part of the gene of interest Fluorescent tag or radiolabel probe to ID the colonies that carry the gene cdna prokaryotes lack mrna processing- can t remove introns from eukaryote transcripts cdna (complementary DNA) is prepared using mrna from source cells and reverse transcriptase cdna joined to bacterial promoter genes before insertion into bacteria 25

PCR and DNA amplification multiple copies of DNA molecules are needed for sequencing, uses in forensic, diagnostic applications PCR (polymerase chain reaction) makes many copies of selected parts of the DNA in vitro Kary Mullis Nobel 1993 26

The polymerase chain reaction (PCR) See 20.5 in text PCR animation link Methods for analyzing DNA Restriction fragment analysis Gel electrophoresis Visualization with ethidium bromide Southern Blot using radiolabeled DNA probes Mapping Linkage mapping Physical mapping Sequencing 27

Gel electrophoresis Separates DNA molecules by size Movement through gel caused by electric field (DNA has net negative charge) RFLP analysis RFLP = Restriction fragment length polymorphism 28

RFLP markers close to a gene RFLP using Southern blot 29

DNA fingerprints from a murder case Gene chip DNA microarray assay for gene expression 30

DNA microarray assay for gene expression DNA technologies Diagnosis of diseases Forensic uses of DNA Genetic engineering Transgenic microbes, plants & animals Production of useful proteins Gene therapy Phylogenetics 31

Using recombinant plasmids in biotechnology Golden rice contrasted with ordinary rice 32

Concerns about GM organisms Examples Bt corn monarch butterflies Roundup-Ready soybeans superweeds Golden rice http://en.wikipedia.org/wiki/golden_rice 33