Fabrication of Calcium Phosphate Glass Using Eggshell and its Crystallization Behavior

Similar documents
PREPARATION OF ALUMINA MATRIX FOR CERAMIC COMPOSITES BY SOL-GEL METHOD

Microstructure and Vacuum Leak Characteristics of SiC coating Layer by Three Different Deposition Methods

Effects of TiO2 Contents on HA/TiO2 Composite Coating by Electrophoretic Deposition Lei Zhao, Huiping Shaoa, Hang Zheng

Furnace Temperature and Atmosphere Influences on Producing Lithium Iron Phosphate (LiFePO 4 ) Powders for Lithium Ion Batteries

Study of structures and properties of ZnO Sb 2 O 3 P 2 O 5 Na 2 O glasses

CRYSTALLIZATION BEHAVIOR OF HYBRID PREMULLITE POWDERS SYNTHESIZED BY SOL-GEL METHOD

S.C. COLAK, E. ARAL Physics Department,Faculty of Art and Science, Osmangazi University, Eskişehir, TURKEY.

Microwave dielectric properties and microstructures of MgTa 2 O 6 ceramics with CuO addition

BIOACTIVE SILICIUM-CONTAINING COATINGS ON TITANIUM SUBSTRATE

GLASS FORMATION AND DISSOLUTION PROPERTIES OF Na 2 O-CaO-P 2 O 5 GLASSES IN SIMULATED BODY FLUIDS

EVALUATION REPORT OF HESS PUMICE

Physico-Mechanical Properties of TiO 2 Doped 45S5 Bioactive Glasses and Glass Ceramics

Ceramic Processing Research

for New Energy Materials and Devices; Beijing National Laboratory for Condense Matter Physics,

PHYSICAL PROPERTIES OF La 0.9 Sr 0.1 Cr 1-X Ni X O 3-δ (X = 0-0.6) SYNTHESIZED VIA CITRATE GEL COMBUSTION

Microstructural Evolution of Ti-Mo-Ni-C Powder by Mechanical Alloying

XRF S ROLE IN THE PRODUCTION OF MAGNESIUM METAL BY THE MAGNETHERMIC METHOD

Sintering Behavior of Porous Nanostructured Sr-Doped Lanthanum Manganite as SOFC Cathode Material

SYNTHESIS OF NANOSIZE SILICON CARBIDE POWDER BY CARBOTHERMAL REDUCTION OF SiO 2

Effect of Silicon Carbide on Reactions between Molten Steel and Fused Magnesia Silicon Carbide Composite Refractory

Effect of Magnesium Doping on the Physicochemical Properties of Strontium Formate Dihydrate Crystals

Original papers. Submitted February 11, 2012; accepted December 2, Keywords: Melt-quench method, Crystalline phases, Densification, Hardness

Hydroxyapatite extracted fromwaste Fish Bones and Scales via Calcination Method

Effect of Starting Materials on the Characteristics of (La 1-x Sr x ) Mn 1+y O 3-δ Powder Synthesized by GNP

NJC Accepted Manuscript

FAYALITE SLAG MODIFIED STAINLESS STEEL AOD SLAG

Advanced Materials Thermal and Environmental Barrier Coatings Solid Oxide Fuel Cells Custom Compositions

DEVELOPMENT OF SLUDGE WASTE TREATMENT PROCESS

The Hydration Products of a Refractory Calcium Aluminate Cement at Intermediate Temperatures

Doris Ehrt and Doris Möncke. Friedrich Schiller University of Jena, Otto-Schott-Institut, Fraunhoferstr. 6, D Jena, Germany,

Effect of Oxygen Partial Pressure on Liquidus for the CaO SiO 2 FeO x System at K

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride

Development and Study on Various Properties of Titanium Oxide -Tri Calcium Phosphate Composites through Powder Metallurgy Technique

EFFECT OF CALCINATION TEMPERATURE ON KAOLINITE FOR MULLITISATION OF KAOLINITE AND ALUMINA MIXTURE

Influence of TiC on the Viscosity of CaO MgO Al 2 O 3 SiO 2 TiC Suspension System

Synthesis, Permeability and Microstructure of the Optimal Nickel-Zinc Ferrites by Sol-Gel Route

Effect of Temperature and Activator Molar of Na 2 O to SiO 2 in the Process of Synthesis and Microstructure of Cement Geopolymer

MgO modification of slag from stainless steelmaking

Dimitra Zaharaki 1, Kostas Komnitsas 1 and Georgios Bartzas 2

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte

Kinetics of Recovery of Alumina from Coal Fly Ash through Fusion with Sodium Hydroxide

MODIFIED GLASS BATCH CAN HAVE INCREASED ALUMINA CONTENT BY USING FELDSPAR TO IMPROVE GLASS PROPERTIES

Synthesis of Ca-hydroxyapatite Bioceramic from Egg Shell and its Characterization

Electrochemical and Transport Properties of Ions in Mixtures of. Electroactive Ionic Liquid and Propylene Carbonate with a Lithium

THE INFLUENCE OF TRIETANOLAMINE (TEA) ON CHARACTERISTICS OF FRESH AND HARDENED MORTARS CONTAINING LIMESTONE POWDER

ADVANCES IN QUANTITATIVE XRD ANALYSIS FOR CLINKER, CEMENTS, AND CEMENTITIOUS ADDITIONS

Keywords: hydroxyapatite, fluorapatite, composite materials, microhardness

Ceramic Processing Research

Available online at ScienceDirect. Procedia Chemistry 10 (2014 )

PVP-Functionalized Nanometer Scale Metal Oxide Coatings for. Cathode Materials: Successful Application to LiMn 2 O 4 Spinel.

Effects of Commercial Inert Glass (CIG) Addition on Mechanical and Microstructural Properties of Chicken Hydroxyapatite (CHA)

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY

Supplementary Material for Chitin and chitosan dissolving. in ionic liquids as reversible sorbents of CO 2

Effects of Basicity and FeO Content on the Softening and Melting Temperatures of the CaO-SiO 2 -MgO-Al 2 O 3 Slag System

Use of spent pot linings from primary aluminium production as raw materials for the production of opal glasses

EFFECTS OF ASH CONTENT AND CURING TIME ON COMPRESSIVE STRENGTH OF CEMENT PASTE WITH RICE HUSK ASH

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ. Office Hours: Thursday, 09:30-10:30 am.

Ultraviolet ray absorbing coatings on glass for automobiles

Low Temperature Synthesis of Single-crystal Alpha Alumina Platelets by Calcining Bayerite and Potassium Sulfate

Conductivity and Dielectric Studies of PMMA Composites

SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITE-GELATIN COMPOSITES

New Cu-based Bulk Metallic Glasses with High Strength of 2000 MPa

Effects of Cement Type and Fly Ash on the Sulfate Attack Using ASTM C 1012

XRD Analysis of Boron Doped Glassy Carbon

IMPROVEMENT OF CONCRETE DURABILITY BY COMPLEX MINERAL SUPER-FINE POWDER

PREPARATION OF GEOPOLYMER USING FLY ASH AND RICE HUSK SILICA AS RAW MATERIALS

ISO INTERNATIONAL STANDARD. Implants for surgery Hydroxyapatite Part 1: Ceramic hydroxyapatite

Relationship between Microstructure and Vacuum Leak Characteristics of SiC Coating Layer

Synthesis and characterization of Aln 2 O 4 indates, A ˆ Mg, Ca, Sr, Ba

Effect of crystallization on apatite-layer formation of bioactive glass 45%

concentration of acid in mol / dm 3 temperature / C ti / min

Hot Metal Desulfurization by CaO SiO 2 CaF 2 Na 2 O Slag Saturated with MgO

Effects of calcium impurity on phase relationship, ionic conductivity and microstructure of Na + -β/β -alumina solid electrolyte

Precipitation of Calcium Phosphate at ph 5.0 for the β Tri-calcium Phosphate Cement

Suggest one reason why spoons are electroplated. ... Why is hydrogen produced at the negative electrode and not sodium?

PROTECTING REFRACTORIES AGAINST CORUNDUM GROWTH IN ALUMINUM TREATMENT FURNACES. C. Allaire and M. Guermazi

Sol Gel Synthesis and Characterization of ZnAl 2 O 4 :SiO 2 Nanopowders for Refractory Applications.

ELECTROCHEMICAL REDUCTION OF TITANIUM DIOXIDE THIN FILM IN LiCl-KCl-CaCl 2 EUTECTIC MELT

Undergraduate Laboratory Experience for Ceramics

Chapter 2 Portland Cement Clinker

IRON REDOX EQUILIBRIUM AND DIFFUSIVITY IN MIXED ALKALI-ALKALINE EARTH-SILICA GLASS MELTS

Arch. Metall. Mater. 62 (2017), 2B,

Supplementary Information. A New Precipitation Pathway for Calcium Sulfate Dihydrate (Gypsum) via Amorphous and Hemihydrate Intermediates

Structural Properties of NiO-CGO Composites Precursor Prepared via Combustion Synthesis Route

Extracting and using metals. ores. native. Only the most unreactive metals such as gold and platinum are found as native metals.

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4

EFFECTS OF LIGHTWEIGHT MULLITE-SILICA RICH GLASS COMPOSITE AGGREGATES ON PROPERTIES OF CASTABLES

Effect of MgO and CaO on Transformation of Andalusite to Mullite H. Pooladvand, S. Baghshahi, B. Mirhadi, A.R. Souri, and H. Arabi

Evaluation of portland cement clinker with optical microscopy - case studies III

Fabrication and performance of fl y ash granule fi lter for trapping gaseous cesium

VCAS White Pozzolans

EFFECT OF SODIUM HYDROXIDE SOLUTION ON THE PROPERTIES OF GEOPOLYMER BASED ON FLY ASH AND ALUMINIUM WASTE BLEND

INVESTIGATIONS ON THE GLASS FIBER CONCRETE REINFORCEMENT WITH SrO-Mn 2 O 3 -Fe 2 O 3 -MgO- ZrO 2 -SiO 2 (SMFMZS) SYSTEM GLASS FIBERS

Conductivity Studies of PMMA/Al 2 O 3 Composite

METALS AND THEIR COMPOUNDS

Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries

Table of Contents. Preface...

Mould fluxes for steelmaking - composition design and characterisation of properties. Research Institute, Stockholm

Transcription:

Journal of the Korean Ceramic Society Vol. 54, No. 5, pp. 395~399, 2017. https://doi.org/10.4191/kcers.2017.54.5.08 Communicatio Fabrication of Calcium Phosphate Glass Using Eggshell and its Crystallization Behavior Tea-Sung Kang* and Sang-Jin Lee*, **, *Department of Advanced Materials Science and Engineering, Mokpo National University, Muan 58554, Korea **Research Institute of Ceramic Industry and Technology, Mokpo National University, Muan 58554, Korea (Received May 21, 2017; Revised August 2, 2017; Accepted August 21, 2017) ABSTRACT The thermal properties and crystallization behavior of calcium phosphate glass fabricated using eggshell were examined. Nature eggshell has several impurities in the main component of CaC. To manufacture calcium phosphate glass, washed eggshell was dissolved in aqua-regia while adding a solution of isopropyl alcohol, D. I. water and phosphoric acid. The calcined precursor was melted at 1000 o C, and the glass (T g : 540 o C) was crystallized at 620~640 o C, which temperature range is relatively low compared to the crystallization temperature of other general types of calcium phosphate glass. The calcium phosphate glass using eggshell was successfully crystallized without any additional nucleating agents due to the multiple effects of impurities such as, Al 2, SrO and SiO 2 in the eggshell. The main crystalline phase was β-ca(p and a biocompatible material, hydroxyapatite, was also observed. The crystallization process was completed under the condition of a holding time of only 1 h at the low temperature. Key words : Calcium phosphate glass, Glass ceramic, Crystallization, X-ray diffraction, Eggshell P 1. Introduction hosphate glass has been steadily studied in the field of solid-state lasers because its light dispersion is lower but its refractive index is greater in comparison with those of silicate-based optical glass. 1-4) In addition, phosphate glass is studied and applied in various fields including composite materials, sealing materials, medical materials, and solid electrodes because it has a low transition temperature, a low thermal expansion coefficient, and high chemical durability; also, its properties can be changed by adding a metal ion. 5-10) Various types of phosphate glass are available according to the composition. 5-10) Particularly, bioactive phosphate glass, which may be applied for medical purposes, is generally used as a filler for the treatment of osteoporosis or as a coating material for artificial bones, rather than as a main material because of its low mechanical properties. One typical bioactive phosphate glass is calcium phosphate glass, in which some of the phosphates are substituted with calcium (Ca). Calcium phosphate glass can usually be manufactured by melting or sol-gel methods. In a general melting method, frit is prepared and melted for molding in a graphite or steel mold; the molding product is finally crystallized through heat treatment. The sol-gel method enables more accurate control of the chemical composition than the melting Corresponding author : Sang-Jin Lee E-mail : lee@mokpo.ac.kr Tel : +82-61-450-2493 Fax : +82-61-450-2498 method, and it is usually applied to the manufacturing of bioactive glass for special purposes. However, the sol-gel method has low productivity and high process cost than melting method. 11) Massera et al. 12) studied the crystallization behavior of 50 (40-x)CaO xsro 10Na 2 O phosphate glass. Their results showed that the glass transition temperature and the crystallization temperature decreased as substitution with SrO increased, as the heating rate increased in the heat treatment for crystallization, and as the frit particle size decreased. Kasuga et al. 13) prepared a crystallization glass with the basic composition of Ca/P = 1 (60CaO 30 7Na 2 O 3TiO 2 ) with the small amount of Na 2 O and TiO 2, which are used as nucleating agents on the condition of different content; they also investigated the crystallization and sintering behavior and the fracture toughness of the prepared glass. The glass showed β-tricalcium phosphate (TCP) as the main crystalline phase through quenching process after melting at 1300 o C. In this study, eggshells were used for the preparation of calcium phosphate glass. Eggshells contain not only calcium carbonate (CaC ) as the main ingredient but also various impurities as trace ingredients. Some of the natural impurities are assumed to play the role of nucleating agent for the crystallization of phosphate glass. Therefore, the possibility of performing the crystallization without the addition of a separate nucleating agent is examined, and the preparation conditions of the crystallization calcium phosphate glass from eggshells as well as the properties of the prepared glass are investigated. 395

396 Journal of the Korean Ceramic Society - Tea-Sung Kang and Sang-Jin Lee Vol. 54, No. 5 2. Experimental Procedure The calcium phosphate glass was prepared by using eggshells as the starting material. After washing and the drying eggshells, the eggshell membrane was removed. Then, to dissolve CaC, the main ingredient of eggshells, the eggshells were added to a solution prepared by mixing aqua regia, isopropyl alcohol (IPA), and deionized water. When the dried eggshells were mixed with the solution, a strong exothermic reaction occurred, along with the discharge of a large amount of gas. After completing the dissolution of the eggshells (with no more bubble generation from the solution at room temperature), the undissolved eggshell membrane was removed. A phosphoric acid solution (85 wt% in H 2 O, DC Chemical Co. Ltd) was mixed with the prepared solution to induce a weight ratio of CaO to of 4 : 6. An exothermic reaction also occurred in this stage. Transparent crystals were generated in the cooling process following the exothermic reaction. The transparent crystals were completely dissolved at 150 o C in the pre-drying of the solution prepared by mixing with the phosphoric acid solution. The pre-dried precursor was completely dried in a drying furnace at 200 o C for 24 h, and then calcined at 800 o C 10 o C/min for 3 h. The calcined precursors were put into an alumina crucible for melting at 1000 o C for 3 h. To complete the preparation of the phosphate glass for crystallization process, the melting product was quenched by pouring it into a stainless mold at room temperature. Subsequently, to investigate the crystallization behavior, heat treatment was performed by varying the temperature (620 o C to 640 o C) and the holding time (1 h to 6 h) based on thermal analysis data. The temperatureincrease rate was kept on 10 o C/min in all the heat treatment processes. X-Ray fluorescence (XRF, VGB R-302 He, Beuth Verlag, Germany) analysis was performed to determine the composition of the starting material (eggshells) and the glass prepared using the starting material. X-Ray diffraction (XRD, X'pert-pro MPD, PANalytical, Netherlands) analysis was performed to analyze the crystal phases of the dried precursor, the calcined precursor, and the crystallized phosphate glass. The properties of the prepared phosphate glass were investigated through thermal analysis using a thermo-gravimetry analyzer/differential scanning calorimeter (TGA/ DSC, TG2171, Thermo Cahn Corp., USA). Table 1. Composition of Raw Eggshell Components Amount (wt%) Na 2 O 0.435 MgO 0.2511 Al 2 0.061 SiO 2 0.165 0.02083 S 0.6376 Cl 0.0256 K 2 O 0.0823 CaC 69.9101 0.0174 SrO 0.0443 Ig. loss 28.34977 CaC(s) + 2HCl (l) CaCl 2(a) + H 2 O (l) + CO 2(g) (1) CaC(s) + 2HN(a) Ca(N (a) + H 2 O (l) + CO 2(g) (2) The reaction was extremely strong exothermic and occurred with the production of yellow nitrosyl chloride (NOCl) gas with CO 2. In addition, when the phosphoric acid solution was added to the prepared solution, an exothermic reaction occurred and transparent precipitates were produced by nitro-phosphate reaction. 14-16) The reactions that may have been involved in the process are as follows. CaCl 2(a) + PO 4-3(a) Ca(a) + Cl 2(g) (3) Ca(N (a) + PO 4-3(a) Ca(a) + O 2(g) + 2NO 2(g) (4) 4NO (a) + 6H 2 O 4NH 3(a) + 5O 2(g) (5) Ca(N (a) + 4H 3 PO 4(a) + 8NH 3(a) Ca + 2NH 4 N(a) + 3(NH 4 (s) (6) The product, assumed to be (NH 4, may have been decomposed to the production of the yellow gas (NOCl) during the drying stage. 15-16) 3. Results and Discussion Table 1 shows the composition of the eggshell starting material. Except for the organic materials, which cause ignition loss, the main composition was CaC, with various other components in small amounts. A solution containing aqua regia was used to dissolve the eggshells. The following reactions occurred in the dissolution of the CaC included in the eggshells: Fig. 1. XRD patterns of (a) dried precursor, (b) precursor calcined at 900 o C for 3 h and (c) vitrified sample.

September 2017 Fabrication of Calcium Phosphate Glass Using Eggshell and its Crystallization Behavior 397 Fig. 2. TGA results of dried precursor. Table 2. XRF Data of Vitrified Sample Components Amount wt% mole % Na 2 O 0.0166 0.0282 MgO 0.1655 0.4319 Al 2 0.4489 0.4630 SiO 2 0.0811 0.1420 57.8175 21.4194 K 2 O 0.0336 0.0375 CaO 41.1701 77.2122 0.0135 0.0089 SrO 0.2532 0.2570 Figure 1 shows XRD patterns of the completely dried precursor, the precursor calcined at 800 o C, and the glass specimen prepared by melting the calcined precursor at 1000 o C. The precursor volume expanded more than three times during the calcination process. The volume expansion probably causes by the decomposition of the organic materials dissolved while the eggshells were dissolved in aqua regia. 17) The XRD pattern of the dried precursor (Fig. 1(a)) did not show the (NH 4 peaks and it can be assumed that (NH 4 have been decomposed in the drying process. 15) Since ascorbic acid (C 6 H 8 O 6 ) was found in the dried precursor, some of the organic materials may have been dissolved together, and ascorbic acid is presumed to be a byproduct of the drying process. 18) Figure 2 shows the results of the TGA analysis that was performed to investigate the appropriate calcination temperature for the precursor. The weight slightly increased at the temperature below 100 o C because the nitrate, that was not completely removed, may have absorbed the moisture in the air. The weight drastically decreased at 300 o C, which is the temperature matching with the decomposition temperature of the ascorbic acid. 19) The calcined precursor was heat treated up to 800 o C at which temperature almost no weight decrease occurred on the TGA data; the XRD results of the heat treated precursor (Fig. 1(b)) show no ascorbic acid peaks, indicating that the ascorbic acid was completely decomposed through the calcining process. The main crystal phases were found to be β- Ca(P and Ca(P, and other calcium phosphate crystal phases were also found. The XRD pattern of the prepared glass specimen (Fig. 1(c)) showed typical amorphous phase. Table 2 shows the chemical composition of the prepared glass specimen. The weight ratio of CaO to was 4 : 6 in the batch composition, however the resulting ratio was 41 : 58 ratio, which is not matched with the batch composition, because the chemical composition of the natural eggshells (Table 1) was not uniform. In addition, the content of alumina was higher in the glass specimen than in the raw material eggshells, which may be because a part of the alumina crucible was melted out into the glass specimen in the melting process. The partially melting of the alumina crucible during the melting process has been mentioned in the Fig. 3. TGA/DSC and TMA results of vitrified sample.

398 Journal of the Korean Ceramic Society - Tea-Sung Kang and Sang-Jin Lee Vol. 54, No. 5 report by Park et al. 20) Figure 3 shows the results of TGA/DSC and thermomechanical analyses (TMA) performed to investigate the thermal characteristics of the glass specimen. The TGA/DSC analysis showed that the glass transition temperature, crystallization temperature, and melting point were 540 o C to 560 o C, 630 o C, and 680 o C, however the TMA showed that the glass transition temperature was 520 o C, which was about 30 o C lower than that value from the DSC results. This difference in the analytical results may be because of load applied to the specimen during the TMA. Zhang et al. 21-22) reported that if the CaO/ molar ratio of a calcium phosphate glass is 1.2 or higher, the temperature for the formation of crystal phases in the calcium phosphate glass, as well as the melting point, increased due to an insufficiency of the glass-forming oxide of. Hence, additives such as a nucleating agent and a fusing agent are generally added at a ratio of 3 mole% or more in the preparation of calcium phosphate glass. However, in the composition of the calcium phosphate glass prepared in this study (Table 2), the CaO/ molar ratio was 3.6, which was much higher than that of other previous studies (CaO/ = 0.8 to 2.0); 12-13,20-23) the melting point and the crystallization temperature in this study were considerably lower than the heat treatment temperatures in other reports (precursor melting temperature: 1200 o C to 1400 o C, crystallization temperature: 800 o C to 900 o C). This may be because of the many kinds of impurities included in the eggshells. The use of eggshells including SrO as an impurity might have been involved to a certain extent in the decrease of the crystallization temperature due to SrO acting as a nucleating agent, as mentioned in the introduction. 12) To analyze the degree of crystallization depending on the holding time, Fig. 4 compares the XRD pattern of the glass specimen heat treated at 620 o C for 1 h and that of the glass specimen heat treated at the same temperature for 6 h. Although the crystallization occurred at 620 o C, the peak intensity was not significantly different between the specimen heat treated for 1 hour and the specimen heat treated for 6 h. Crystallization occurred even without the addition Fig. 5. XRD patterns of glass sample heat-treated for 1 h at each temperature of (a) 620 o C (b) 630 o C and (c) 640 o C. of any nucleating agent, probably because the impurities found in the XRF analysis, except for CaO and, may have played the role of nucleating agents. Nan et al. 23) reported that, Al 2, and SiO 2 affect the crystallization of calcium phosphate glass. To investigate the degree of crystallization depending on the temperature, the specimens were heat treated for 1 h at temperatures in a range from 620 o C to 640 o C, which was near the temperature of 630 o C at which an exothermal peak was found in the DSC analysis. Fig. 5 shows the XRD patterns of the specimens. Swelling of the specimen surface occurred at temperatures higher than 650 o C; crystallization was not observed at a temperature lower than 610 o C. Therefore, the specimens heat treated at temperatures higher than 650 o C and lower than 610 o C were excluded from the XRD analysis. The results showed that the peak intensity increased as the heat treatment temperature increased. In addition, the peak intensity representing β-ca(p slightly increased. Fig. 6 provides images of the prepared calcium phosphate glass and the crystallized glass prepared by heat treatment at 640 o C for 1 h. The results of the study showed that the calcium phosphate glass prepared using eggshells was easily crystallized. Also glass transition temperature, crystallization tempera- Fig. 4. XRD patterns of (a) vitrified sample, and heat-treated sample at (b) 620 o C for 1 h and (c) 620 o C for 6 h. Fig. 6. Photographs of (a) glass sample and (b) glass ceramic sample heat treated at 640 o C for 1 h.

September 2017 Fabrication of Calcium Phosphate Glass Using Eggshell and its Crystallization Behavior 399 ture, and melting point were lower than other studies even it has high CaO/ molar ratio. By controlling the amount of phosphoric acid addition, and performing a biocompatibility test with the glass samples, further studies will be conducted to investigate the formation of biocompatible crystal phases in calcium phosphate glass depending on the ratio of CaO to in the composition. 4. Conclusions Calcium phosphate glass was prepared by dissolving eggshells in aqua regia and adding phosphoric acid. All organic byproducts were removed in the preparation process. Many calcium phosphate crystal phases were found in the precursor, the calcined precursor, and the crystallized specimen. Although in comparison with other calcium phosphate glass products, the CaO/ molar ratio was very high in the calcium phosphate glass prepared using eggshells, crystallization occurred due to the impurities included in the eggshells even in the absence of an added nucleating agent. The degree of crystallization of the calcium phosphate glass prepared using eggshells was affected more by the heat treatment temperature than by the holding time. The glass transition and the crystallization temperature were much lower in this study, than those temperatures as determined in previous studies conducted using commercially available products as CaO source. REFERENCES 1. N. J. Kreidl and W. A. Weyl, Phosphates in Ceramic Ware: IV, Phosphate Glasses, J. Am. Ceram. Soc., 24 [11] 372-78 (1941). 2. B. Hans and N. Norbert, The Properties of Optical Glass; 1 st ed., pp. 387-91, Springer, Berlin, 1968. 3. M. J. Weber, Science and Technology of LASER Glass, J. Non-Cryst. Solids, 123 [1-3] 208-22 (1990). 4. J. H. Campbell, Damage Resistant Optical Glasses for High Power Lasers-A Continuing Glass Science and Technology Challenge, Glass Sci. Technol., 75 91-108 (2004). 5. R. K. Brow, L. Kovacic, and R. E. Loehman, Novel Glass Sealing Technologies, Ceram. Trans., 70 177-88 (1996). 6. C. J. Quinn, G. H. Bell, and J. E. Dickinson, Alkali Zinc Pyrophosphate Glasses for Polymer Blends, Int. Congr. Glass, 16 79-82 (1992). 7. D. E. Day, Z. Wu, C. S. Ray, and P. Hrma, Chemically Durable Iron Phosphate Glass Waste Forms, J. Non- Cryst. Solids, 241 [1] 1-12 (1998). 8. J. Vogel, P. Wange, and P. Hartmann, Effect of Composition Changes on the Structure and Properties of Phosphate Glasses in the Pyrophosphate Region, Glass Sci. Tech., 70 [1] 23-7 (1997). 9. J. Fu, Fast Li + ion Conduction in Li 2 O-(Al 2 Ga 22 )- TiO 2 - Glass Ceramics, J. Mater. Sci., 33 [6] 1549-53 (1998). 10. J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, and J. D. Robertson, Electrical Properties of Amorphous Lithium Electrolyte Thin Films, Solid State Ionics, 53 647-54 (1992). 11. A. R. Boccaccini, D. S. Brauer, and L. Hupa, Bioactive Glasses Fundamentals: Technology and Applications; pp. 27-9, The Royal Society of Chemistry, United Kingdom, 2016. 12. J. Massera, M. Maryran, J. Rocherullé, and L. Hupa, Crystallization Behavior of Phosphate Glasses and Its Impact on the Glasses Bioactivity, J. Mater. Sci., 50 [8] 3061-102 (2015). 13. T. Kasuga and Y. Abe, Novel Calcium Phosphate Ceramics Prepared by Powder Sintering and Crystallization of Glasses in the Pyrophosphate Region, J. Mater. Res., 3 [12] 3357-60 (1998). 14. J. Stee, H. Aasum, and T. Heggeboe, Manual of Fertilizer Processing; pp. 393-420, CRC Press, New York, 1986. 15. J. R. V. Wazer, Phosphorus and Its Compounds; Vol. 1, pp. 503, Interscience, New York, 1958. 16. J. Jr. McKetta and W. A. Cunningham, Encyclopedia of Chemical Processing and Design Vol. 35 (Chemical Processing and Design Encyclopedia); pp. 478, Marcel Dekker Inc., New York, 1990. 17. S. J. Lee and J. W. Kim, Characteristics of Nickel Aluminate Ceramics Synthesized by Organic(PVA)-Inorganic Solution Technique, J. Korean Ceram. Soc., 40 [7] 690-95 (2003). 18. C. H. Lee, P. A. Seib, R. C. Hoseney, and C. W. Deyoe, Chemical Synthesis of Several Phosphoric Esters of L- ascorbic Acid, Carbohydr. Res., 67 [1] 127-38 (1978). 19. G. Vernin, S. Chakib, S. M. Rogacheva, T. D. Obretenov, and C. Párkányi, Thermal Decomposition of Ascorbic Acid, Carbohydr. Res., 305 [1] 1-15 (1997). 20. Y. W. Park, B. S. Hyun, and T. H. Kim, A Study on the Porous Glass-Ceramics in the Phosphate System, J. Korean Ceram. Soc., 32 [7] 858-64 (1995). 21. Y. Zhang and J. D. Santos, Microstructural Characterization and in Vitro Apatite Formation in CaO- -TiO 2 - MgO-Na 2 O Glass-Ceramics, J. Eur. Ceram. Soc., 21 [2] 169-75 (2001). 22. Y. Zhang and J. D. Santos, Crystallization and Microstructure Analysis of Calcium Phosphate-Based Glass Ceramics for Biomedical Applications, J. Non-Cryst. Solids, 272 [1] 14-21 (2000). 23. Y. Nan, W. E. Lee, and P. F. James, Crystallization Behavior of CaO- Glass with TiO 2, SiO 2, and Al 2 Additions, J. Am. Ceram. Soc., 75 [6] 1641-47 (1992).