PERP/PERP ABSTRACTS Green Glycols and Polyols PERP 09/10S8

Similar documents
PERP/PERP ABSTRACTS Bio-Routes to para-xylene PERP 2011S3

PERP/PERP ABSTRACTS Vinyl Acetate PERP

NexantThinking PERP PROGRAM Ethylene PERP

PERP/PERP ABSTRACTS Polypropylene PERP

Phenol, Acetone, Cumene

NexantThinking TM. Low Density Polyethylene (LDPE) Process Evaluation/Research Planning. PERP December 2013

Developments in Linear Alpha Olefin (LAO) Comonomer Technologies for Polyethylene

Monoethylene glycol: Analysing global markets

PERP/PERP ABSTRACTS Ethanol

PERP/PERP ABSTRACTS Green Propylene

PERP Program New Report Alert

CHEMSYSTEMS. Report Abstract. Polybutylene Terephthalate (PBT) PERP07/08S1 PERP PROGRAM CSOL /MM/2008

CHEMSYSTEMS. Polybutylene Terephthalate (PBT)

PERP/PERP ABSTRACTS Coal Bed Methane PERP 09/10S3

Polyoxymethylene (POM; Polyacetal)

PERP/PERP ABSTRACTS Carbon Monoxide PERP 09/10S11

Vinyl Chloride Monomer (VCM)/ Ethylene Dichloride (EDC)

Direct Coal Liquefaction

Styrene Block Copolymers

Nitrobenzene/ Aniline/ MDI

PERP Program Ethylene Oxide/Ethylene Glycol New Report Alert

The Outlook and Challenges facing the Chemical Industry Implications for the Industry in UAE?

PERP Program New Report Alert January 2004

Assessing Regional Demand for Ethylene Glycol and Related Products. Antulio Borneo Head of Supply Chain Americas

Air Separation Technology

We didn't plan to talk about it, but since you asked...

Report Abstract Urea PERP06/07S3 October 17, 2007

Polyether polyols. Alcupol Flexible slabstock & moulding; rigid foams and CASE applications

PERP Program - Ethanol New Report Alert

Thermoplastic Fabrication Processes

We didn't plan to talk about it, but since you asked...

Sustainable Plastic Packaging: Renew and Recycle

"BIOPLASTICS for food packaging: better biobased or biodegradable?

We didn't plan to talk about it, but since you asked...

IMPACT Technology A Greener Polyether Process

Bio-Polymers & New Materials: Polymers from Renewable Resources. April 2008

PERP Program Polyolefin Elastomers New Report Alert

AQA GCSE Design and Technology 8552

Renewables White Paper Seminar

DuPont Cerenol A New Family of High Performance Polyether glycols

Boltorn Advancing performance & comfort

2/19/2009. Plastics History. Plastics type INTRODUCTION. Thermosets RM1565 MOULD DESIGN. Generalproperties: more durable, harder, tough, light.

Creating bio-based polyols for adhesives and sealants

CHEMSYSTEMS PERP PROGRAM

A new process offers a cost competitive route to the production of polymer grade ethylene glycol from corn starch

Fiber Sizing Fundamentals and Emerging Technologies ACCE / SPE

Plastics Recycling. Datchanee Pattavarakorn Industrial Chemistry, Science, CMU

Polyol (and other nice chemicals) Production from Canola Oil

Green Polyethylene. Antonio Morschbacker Manager Green Polymers Fulbright Commission August 2009

Recent Developments in Renewable Resource-based Resins

RAW MATERIALS IN POLYMER TECHNOLOGY

Abstract Process Economics Program Report 227 1,3-PROPANEDIOL AND POLYTRIMETHYLENE TEREPHTHLATE (December 1999)

Protective Coatings. Markets, Trends & Opportunities

Biorenewable Insights. Alpha Olefins and LAO

Water Reducible UV Cure Allophanate Urethane Acrylates

NATURAL RUBBER (NR) Temperature Range (dry heat)

Greening the Blue Oval: Building the Bio-based Automobile

Susterra Propanediol Heat Transfer Fluids

The development of the Biorefinery and the SUSTOIL project

Forbes Eco-Lofts Industrial Redevelopment Project

PERP Program Hydrogen Peroxide-Based Propylene Oxide New Report Alert

Sustainable Growth: Biobased Fuels and Materials at DuPont. Mark A. Harmer DuPont, Wilmington, DE

Abstract Process Economics Program Report 10C POLYURETHANES (May 1991)

PBAT and PBS Biodegradable Plastics

PERP Program Thermoplastic Wood Composites New Report Alert

PERP/PERP ABSTRACTS Styrene/Ethylbenzene

Intermediates. 2,6 -Naphthalene dicarboxylic acid (HNDA)

GCC PETROCHEMICALS & CHEMICALS INDUSTRY Facts & Figures 2012

Sugarcane Polyolefins Adding value through the use of I m green Polyethylene. May 2014

Tin, PVC Stabilizers and Polymers (TPP) It s all about the chemistry

Tin, PVC Stabilizers and Polymers (TPP) It s all about the chemistry

Innovation summit on formulation technology Challenges and opportunities Stefan Lundmark. MATERIALS BUSINESS CENTER STUDIO, Malmö January 19, 2017

The Rising Competitive Advantage of U.S. Plastics. Economics & Statistics Department American Chemistry Council

Environmental Technical Brief: HDPE

Sports & Recreation. Innovative Polymer Solutions for Footwear Applications. A Bit More Amazing. Lubrizol Engineered Polymers

Finally, cost-competitive bio-based chemicals

NOVEL, ADAPTIVE AND CUSTOMIZABLE CHEMISTRY APTALON POLYAMIDE POLYURETHANE TECHNOLOGY.

Economy > Energy > Feedstocks & Polymer Markets

Life Cycle Analysis of Polyols from Soy Oil or Castor Oil

Performance-Enhancing Science Applications Coatings, Adhesives, Sealants and Elastomers

Anellotech and Suntory Enter Next Phase of Strategic Partnership to Develop 100 Percent Bio-Based Plastics for Sustainable Beverage Bottles

Flexible Polyurethane Foams from Recycled PET

Business Line Comfort & Insulation. Evonik Nutrition & Care Segment

PREPARATION AND PROPERTIES OF COPOLYMERS OF EPOXY RESIN AND DEPOLYMERIZATE OF POLYURETHANE

A Systematic Approach to Improving Heater Absorbed Duty

Bio-feedstocks, Chemicals and Polymers. Trends, Success Stories and Challenges.

Chemical. Operational review / Diversified chemical. Polymers 85% of revenue Resins 15% of revenue. Revenue increased by 79% 3 production facilities

Pentaerythritol Delivering security & efficiency

What is the right pathway to be sustainable? Case of biofuels and bioproducts in Europe

Press Kit. About DAWN Technology*

Abstract Process Economics Program Report 10D POLYURETHANES (December 2002)

L-61 L-62 L-64 L-81 L-101

"Innovative approach to conversion of flexible PU foam residues into polyol on an industrial scale"

DuPont Zytel 73G30L NC010

SAMPLE COURSE OUTLINE CHEMISTRY GENERAL YEAR 12

Performance-Enhancing Science Applications: Coatings, Adhesives, Sealants and Elastomers

The CIMV organosolv Process. B. Benjelloun

Ethylene Glycol Production from Syngas. A New Route. Jon Penney Eastman Chemical Company. Approved for External Use

PROCESS ECONOMICS PROGRAM

FACTS & FIGURES. Percent increase in North American ouput of highdensity. polyethylene in 2012: 3.6

Transcription:

PERP/PERP ABSTRACTS 2010 Green Glycols and Polyols PERP 09/10S8 Report Abstract December 2010

December 2010 Alan J. Nizamoff CHEMSYSTEMS PERP PROGRAM The ChemSystems Process Evaluation/Research Planning (PERP) program is recognized globally as the industry standard source for information relevant to the chemical process and refining industries. PERP reports are available as a subscription program or on a report by report basis. This Report was prepared by Nexant, Inc ( Nexant ) and is part of the ChemSystems Process Evaluation/Research Planning (PERP) Program. Except where specifically stated otherwise in this Report, the information contained herein is prepared on the basis of information that is publicly available, and contains no confidential third party technical information to the best knowledge of Nexant. Aforesaid information has not been independently verified or otherwise examined to determine its accuracy, completeness or financial feasibility. Neither NEXANT, Subscriber nor any person acting on behalf of either assumes any liabilities with respect to the use of or for damages resulting from the use of any information contained in this Report. Nexant does not represent or warrant that any assumed conditions will come to pass. The Report is submitted on the understanding that the Subscriber will maintain the contents confidential except for the Subscriber s internal use. The Report should not be reproduced, distributed or used without first obtaining prior written consent by Nexant. Each Subscriber agrees to use reasonable effort to protect the confidential nature of the Report. Copyright by Nexant Inc. 2011. All rights reserved.

INTRODUCTION Polyols are compounds containing many hydroxyl groups, while glycol is the term designated for a compound that specifically contains two hydroxyl groups (i.e., a diol). Both glycols and polyols have very important commercial value as they are used as precursors to make important polymers. Ethylene glycol and propylene glycol are two of the most important glycols and the glycol sections of this report will focus on these compounds. The polyols that this report focuses on are those employed in the production of polyurethanes (an incredibly useful polymer with thousands of commercial applications). Ethylene glycol or monoethylene glycol (MEG) is used in a wide range of commercial applications. Its use in the formulation of coolants (e.g., antifreeze) is well known. However, its largest volume use however is in the production of the large volume polyester, polyethylene terephthalate (PET). PET, of course, is used to make a wide range of products including fibers used in textiles manufacture. Propylene glycol (PG) also has a broad spectrum of uses including functional fluids (e.g., antifreeze), foods/drugs/cosmetics, liquid detergents, plasticizers, paints and coatings, tobacco humectants, pet foods, etc. The largest market segment however, is in the production of unsaturated polyesters, which are resins used in fiberglass-reinforced structures and surface coatings. Biodiesel production has given rise to the co-production of vast quantities of crude glycerol. As a consequence, a great deal of research has and is being conducted to try to make value-added molecules from this crude glycerol (typically containing 20 percent water and residual esterification catalyst), as an alternative to disposal by incineration. One of these value-added processes is the production of propylene glycol. There are two main classes of polyols, polyether polyols and polyester polyols, used in the manufacture of polyurethane. Polyether polyols represent a range of products produced by the oxyalkylation of discrete polyfunctional initiators or starters. The resulting polyol products vary considerably depending on the initiator system, product molecular weight, and the oxides utilized for the oxyalkylation. Polyether polyols provide unusually high hydrolytic stability and good low-temperature flexibility. Their viscosity is relatively low. They are hampered by susceptibility to degradation by light (ultraviolet radiation) and by oxygen when hot. Both antioxidants and UV stabilizers are used to counteract these forms of degradation. The growth in demand for polyether polyols is largely a function of growth in polyurethane foam usage. Flexible and semi-rigid foams constitute the major portion of the cellular demand for polyethers. In addition to the dominance of the cellular market by the flexible foams, another factor is the higher proportion of polyol (about 69 weight percent) in flexible foam formulations, compared to about 35 percent polyol in rigid foam formulations. Rigid foams have been growing at higher rates than flexible foams, due to increased utilization of rigid urethane in insulation and structural applications. 1

Polyester polyols provide superior mechanical properties, such as tensile strength, abrasion, and wear resistance, as well as solvent and oil resistance, to the polyurethanes in which they are used. Making plastics greener usually involves replacing some of their petrochemical constituents with alternatives derived from sources other than petroleum. Sometimes the alternative can come from recycled plastics, other times from bio-based chemicals. Polyurethanes are increasingly taking the latter route. For years, some of the urethane formulations used in reaction-injection molding has made use of soy-oil-based polyols. Now, suppliers of urethane foams have likewise developed polyols based on soybeans or other oil seeds (e.g., castor oil, sunflower oil, and rapeseed oil). CONVENTIONAL TECHNOLOGY Descriptions of the conventional technology for the production of polyols and glycols are given, including: Ethylene Oxide and Ethylene Glycol Propylene Oxide and Propylene Glycol Polypropylene glycols Polyether polyols and polyester polyols Higher Functional Polyols of interest for polyurethane foams generally are based on starters with a functionality of three or higher. Flexible foams usually employ tri-functional polyols, while higher-functional polyols are principally used in the production of rigid foams. Chemistry and process technology for the following are outlined: Glycerol-Derived Polyols Trimethylolpropane-Started Polyols Polyols with Functionality Greater than Three, i.e., Pentaerythritol-Started Polyols; Sorbitol- Started Polyols; Sucrose-Started Polyols Polyols Containing Nitrogen or Phosphorous, i.e., Toluenediamine-Started Polyols; Phosphoric Acid-Started Polyols; Acrylonitrile Graft Polyols BIOTECHNOLOGY The fermentation technologies considered in this report are based on first generation fermentation routes using a variety of raw materials (mainly corn, sugarcane or wheat); these technologies are well established with raw materials used strongly dependant on regional conditions. Second generation bio-technologies from biomass are still in their infancy and are the focus of Research Development, Demonstration and Implementation efforts around the globe. The following bioproduction technologies are covered in the report: Bioethanol 2

Bioethylene Biopropylene Bio-ethylene oxide glycol - employing bio-ethylene produced from bio-ethanol, both bioethylene oxide and bio-ethylene glycol can be produced employing conventional EO/MEG technology Bio-Propylene Glycol - routes from glycerol Biopolyols Recent Patents and Published Work covering green technology to polyols is included in the report. ECONOMICS Costs of production estimates are presented for biogylcols and biopolyols, and their bioprecursors. Specifically, cost estimates for the following processes have been evaluated: Bioethanol production via corn dry milling Bioethylene production via Integrated Ethanol Dehydration (fixed-bed) Bioethylene oxide production via bioethylene Oxidation Bio-ethylene glycol production via bioethylene Oxidation Biopropanol production via glycerol hydrogenation Bio-Propylene production via biopropanol dehydration Bio-propylene oxide production via hydrogen peroxide to propylene oxide (HPPO) technology Bio-propylene glycol production via Glycerol hydrogenolysis Glycerol-based 3 000 molecular weight (MW) bio-propylene oxide polyol production via alkoxylation of glycerol starter Glycerol-based 5000MW bio-propylene oxide polyol with 5 percent bio-ethylene oxide end cap production via alkoxylation of glycerol starter Glycerol-based 5000MW bio-propylene oxide polyol with 20 percent bio-ethylene oxide (Chain + End Cap) production via alkoxylation of glycerol starter Trimethylol propane based 3 000 MW bio-propylene oxide based polyol production via alkoxylation of trimethylolpropane starter 3

Acrylonitrile polymer production containing bio-propylene oxide polyol via acrylonitrile grafting to trifunctional polyol Phosphoric acid-based bio-propylene oxide polyol (250 OH NO., 672 MW) production via alkoxylation of phosphoric acid starter Sorbitol-based bio-propylene oxide polyol (460 OH NO., 732 MW) production via alkoxylation of sorbitol starter Sucrose-based bio-propylene oxide polyol (460 OH NO., 976 MW) production via alkoxylation of sucrose starter Toluenediamine-based bio-propylene oxide polyol (633 OH NO., 354 MW) production via alkoxylation of toluenediamine starter All cost tables given in this report include a breakdown of the cost of production in terms of raw materials, utilities direct and allocated fixed costs, by unit consumption and per metric ton and annually, as well as contribution of depreciation to arrive at a cost estimate (a simple nominal return on capital is also included) COMMERCIAL ANALYSIS Ethylene glycol is a key raw material to the production of the large volume polyester polyethylene terephthalate (PET). PET is converted to staple and filament fibers used in textiles and industrial applications. PET resins are used to produce film and packaging materials with the major use being the fabrication of bottles for carbonated soft drinks. Other smaller, but growing applications include single serve milk, fruit/sports drinks, alcoholic beverages, especially beer, and health care products/cosmetics. Ethylene glycol is also formulated into coolants, mainly used as antifreeze in the transportation market. This includes the use of antifreeze in the original equipment market (OEM) and in the aftermarket, often by individual vehicle owners, service stations, and lubrication shops. Other formulations of ethylene glycol are used as coolants and heat transfer agents in the industrial market and as aircraft and runway deicers. Ethylene glycol is used as a general-purpose solvent in a diverse application range. Ethylene glycol supply, demand and trade data is given and discussed for North America, Western Europe, and Asia Pacific. A list of plants in each region is given showing specific plant capacities, owning company, location and annual tonnage produced is given. Propylene glycol has a broad spectrum of uses including unsaturated polyesters, functional fluids, foods/drugs/cosmetics, liquid detergents, plasticizers, paints and coatings, tobacco humectant, pet foods, etc. As can be seen in the figure below, the largest market segment is unsaturated polyesters, which are resins used in fiberglass-reinforced structures and surface coatings. Fiberglass-reinforced structures are used in the construction (tub/shower units), marine (boat hulls), and transportation (sheets) industries. Dicyclopentadiene-based resins offer competition. 4

Global Propylene Glycol Demand Food/Drugs/Cosmetics 18% Functional Fluids 21% Liquid Detergents 11% Others (1) 16% Unsaturated Polyesters 34% 2010_4116-charts.xlsx\F6. 4 Total = 1.6 Million Metric Tons per Year (1) Includes pet foods, plasticizers, paints and coatings, tobacco humectant, etc. Global supply, demand, and trade for propylene glycol is given and discussed. A list of global plants is given showing specific plant capacities, owning company, location and annual tonnage produced is given. Polyether Polyols supply, demand and trade data is given and discussed for North America, Western Europe, and North-East Asia. A list of plants in each region is given showing specific plant capacities, owning company, location and annual tonnage produced is given. 5

Nexant, Inc. San Francisco London Tokyo Bangkok Bahrain New York Washington Houston Phoenix Madison Boulder Dusseldorf Beijing Shanghai Paris