FUTURE NUCLEAR FUEL CYCLES: GUIDELINES

Similar documents
THE FRENCH PROGRAM FOR A SUSTAINABLE MANAGEMENT OF NUCLEAR MATERIALS AND WASTE

Future nuclear systems: fuel cycle options and guidelines for research

RECYCLING SPENT NUCLEAR FUELS FROM LWRS TO FAST REACTORS. Carole WAHIDE CEA Direction for Nuclear Energy FRANCE

Plutonium Management in France. Current Policy and Long Term Strategy for the Used Fuel Recycling by LWR and Fast Reactors

BACK-END SCENARIOS FOR THE FRENCH NUCLEAR FLEET

IAEA/JAEA INTERNATIONAL WORKSHOP

IMPACT OF A PROGRESSIVE DEPLOYMENT OF FAST REACTORS IN A PWR FLEET

French R&D program on SFR and the

Fuel Recycling and MOX Production

Closing the fuel cycle and Managing nuclear waste

TECHNOLOGICAL BREAKTHROUGHS AND ELECTRICITY OF TOMORROW

Recent progress in Advanced Actinide Recycling Processes

Near-term Options for Treatment and Recyle

R&D AT CEA FOR A SUSTAINABLE NUCLEAR ENERGY DEVELOPMENT

Radiochemistry Webinars

Recycling of UNF. Paul Murray

Current options for the nuclear fuel cycle:

Role of Partitioning and Transmutation (P&T) in Nuclear Energy

Used Nuclear Fuel Management Options

FROM RESEARCH TO INDUSTRY

NEXT STEP FOR NUCLEAR POWER PLANT GENERATION IV

Considerations for a Sustainable Nuclear Fission Energy in Europe

FRENCH R&D PROGRAM ON SFR AND THE ASTRID PROTOTYPE

The Nuclear Fuel Cycle Simplified

Composition of Spent Nuclear Fuel (Standard PWR 33GW/t, 10 yr. cooling)

Nuclear Fuel Cycle Indian Scenario

WM2012 Conference, February 26 March 1, 2012, Phoenix, Arizona, USA. Opportunities for the Multi Recycling of Used MOX Fuel in the US

Safety of Advanced Nuclear Fuel cycles

Perspectives of Partitioning and Transmutation Technology. H. Oigawa Japan Atomic Energy Agency

Fast Reactor Development in France

Joint ICTP/IAEA School on Physics and Technology of Fast Reactors Systems 9-20 November 2009 Reprocessing and recycling of fast reactor fuel

THE FRENCH FAST REACTOR PROGRAM - INNOVATIONS IN SUPPORT TO HIGHER STANDARDS

FRENCH WASTE MANAGEMENT STRATEGY FOR A SUSTAINABLE DEVELOPMENT OF NUCLEAR ENERGY

Long term trends in nuclear production technologies. Noel Camarcat

The role of nuclear power in Janne Wallenius Professor Reactor Physics, KTH

The Nuclear Fuel Cycle Lecture 4

The Nuclear Fuel Cycle Lecture 5

Role of the Fast Reactor and Efforts on Monju

Research & Development in France on Gen-IV Nuclear Energy Systems

JAEA s Efforts for Reduction of Radioactive Wastes

NUCLEAR ENERGY IN FRANCE ACHIEVEMENTS MAIN PROSPECTS AND CHALLENGES

Advanced and innovative reactor concept designs, associated objectives and driving forces

Saint-Petersburg Conference. Session 4. Drivers for Deployment of Sustainable and Innovative Technology

Outlook on France s R&D Strategy on Future Nuclear Systems

Transmutation. Janne Wallenius Professor Reactor Physics, KTH. ACSEPT workshop, Lisbon

PROGRESS FOR THE CEA ALFA PROJECT

Systematic Evaluation of Uranium Utilization in Nuclear Systems

Going Underground: Safe Disposal of Nuclear Waste

Abstract ANALOGIES OF EXPERIENCE IN THE UNITED STATES TRANSURANIUM ELEMENT PRODUCTION PROGRAM

ANICCA CODE AND THE BELGIAN NUCLEAR FUEL CYCLE

World Transition Towards Sustainable Nuclear Fuel Cycle

Closed Fuel Cycle Strategies and National Programmes in Russia

EII Team meeting Brussels, 13 September

OECD-NEA Task Force on Potential Benefits and Impacts of Advanced Fuel Cycles with Partitioning and Transmutation: Summary of Major Findings

Nuclear Waste: How much is produced, and what can be used

Cooperation between AREVA and TVEL/MSZ in ERU Fuel Assembly Manufacturing - a Valuable Part of Sustainable Fuel Cycle Solutions

Advanced Fuel Cycles?

Synergistic Spent Nuclear Fuel Dynamics Within the European Union

Synergistic Spent Nuclear Fuel Dynamics Within the European Union. Jin Whan Bae, Kathryn Huff, Clifford Singer 1

U.S. DOE currently has a number of initiatives to promote the growth of nuclear energy

Transmutation of nuclear wastes by metal fuel fast reactors

IAEA-TECDOC Spent Fuel Reprocessing Options

Fast Neutron Reactors & Sustainable Development

Thorium an alternative nuclear fuel cycle

Nuclear technology options

Japanese FR Deployment Scenario Study after the Fukushima Accident

COSI6 A Tool for Nuclear Transition Scenarios studies

Advanced Nuclear Fuel

On the Practical Use of Lightbridge Thorium-based Fuels for Nuclear Power Generation

Development of FBR Fuel Cycle Technology in Japan

Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar

Fuel Cycle Waste Inventory

The Future of the Nuclear Fuel Cycle

A Strategy for the Nuclear Fuel Cycle in the 21st Century

The FutureS of Nuclear Energy

AREVA Back-End Possibilities for the Used Fuel of Research Test Reactors

International Atomic Energy Agency (IAEA) Activities on Spent fuel Management; Keeping the Recycle Option Open

Introduction to the Nuclear Fuel Cycle

The Legacy of U.S. Energy Leadership

May 25,

INTERNATIONAL COMPARISON FOR TRANSITION SCENARIO CODES INVOLVING COSI, DESAE, EVOLCODE, FAMILY AND VISION

Nuclear Energy in France : Status, prospects and R&D strategy

DILATOMETRIC STUDY OF U 1-x Am x O 2±δ TRANSMUTATION FUELS

OECD Nuclear Energy Agency Activities Related to the Nuclear Fuel Cycle

Next Generation Nuclear Reactors

The Thorium Fuel Cycle

Nuclear Energy in France Current Trends and Impact on the Bilateral Ties with Japan

Nuclear Power Reactors. Kaleem Ahmad

Science of Nuclear Energy and Radiation

energies Marcoule > for the future

MOX use in PWRs EDF operation experience Jean-Luc Provost Nuclear Operation Division EDF - Generation

Treatment of Spent Nuclear Fuel with Molten Salts

French Strategy For GENIV reactors

Influence of Fuel Design and Reactor Operation on Spent Fuel Management

The Integral Fast Reactor/Prism: a social & climate change perspective

Adapting Dismantling and Decommissioning Strategies to a Variety of Nuclear Fuel Cycle Facilities 12237

The Nuclear Fuel Cycle. by B. Rouben Manager, Reactor Core Physics Branch Atomic Energy of Canada, Ltd.

WASTE MANAGEMENT ISSUES, A SET OF TECHNOLOGIES

Market perspectives and challenges for GEN-4 systems

THE ASTRID PROJECT STATUS, COLLABORATIONS, LESSONS FROM FUKUSHIMA ACCIDENT ADVANCED SODIUM TECHNOLOGICAL REACTOR FOR INDUSTRIAL DEMONSTRATION

Transcription:

ATOMS FOR FUTURE PARIS, 8-9 november, 2011 FUTURE NUCLEAR FUEL CYCLES: GUIDELINES Bernard BOULLIS, CEA, Nuclear Energy Division Program Director, Nuclear Fuel Cycle Back-end ATOMS FOR FUTURE PARIS, 8-9 november, 2011 FUTURE NUCLEAR FUEL CYCLES: GUIDELINES 1- The current french nuclear fuel cycle 2 - Towards sustainable nuclear systems 3 - Drivers for R&D 1

(UOX 1000t) (REU 150t) (MOX 100t) Fuel fabrication LWRs used MOX #100t RECYCLING used REU #150t used UOX 1000 t depleted uranium 7000t depleted RU 800t Uranium enrichment Uranium Conversion Plutonium #10t WASTE FPs and MAs 40 t Uranium (RU) #950 t Mining and milling natural U 8000 t THE PRINCIPLE OF THE FRENCH CLOSED FUEL CYCLE (approximative amounts/year) FINAL WASTE VITRIFICATION #15% FPs 180 liters # 10-15 glass canisters /reactor /per year 2

GLASS CANISTERS DISPOSAL (ANDRA, «CLAY REPORT», 2005) 1mSv/y 1μSv/y #1 µm/50d, early stages #1 µm/1000 years, steady state 100 000 y 1 M y DOSE AT FINAL OUTLET CURRENT RECYCLING STRATEGY : THE RATIONALE - saving uranium resources (#10% of French nuclear electricity from MOX fuels); - mastering the growth of plutonium inventory (Pu flux adequacy : Pu from processing= Pu refueled) - safe & secure ultimate waste without plutonium; - the plutonium available for future use is concentrated in MOX spent fuels (7 UOX -> 1 MOX) - an already large industrial experience, operated under international safeguards ( #25 000 tons reprocessed, # 2000 tons MOX) - suitable option for Generation III reactors 3

LONG TERM SUSTAINABLE NUCLEAR SYSTEMS (1) RECYCLE, (2) IN FAST REACTORS - efficient burning of plutonium, - full use of uranium, - potentialities for improving waste management, - no enrichment needs 1.00 A progressive deployment? Fission/Absorpt 0.90 0.80 0.70 - initially fueled with plutonium 0.60 0.50 coming from spent MOX 0.40 0.30 - breeding gain could be adjusted in the future 0.20 (according to energy needs) 0.10 0.00 - able to recycle more -in a later step - (transmutation of minor actinides ) U235 U238 Np237 Pu238 Pu239 Pu240 Pu241 Pu242 Robert N. Hill Argonne National Laboratory 233 rd ACS National Meeting Chicago,, 2007 Am241 Am243 Cm244 PWR SFR FOSSILE FUELS POTENTIAL RESERVES Uranium 40 Gtoe Gas 150 Gtoe oil 165 Gtoe coal, 400Gtoe Uranium, 4000 Gtoe Uranium use in thermal neutrons reactors Uranium use in fast neutrons reactors Identified conventionnal resources, Gtoe (mémento sur l énergie,cea, 2010) (Pétrole 165 Gt, charbon 826Gt, gaz 180 Tm 3,uranium 3,3Mt) 4

SPENT FUEL TOXICITY Main contributors to intrinsic toxicity 1E+10 10 10 1E+9 10 9 Inventaire radiotoxique (Sv/TWh e) 1E+8 10 8 1E+7 10 7 1E+6 10 6 1E+5 10 5 1E+4 10 4 1E+3 10 3 1E+2 10 2 Total combustible Plutonium Uranium Actinides mineurs Produits de fission 1E+1 10 10 100 1000 10000 100000 10000 Temps (années) Estimated dose, Saulx, spent fuel (Andra, rapport argile, 2005) Pu>MAs>>>FPs MOX-FR 450t FRs used MOX-FR 450t FUEL FABRICATION RECYCLING depleted uranium (40t) Plutonium (#20%) Uranium (#80%) (minor actinides (# 5t)) WASTE FPs (MAs) (40t) ACTINIDE MULTI-RECYCLE IN A FR FLEET ( principle values, self-balanced fleet, 400 TWh/y) 5

LONG TERM SUSTAINABLE NUCLEAR SYSTEMS RECYCLE, FAST REACTORS, IN FAST NEUTRON THE BEST REACTORS ANSWER - efficient burning of plutonium, - full use of uranium, - potentialities for improving waste management, - no enrichment needs A progressive deployment? - initially fueled with plutonium coming from spent MOX - FR/LWR deployment could be adjusted in the future (according to energy needs) - able to recycle more -in a later step - (transmutation of minor actinides ) FROM LWRs TO FRs A SCHEMATIC PATHWAY 70000 Fast reactor Prototype? Installed capacity (MWe) 6060000 50000 40000 30000 20000 10000 Existing fleet 40-year plant life Plant life extension beyond 40 years? Generation 3+ Generation 4 0 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 Average plant life : 48 years 6

TOWARDS SUSTAINABLE NUCLEAR SYSTEMS -reactors? - fuel cycle technologies? - deployment dynamics (strategy)? FAST REACTORS DEVELOPMENT : FRENCH STRATEGY - Sodium Fast Reactor, the reference option : ASTRID, the prototype - maturity, possible further improvments (safety, operability, economics) - commercial level 2040 - developped with industrial and international partners - Gas-cooled Fast Reactor, a long-term option: ( ALLEGRO, experimental-scale project) - attractive potentialities but heavy challenges (materials, fuel, safety) - in Europe? 7

THE ASTRID FAST REACTOR PROTOTYPE sodium-cooled pool type oxide fuel #600 Mwe «Advanced Sodium-cooled Technological Reactor for Industrial Demonstration» TOWARDS SUSTAINABLE NUCLEAR SYSTEMS -reactors? - fuel cycle technologies? - deployment dynamics (strategy)? 8

(U,Pu)O 2 rebuts RECYCLING TECHNOLOGIES FUEL: (MIXED) OXIDE ( far future: carbide, metal?) PROCESSING SNF: HYDRO-PROCESSES [reliability, high yields, low waste amount] FUEL MANUFACTURING: POWDERS BLENDING Procédé COCA* UO 2 PuO 2 Dosage lubrifiant Broyage et tamisage Pastillage ( étape granulation éventuelle) Broyage rebuts Rebuts Frittage RECYCLING TECHNOLOGIES : DECADES R&D! high yields SPENT FUEL HNO 3 TBP U Pu DISSOLUTION U, Pu, FPs,MAs solution EXTRACTION HULLS technological waste low amounts FPs, MAs 9

SPENT FUEL RECYCLING IN FRANCE La Hague plant (tons/year) (thm) MOX fuel fabrication (cumulative tons) 2000 1500 1000 500 MELOX CADARACHE 0 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 RECYCLING: GUIDELINES FOR R&D 1-ADAPTATION (HBU, MOX fuels, FR fuels! ) 10

FAST REACTOR OXIDE FUELS many differences FR fuels / LWR fuels Fuel sub-assembly, structure elements Higher Pu content Higher In-core temperature Higher burn-up Fission products resp. yields FAST REACTORS OXIDE FUELS FABRICATION AtPu (Cadarache) Procédé COCA* UO 2 PuO 2 (U,Pu)O 2 rebuts Dosage Broyage et tamisage Phénix lubrifiant Pastillage ( étape granulation éventuelle) Frittage SuperPhénix 11

PROCESSING FR FUELS Process adaptation needed Fuel dissolution (dismantling, dissolving) U-Pu (AM)- /PF separations (performance required?) liquid to solid conversion (high Pu flux) Structure elements management (nature, amount, radioactivity FPs vitrification (platinoids) Criticality risk management (specific design) Pu RECYCLE IN PHÉNIX 1973 : start of operation 1980 : 1 er sub-assembly loaded with recycled Pu 520 sub-assemblies processed, 4,4 t Pu recycled Fabriqués Chargés en cœur Déchargés du cœur Démantelés Retraités à Marcoule Total retraités 1200 Nombre 1100 d'assemblages 1000 900 800 700 600 500 400 300 200 100 0 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 Année 12

RECYCLING: GUIDELINES FOR R&D 1-ADAPTATION (innovative fuels) 2-IMPROVEMENTS (a «sustainable goal» ) COEX THE COEX CONCEPT U R T PF U- Pu U no pure plutonium a solid solution (U,Pu)O2 COCA fuel COCA-COEX fuel 13

VITRIFICATION: THE COLD CRUCIBLE TECHNOLOGY hot wall vitrification process CCIM vitrification process Glass frit Waste stream Calciner Glass frit Waste stream Calciner Hot wall crucible CCIM Glass canister Glass canister Cooled wall, direct induction heating Corrosion issues drastically decreased Higher temperature, higher reactivity in operation at La Hague, 2010 RECYCLING: GUIDELINES FOR R&D 1-ADAPTATION (innovative fuels) 2-IMPROVEMENTS (a «sustainable goal» ) 3-EXPLORATION P&T (minor actinide recycle) 14

MINOR ACTINIDE IN SPENT FUEL UOX MOX- REP [en kg/twhe] MOX- RNR 237 Np 1.67 0.47 0.29 241 Am 1.11 9.6 2.75 243 Am 0.44 5.4 0.81 244 Cm 0.14 2.3 0.33 245 Cm 0.01 0.30 0.027 10000 MINOR ACTINIDE RECYCLING : WHAT ARE THE DRIVERS? Minor actinide transmutatation may provide : -a drastic decrease of long term radiotoxicity of final waste -a significant decrease of the repository footprint MA : Am, Cm, Np 1000 Radiotoxicité relative 100 10 1 U ore 0,1 SNF direct disposal Current glasses MA transmutation 10 100 1000 10000 100000 1000000 Temps (années) MA transmutation-120y Without transmutation-120y FINAL WASTE RADIOTOXICITY REPOSITORY «FOOTPRINT» 15

THE 2006 FRENCH ACT (RW & nuclear materials management) PRINCIPLES : RECYCLE (reprocess) to decrease waste amount & toxicity 28, june, 2006 RETRIEVABLE GEOLOGICAL REPOSITORY, for ultimate waste A «ROADMAP» : 2012 : assess the industrial potentialities of advanced recycling options (prototype 2020) 2015 : repository defined (operation by 2025) MA PARTITIONING SNF PUREX /COEX DIAMEX /SANEX FPs. U UPu Am (and Cm) innovative partitioning processes developped by CEA based on the design of new extractants O H 3 C N C 8 H 17 DMDOHEMA H C O C 2 H 4 O N C 6 H 13 C 8 H 17 C H 3 HDEHP O O P O OH HO O HEDTA O N OH N HO OH O MA recovery processes have been successfully experimented, (kgs -sale, genuine spent fuel ) 16

07-25 07-28 08-29 09-30 10-31 07-27 08-28 09-29 10-30 11-31 07-26 08-27 09-28 10-29 11-30 12-31 08-26 07-29 09-27 07-30 07-31 08-30 10-28 07-24 08-25 09-26 10-27 11-28 12-29 13-30 14-31 07-23 08-24 09-25 10-26 11-27 12-28 13-29 14-30 15-31 07-22 08-23 09-24 10-25 11-26 12-27 13-28 14-29 15-30 16-31 07-21 08-22 09-23 10-24 11-25 12-26 13-27 14-28 15-29 16-30 17-31 07-20 08-21 09-22 10-23 11-24 12-25 13-26 14-27 15-28 16-29 17-30 18-31 08-20 09-21 10-22 11-23 12-24 13-25 14-26 15-27 16-28 17-29 18-30 19-31 08-19 09-20 10-21 11-22 12-23 13-24 14-25 15-26 16-27 17-28 18-29 19-30 09-19 10-20 11-21 12-22 13-23 14-24 15-25 16-26 17-27 18-28 19-29 20-30 09-18 10-19 11-20 12-21 13-22 14-23 15-24 16-25 17-26 18-27 19-28 20-29 10-18 11-19 12-20 13-21 14-22 15-23 16-24 17-25 18-26 19-27 20-28 21-29 10-17 11-18 12-19 13-20 14-21 15-22 16-23 17-24 18-25 19-26 20-27 21-28 11-17 12-18 13-19 14-20 15-21 16-22 17-23 18-24 19-25 20-26 21-27 22-28 11-16 12-17 13-18 14-19 15-20 16-21 17-22 18-23 19-24 20-25 21-26 22-27 12-16 13-17 14-18 15-19 16-20 17-21 18-22 19-23 20-24 21-25 22-26 23-27 12-15 13-16 14-17 15-18 16-19 17-20 18-21 19-22 20-23 21-24 22-25 23-26 13-15 14-16 15-17 16-18 17-19 18-20 19-21 20-22 21-23 22-24 23-25 24-26 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 24-25 14-14 15-15 16-16 17-17 18-18 19-19 20-20 21-21 22-22 23-23 24-24 25-25 14-13 15-14 16-15 17-16 18-17 19-18 20-19 21-20 22-21 23-22 24-23 25-24 15-13 16-14 17-15 18-16 19-17 20-18 21-19 22-20 23-21 24-22 25-23 26-24 15-12 16-13 17-14 18-15 19-16 20-17 21-18 22-19 23-20 24-21 25-22 26-23 16-12 17-13 18-14 19-15 20-16 21-17 22-18 23-19 24-20 25-21 26-22 27-23 16-11 17-12 18-13 19-14 20-15 21-16 22-17 23-18 24-19 25-20 26-21 27-22 17-11 18-12 19-13 20-14 21-15 22-16 23-17 24-18 25-19 26-20 27-21 28-22 17-10 18-11 19-12 20-13 21-14 22-15 23-16 24-17 25-18 26-19 27-20 28-21 18-10 19-11 20-12 21-13 22-14 23-15 24-16 25-17 26-18 27-19 28-20 29-21 18-09 19-10 20-11 21-12 22-13 23-14 24-15 25-16 26-17 27-18 28-19 29-20 19-09 20-10 21-11 22-12 23-13 24-14 25-15 26-16 27-17 28-18 29-19 30-20 19-08 20-09 21-10 22-11 23-12 24-13 25-14 26-15 27-16 28-17 29-18 30-19 20-08 21-09 22-10 23-11 24-12 25-13 26-14 27-15 28-16 29-17 30-18 31-19 20-07 21-08 22-09 23-10 24-11 25-12 26-13 27-14 28-15 29-16 30-17 31-18 21-07 22-08 23-09 24-10 25-11 26-12 27-13 28-14 29-15 30-16 31-17 22-07 23-08 24-09 25-10 26-11 27-12 28-13 29-14 30-15 31-16 23-07 24-08 25-09 26-10 27-11 28-12 29-13 30-14 31-15 24-07 25-08 26-09 27-10 28-11 29-12 30-13 31-14 25-07 26-08 27-09 28-10 29-11 30-12 31-13 26-07 27-08 28-09 29-10 30-11 31-12 27-07 28-08 29-09 30-10 31-11 28-07 29-08 30-09 31-10 29-07 30-08 31-09 30-07 31-08 31-07 08-31 09-31 11-29 12-30 13-31 MA RECYCLING OPTIONS HOMOGENEOUS (diluted in the fuel) (#1% MA) The GACID experiment in MONJU! HETEROGENEOUS: «once through targets» (inert matrix) multi-recycled «MA-bearing blankets» (# 10-20% MA on UO2) «DEDICATED STRATA» (ADS) Am TRANSMUTATION 238 Np 238 Pu 239 Np - 2,36j 239 Pu 240 Pu ECRIX H in PHENIX 241 Pu 241 Am 90% transmuted 30% fissionned 242 Pu 243 Pu + 16,02h 17,3% - 4,96h 242 Am 243 Am 244 Am - 16,02h 82,7 % - 10,1h 242 Cm 243 Cm 244 Cm Initial AmO 2 Metallic FPs 17

AN OPTION FOR MA TRANSMUTATION: Am-bearing blankets CORE : UPuO2 BLANKETS : UAmO2 Pu U-Pu AM FP U-AM (Reprocessing Unit) DIAMINO experiment (Am-loaded UO2 pellets in MTR) FUEL CYCLE TECHNOLOGIES : GUIDELINES FOR R&D 1-ADAPTATION (innovative fuels) 2-IMPROVEMENTS (a «sustainable goal» ) 3-EXPLORATION P&T (minor actinide recycle) 4- ALTERNATIVE PROCESSES??? («dry» processes ) 18

THE ATALANTE FACILITY Demonstration hot runs basic chemistry Fuel dissolution Waste Conditioning, New extractants Actinide compounds Conversion processes Partitioning processes TOWARDS SUSTAINABLE NUCLEAR SYSTEMS -reactors? - fuel cycle technologies? - deployment dynamics (strategy)? 19

ASTRID PROTOTYPE Schedule Preliminary choice of options Decision to continue Decision to build Fuel loading 2009 2010 2011 2012 2013 2014 2015 2016 2017 ASTRID Conceptual design -1 Conceptual design -2 Basic design Detailed design & Construction Facilities Feasibility Report on minor actinides partitioning Position Report on minor actinides partitioning and transmutation Core manufacturing workshop (AFC) MA bearing fuels fabrication facility (ALFA) ASTRID FUEL CYCLE ASTRID Initial feed Fuel Fabrication Spent fuel processing 1st goal : Pu & U multirecycle 20

ASTRID FUEL CYCLE ASTRID Initial feed Fuel Fabrication MA Spent fuel processing 1st goal : Pu & U multirecycle 2 nd : Minor Actinide (Am) recycle FR DEPLOYMENT : MANY DIVERSE OPTIONS Puissance installée (GW e ) 70 60 50 40 30 20 REP actuels EPR RNR 10 Année 0 2000 2020 2040 2060 2080 2100 2120 2140 Progressive substitution FRs/LWRs from 2040??? 21

FR DEPLOYMENT : MANY DIVERSE OPTIONS Puissance installée (GW e ) 70 60 50 40 30 20 REP actuels EPR 10 0 Année 2000 2020 2040 2060 2080 2100 2120 2140 Puissance installée (GWe) 70 60 50 40 30 20 10 EPR RNR REP actuel TOTAL 0 2000 2020 2040 2060 2080 2100 2120 2140 Année Scénario F30 : déploiement de RNR assisté par un parc REP de 60 GWé 140 Puissance installée (GWé) 120 100 80 60 40 20 REP actuels EPR RNR TOTAL 0 2010 2030 2050 2070 2090 2110 2130 2150 Années FRs complementing LWRs for Pu management and fleet evolving later according to energy needs FLEET AND FUELS WILL EVOLVE LWRs FRs TODAY (HBU, MOX) THEN? (?) THEN? (?) THEN? (feeding FRs) (multi-recycle FRs) (minor actinide recycle? ) processes & technologies : flexible, efficient, cost-effective, clean, proliferation-resistant 22