Influence of Rare Earths on the Sintering of Zirconia-Yttria. Experimental

Similar documents
High Thermal Conductivity Silicon Nitride Ceramics

IONIC CONDUCTIVITY OF YTTRIA STABILIZED ZIRCONIA OBTAINED BY SINTERING OF COPRECIPITATED POWDERS

Laurea Magistrale in Scienza dei Materiali. Materiali Inorganici Funzionali. Electrolytes: Ceria

Fracture Toughness of Yttria-Stabilized Cubic Zirconia (8Y-CSZ) Doped with Pure Silica

Ceramic Processing Research

Production and development of tungsten based complex perovskite oxide. ceramic components for temperature sensors for petroleum wells

High Temperature Oxidation of Zr-2.5%wt Nb Alloys Doped with Yttrium

Thermal ageing of nanostructured tetragonal zirconia ceramics: Characterization of interfaces

Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size

Structural and Electrical Properties of Reaction Bonded Silicon Nitride Ceramics

ZnO-based Transparent Conductive Oxide Thin Films

Defects and Diffusion

A SOLVENT-FREE COMPOSITE SOLID ELECTROLYTES OF Li 2 CO 3 Al 2 O 3 SYSTEM PREPARED VIA WATER BASED SOL GEL METHOD

ZYBF. High Temperature Yttria Stabilized Zirconia Fibers. Advanced Fibrous Ceramics

Study on electrical properties of Ni-doped SrTiO 3 ceramics using impedance spectroscopy

cubic zirconia system

Effect of MgO and CaO on Transformation of Andalusite to Mullite H. Pooladvand, S. Baghshahi, B. Mirhadi, A.R. Souri, and H. Arabi

PHYSICAL PROPERTIES OF La 0.9 Sr 0.1 Cr 1-X Ni X O 3-δ (X = 0-0.6) SYNTHESIZED VIA CITRATE GEL COMBUSTION

Thermal Diffusivity Measurement of SnO 2. -CuO Ceramic at Room Temperature

EFFECT OF CARBON CONTENT ON SINTERABILITY AND PROPERTIES OF ZrO 2 DOPED WC-CERMETS

Z irconia ceramics have been used for various engineering applications since Garvie et al.1 discovered phase

FABRICATION AND MECHANICAL PROPERTIES OF SINTERED SiC FIBER REINFORCED SiO 2 -MULLITE COMPOSITES

cubic zirconia system

Effect of crystallization on apatite-layer formation of bioactive glass 45%

Microwave dielectric properties and microstructures of MgTa 2 O 6 ceramics with CuO addition

Microstructural Evolution of Ti-Mo-Ni-C Powder by Mechanical Alloying

Influence of MgO Containing Strontium on the Structure of Ceramic Film Formed on Grain Oriented Silicon Steel Surface

Experimental O 3. Results and discussion

AN INVESTIGATION OF THE THERMAL SHOCK BEHAVIOR OF THERMAL BARRIER COATINGS

Compatibility Analyses of BICUVOX.10 as a Cathode in Yttria-stabilized Zirconia Electrolytes for Usage in Solid Oxide Fuel Cells

Fabrication of Magnesium Oxide Ceramics with Density Close to Theoretical Using Nanopowders

Microstructures and Mechanical Properties of (Ti 0:8 Mo 0:2 )C-30 mass% Ni without Core-Rim Structure

Arch. Metall. Mater. 62 (2017), 2B,

Development of Ceria-Zirconia Solid Solutions and Future Trends

Cathodoluminescence Study of Gadolinium Doped Yttrium Oxide Thin Films Deposited By Radio Frequency Magnetron Sputtering

Properties of Step-down Multilayer Piezo Stack Transformers Using PNN-PMN-PZT Ceramics with CeO 2 Addition

THE INFLUENCE OF Bi2O3 AND Sb2O3 DOPING ON THE MICROSTRUCTURE AND ELECTRICAL PROPERTIES OF SINTERED ZINC OXIDE

Sintering Behavior of Porous Nanostructured Sr-Doped Lanthanum Manganite as SOFC Cathode Material

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

ALL-CERAMIC MATERIALS

Microstructure evolution during pressureless sintering of bulk oxide ceramics

SECOND MIDTERM EXAM Chemistry April 2011 Professor Buhro

EFFECTS OF LIGHTWEIGHT MULLITE-SILICA RICH GLASS COMPOSITE AGGREGATES ON PROPERTIES OF CASTABLES

MICROWAVE DIELECTRIC PROPERTIES OF Ba 0.75 Sr 0.25 (Nd x Bi 1-x ) 2 Ti 4 O 12 SOLID SOLUTION

On the Onset of the Flash Transition in Single Crystals of Cubic Zirconia. Yanhao Dong

Transparent Ceramic Yb 3+ :Lu2O3 Materials

X-ray Diffraction Study on Structural Characteristics of Pure and Doped Perovskite BaTiO 3

Advanced Materials Thermal and Environmental Barrier Coatings Solid Oxide Fuel Cells Custom Compositions

Final Year Project Proposal 1

Liquid phase bonding of yttria stabilized zirconia with CaO-Ti02-SiO 2 glass

XRD investigation of metastable phase formation in Li 2 O±2SiO 2 glass

Microstructural evolution of mullite during the sintering of kaolin powder compacts

Peter Gu, W. Walkosz, R.F. Klie Nanoscale Physics Group University of Illinois at Chicago

The effect of SiO 2 addition on the characteristics of CuFe2O4 Ceramics for NTC Thermistor

Effect of trivalent and tetravalent co- doping on phase stability and ionic conductivity of scandia stabilized zirconia. Shyam Kumar C N, Ranjit Bauri

SYNTHESIS OF NANOSIZE SILICON CARBIDE POWDER BY CARBOTHERMAL REDUCTION OF SiO 2

Influence of forming method and sintering process on densification and final microstructure of submicrometre alumina ceramics

Ceramics are inorganic, non-metallic. Ceramics. Ceramics exhibit ionic, covalent bonding or a combination of the two (like in Al 2 O 3 )

Microstructural variations in SiC ceramics sintered with AlN-Y 2 O 3. Keywords: Silicon carbide, Liquid phase sintering, Microstructure

DYNAMIC FRAGMENTATION OF ALUMINA WITH ADDITIONS OF NIOBIA AND SILICA UNDER IMPACT

Early Sintering Stage

Chapter 5: REACTION SINTERING of diamond and silicon powders

BIOACTIVE SILICIUM-CONTAINING COATINGS ON TITANIUM SUBSTRATE

Self Healing Ceramic (Surfaces)

Properties of Dense Ceramic Membranes for Energy Conversion Processes

AN IMPROVED SOL-GEL ROUTE ASSISTED BY SUPERCRITICAL CO 2 FOR THE SYNTHESIS OF NANOPHASE CERAMIC OXIDES YSZ/PMMA CORE-SHELL NANOCOMPOSITE PREPARATION

Crystallization behavior and microstructure of bio glass-ceramic system

Ceramic - Chemical Resistance Acids - concentrated Acids - dilute Alkalis Halogens Metals

Wiendartun 1 & Dani Gustaman Syarif 2

THE EFFECT OF SOL-GEL TECHNIQUE ON THE ALUMINIUM SiCp COMPOSITE

Elaboration and Properties of Zirconia Microfiltration Membranes

Conductivity and Dielectric Studies of PMMA Composites

Additive Element Effects on Electronic Conductivity of Zirconium Oxide Film

Effect of Silicon Carbide on Reactions between Molten Steel and Fused Magnesia Silicon Carbide Composite Refractory

TOPIC 2. STRUCTURE OF MATERIALS III

MA-SHS of ZrC and ZrB2 in Air from The Zr/B/C Powder. the original is available online at Instructions for use

Glass in energy. Glasses for fuel cells and H 2 storage MAT 498

Grain Size of Commercial High Speed Steel

Grain Sizes and Surface Roughness in Platinum and Gold Thin Films. L.L. Melo, A. R. Vaz, M.C. Salvadori, M. Cattani

Martha L. Mecartney, Ph.D. Outreach and Highlights of Research for Non-technical Audiences

PROTECTING REFRACTORIES AGAINST CORUNDUM GROWTH IN ALUMINUM TREATMENT FURNACES. C. Allaire and M. Guermazi

FAYALITE SLAG MODIFIED STAINLESS STEEL AOD SLAG

The Synthesis of Single Tetragonal Phase Zirconia by Sol-Gel Route Peng Zhang 1, Kwang-Leong Choy 2

Chemical Activation of Low Calcium Fly Ash Part 1: Identification of Suitable Activators and their Dosage

1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following.

Lecture 14: Rate of Nucleation

Structural Properties of NiO-CGO Composites Precursor Prepared via Combustion Synthesis Route

INTERACTION BETWEEN FINE MGAL 2 O 4 SPINEL AND Α-AL 2 O 3 POWDERS AT HIGH TEMPERATURES

FORMATION AND QUANTIFICATION OF CALCIUM TITANATE WITH THE PEROVSKITE STRUCTURE FROM ALTERNATIVE SOURCES OF TITANIUM

Structure and morphological analysis of various composition of yttrium doped-zirconia prepared from local zircon sand

Influence of Phosphorus on Deformation Mechanism and Mechanical Properties of IN718 Alloy

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

Original papers. Submitted February 11, 2012; accepted December 2, Keywords: Melt-quench method, Crystalline phases, Densification, Hardness

Oxidation Behavior of Copper at a Temperature below 300 C and the Methodology for Passivation

Section 4: Thermal Oxidation. Jaeger Chapter 3. EE143 - Ali Javey

Behavior of dielectric constant and dielectric loss tangent in Cd 2+ and Cr 3+ substituted magnesium ferrites

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy.

Available online at ScienceDirect. Procedia Engineering 79 (2014 )

Materials and their structures

SIMS Analysis of Hydride in Commercially Pure Titanium

Transcription:

Materials Research, Vol. 2, No. 3, 211-217, 1999. 1999 Influence of Rare Earths on the Sintering of Zirconia-Yttria I.C. Canova a, D.P.F. de Souza a#, N.R. Costa a, M.F. de Souza b a Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, C.P. 676, 13565-905 São Carlos - SP, Brazil b Departamento de Física e Ciência dos Materiais, Instituto de Física de São Carlos, Universidade de São Paulo C.P. 369, 13560-970 São Carlos - SP, Brazil Received: August 15, 1998; Revised: March 30, 1999 Yttria stabilized zirconia sintered by silicate glass phase with addition of ytterbium or gadolinium was investigated. The grain growth rate was found to be higher in the gadolinium doped samples. The glass phase of the ytterbium doped sample showed partial crystallization on cooling. Grain conductivity was found to be highest in samples with a half hour of sintering, having decreased due to stabilizing ion migration from the grains to the grain boundary glassy phase. The differences observed in the sintering behavior and properties of the sintered bodies are attributed to the different ionic radii of the Yb +3 and Gd +3 ions. Keywords: zirconia-yttria, sintering, electrical conductivity Introduction Pure zirconia has three polymorphic phases that are stable in different temperature ranges. The cubic and tetragonal phases usually become stabilized at room temperatures by doping with ions such as rare earth, yttrium, calcium and magnesium 1-4. Doping introduces oxygen ion vacancies that can increase the ionic conduction by several orders of magnitude. Grain and grain boundary electric conductivities contribute toward ionic conduction in cubic stabilized zirconia. While electrical conductivity of the grain is dependent on the nature and concentration of the stabilizing ions, that of the grain boundary is influenced by the impurities segregated from the grains 5,6. It is clear, however, that other causes contribute to low grain boundary conductivity, as has been shown by Verkerk et al. in high purity zirconia 7. Ceramic bodies made from commercial zirconia powders prepared from zirconium silicate have small amounts of remaining silica that, together with other trace impurities, ziconia and the stabilizing oxide, produce a liquid phase during sintering. The liquid phase distribution in the microstructure, both during and after sintering, exerts a strong influence on the microstructural evolution and on the ceramic properties 8-10. The rare earth ions participate in the grain stabilization and in the liquid phase, the relative concentration between these two phases being dependent on their ionic radius 5. A systematic study of the influence of the minority ions on the electrical properties of the grain and grain boundary, as well on the liquid phase properties, is currently ongoing. This work reports on the microstructural evolution of ZrO 2, 7 mol% Y 2 O 3, 1 mol% RE 2 O 3, where RE = Yb or Gd, by liquid phase sintering. Experimental The starting powders for sample preparation were ZrO 2 TZ-0 (Tosoh, Japan), Y 2 O 3 (Molycorp, USA), and Ytterbium and Gadolinium Chlorides (Cerac, USA). The basic composition was ZrO 2, 7 mol% Y 2 O 3, 1 mol% RE 2 O 3, where RE = Yb or Gd. To this composition were added 1 mol% of the following oxides in order to promote the liquid phase sintering: SiO 2 ( Cabosil, USA), Al 2 O 3 ( Baikowski, France) and CaO and TiO 2 ( Riedel, USA). Three powders were prepared: ZY-Zirconia-Yttria; ZYLYb-Zirconia-Yttria-Ytterbium-liquid phase, and ZYLGd-Zirconia-Yttria- Gadolinium-liquid phase. The starting powders were mixed in polyethylene jars with zirconia balls and isopropyl alcohol, with polyvinyl alcohol as dispersant. Ceramic discs were prepared by uniaxial conformation, followed by isostatic pressing at 200 MPa. Sintering was done in air in the temperature range of 1400 C to 1610 C. Characterization was done by XRD (Siemens D500), SEM (Zeiss 9600 with Link Analytical QX 2000 microanalyzer), Impedance Spectroscopy (HP 4192 A), and density # e-mail: dulcina @ power.ufscar.br

212 Canova et al. Materials Research by the Arquimedes method in water. Samples for observation of microstructures were polished with a final diamond paste of 1.0 µm grit and thermally etched for 5.0 min at 100 C below the sintering temperature. Results The XRD spectra of the three studied compositions are shown in Fig. 1. Sample ZY still shows a monoclinic phase after sintering at 1610 C for 2 h, while compositions ZYLYb and ZYLGd are fully cubic after sintering at 1500 C for 2 h. The absence of a liquid phase during the sintering of other compositions with rare earth oxides, ZrO 2 + Y 2 O 3 + RE 2 O 3, not shown in this paper, have also shown a monoclinic phase after sintering at 1610 C for 2 h. Therefore, liquid phase sintering promotes the formation of a solid solution. This effect can be seen in the microstructures depicted in Fig. 2. Microstructures of the ZY sample show small and large grains; the EDS analysis shows that larger grains are yttrium richer. The density behavior of the ZYLYb and ZYLGd samples with sintering temperature is different, as shown in Fig. 3. Apparently, the volume of the glass phase increases with sintering temperature in the Yb doped sample, causing its density to decrease by around 5%. This behavior is confirmed in the microstructures shown in Fig. 4. During thermal etching of the 1500 C sintered sample, a thin glass phase is expelled while sintering at 1610 C results in much larger grains and thicker grain boundaries and, therefore, a larger glass phase volume. The 1610 C sintered samples do not indicate glass phase expelling. The rounded shape of the grains, Fig. 4B, indicates larger grain solubility and glass volume at the triple points. The microstructure of the ZYLGd sample sintered at 1500 C and 1610 C is shown in Fig. 5. The microstructure of the 1610 C sintered sample is similar to that of the ZYLYb sample, however the Gd doped samples have larger grains. Therefore, the relative Figure 1. XRD of compositions: ZY sintered at 1600 C - 2 h, ZYLYb and ZYLGd sintered at 1500 C - 1 h. M = monoclinic phase; C = cubic phase. Figure 2. Microstructure of compositions: ZY sintered at 1600 C - 2 h, ZYLYb and ZYLGd sintered at 1550 C - 1 h.

Vol. 2, No. 3, 1999 Rare Earths on the Sintering of Zirconia-Yttria 213 Figure 3. Apparent density dependence with sintering temperature. Sintering time: 2 h. amount of glass is higher when compared with the Yb +3 doped sample. The apparent dependence of the density of the Gd and Yb doped samples on the sintering time at 1500 C is shown in Fig. 6. While the Gd doped sample shows an almost constant density with sintering time, that of the Yb doped sample changes in the first hours of sintering. After four hours, however, both samples have almost the same density. The Yb doped sample shows a peculiar behavior. The highest density is obtained after 0.5 h of sintering; the sample decays nearly 4% for an additional half hour and grows 2%, at a lower rate, to the final value. This behavior indicates that the smaller radius Yb +3 ion (Yb +3 < Y +3 < Gd +3 ) exerts a strong influence on the early Figure 4. ZYLYb microstructure evolution with sintering temperature. Sintering time: 2 h. Figure 5. ZYLGd microstructure evolution with sintering temperature. Sintering time: 2 h.

214 Canova et al. Materials Research Figure 6. Apparent density dependence with sintering time at 1500 C. stages of sintering. The microstructural evolution of the Gd and Yb doped samples with sintering time at 1500 C is shown in Figs. 7 and 8, respectively. The main differences between the microstructures of these two samples are in their glass phases: a) the ZYLGd sample showed a lower wetting angle with grain producing a thin glass film around the grains, as can be seen by comparing Figs. 7d and 8d. This behavior allowed for a higher grain growth rate for the ZYLGd sample, as shown in Fig. 9; b) the small thickness of the ZYLGd glass on the grains is clearly shown in Figs. 7a (0.5 h sintering) and 7d (8 h sintering), while the ZYLYb glass phase does not show the same behavior, Figs. 8b (2 h sintering) and 8d (8 h sinter- Figure 7. ZYLGd microstructure evolution with sintering time at 1500 C.

Vol. 2, No. 3, 1999 Rare Earths on the Sintering of Zirconia-Yttria 215 Figure 8. ZYLYb microstructure evolution with sintering time at 1500 C. Figure 9. Grain growth with sintering time at 1500 C. ing). This composition also shows glass phase crystallization under cooling. Figure 10 shows pores full of glass, part of Fig. 8c with large magnification. In this and other regions of the glass phase one can clearly see that part of it is crystallized. A similar result was recently found in the sintering of Si 3 N 4, where ytterbium silicate was used as a sintering aid 11. It was found that part of the glass phase crystallizes after heat treatment. The liquid phase composition changes with sintering time at 1500 C. EDS analyses have shown that the Yttrium concentration increases in the glass phase along sintering time, as has already been discussed previously 9,12. The segregation observed in the grain boundary should decrease the grain conductivity, as shown in Fig. 11.

216 Canova et al. Materials Research Figure 10. Part of Fig. 8C with large magnification showing pore full of glass. Part of the glass is crystallized. dynamics of concentration of the equilibrium of stabilizing ions between the glass phase and ceramic grains must contribute to a change in the space charge distribution in the solid-glass interface. The slope of the conductivity curves, shown in Fig. 11, indicates flow intensity and direction of the stabilizing ions in the solid-liquid interface, i.e., the segregation direction. Therefore, it seems worthwhile to make a more in-depth study of the liquid phase sintering of these conductive ceramics. Acknowledgments Figure 11. Grain electrical conductivity dependence with sintering time at 1500 C. Conclusions Liquid phase sintering of cubic yttrium stabilized zirconia is very sensitive to minor additions of rare earth ions. Both liquid phases studied in this work were effective in assisting sintering but gadolinium doped samples showed a faster grain growth rate. The thin gadolinium doped glass layer on the zirconia grains close to the grain boundary clearly points to a lower wetting angle for the glass-grain interface. Ytterbium doped glass does not wet grains in the same way as gadolinium doped glass, which is indicative of a higher interfacial tension. We attribute this divergent behavior to the smaller ionic radii of the Yb +3 ion. Compared with Gd +3, the Yb +3 ionic radii is 8% smaller. The most interesting behavior observed, however, is the crystallization. The possibility that may be interesting to explore in more depth in a fully crystallized grain boundary phase is the grain boundary electrical properties. Also, the The authors wish to express their appreciation to the Brazilian financing agencies FAPESP and CNPq for the support provided for this work. References 1. Yoshimura, M. Ceram Bull., v. 34, p. 1950-55, 1988. 2. Stubican, V.S.; Ray, S.P. J. Am. Ceram. Soc., v. 60, p. 534-37, 1977. 3. Viechnicki, D.; Stubican, V.S. J. Am. Ceram. Soc., v. 48, p. 292-97, 1965. 4. Corman, G.S.; Stubican, V.S. J. Am. Ceram. Soc., v. 68, p. 174-181, 1985. 5. Pascual, C.; Jurado, J.R.; Duran, P. J. Mater. Sci., v. 18, p. 1315-22, 1983. 6. Badwal, S.P.S. J. Mater. Sci., v. 19, p. 1767-76, 1984. 7. Verkerk, M.J.; Winnbust, A.J.A.; Burggraaf, A.J. Solid State Ionics v. 6, p. 159, 1982. 8. Shaw, T.M. J. Am. Ceram. Soc., v. 69, p. 27-34, 1986. 9. Aoki, M.; Chiang, Y.; Kosacki, I.; Lee, L.J.; Tuller, H.; Liu, Y. J. Am. Ceram. Soc., v. 79, p. 1169-80, 1996.

Vol. 2, No. 3, 1999 Rare Earths on the Sintering of Zirconia-Yttria 217 10. Yoshizawa, Y.; Sakuma, T. J. Am. Ceram. Soc., v. 73, p. 3069-73, 1990. 11.Vetrano, J.S.; Kleebe, H.J.; Hampp, E.; Hoffmann, M.J.; Rühle, M. J. Mater. Sci., v. 28, p. 3529-38, 1993. 12. Canova I.C. Liquid Phase Composition on the Sintering and Electrical Conductivity of Zirconia-Yttria, M.S. Thesis, Departamento de Engenharia de Materiais, Universidade Federal de São Carlos - SP, Brazil, 1998.