Comparison between Single-Walled CNT, Multi- Walled CNT, and Carbon Nanotube-Fiber Pyrograf III

Similar documents
Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Research Article

A NOVEL METHOD FOR THE IMPROVEMENT IN THERMOELECTRIC PROPERTY OF TIN OXIDE THIN FILMS AND ITS APPLICATION IN GAS SENSING

Second stage cooling from a Cryomech PT415 cooler at second stage temperatures up to 300 K with cooling on the first-stage from 0 to 250 W

Hot Deformation Behavior of High Strength Low Alloy Steel by Thermo Mechanical Simulator and Finite Element Method

Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices

Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

Thermal Evaporation. Theory

Deformation behavior of electro-deposited pure Fe and its texture evolution during cold-rolling and subsequent annealing

Visit

Weldability charts for constructional steels

Brazing of copper to stainless steel with a lowsilver-content

Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

Molecular dynamic simulations of the high-speed copper nanoparticles collision with the aluminum surface

Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays

Influence of temperature and glass composition on aluminum nitride contact angle

Lecture Day 2 Deposition

Process steps for Field Emitter devices built on Silicon wafers And 3D Photovoltaics on Silicon wafers

Complex structure of carbon nanotubes and their implications for formation mechanism

Fabrication of CdTe thin films by close space sublimation

Laser Micromachining of Bulk Substrates and Thin Films Celine Bansal

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Possibilities of Application of Carbon-Fluorine Containing Additions in Submerged-Arc Welding

Directional Amorphization of Boron Carbide Subjected to Laser Shock Compression

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process

The effects of Fe/Al 2 O 3 preparation technique as a catalyst on synthesized CNTs in CVD method.

Dr. Priyabrat Dash Office: BM-406, Mob: Webpage: MB: 205

Cu/synthetic and impact-diamond composite heatconducting

Study of silicon carbide/graphite double coating polyester woven fabric EMW absorbing property

Morphology of Thin Aluminum Film Grown by DC Magnetron Sputtering onto SiO 2 on Si(100) Substrate

Structural and optical characterization of reactive evaporated tin diselenide thin films

Annealing Effect on Mechanical Properties of Ti-Al Alloy/Pure Ti Harmonic-Structured Composite by MM/SPS Process

Verifying the electrostatic theory of whiskers University of Toledo

Introduction. 1. Sputtering process, target materials and their applications

ACCELERATED THRESHOLD FATIGUE CRACK GROWTH EFFECT POWDER METALLURGY ALUMINUM ALLOY

Prevention of crack in stretch flanging process using hot stamping technique

Improving Efficiency of Aluminium Sacrificial Anode Using Cold Work Process

II. NEG THIN FILM DEPOSITION

WEAR AND BLANKING PERFORMANCE OF AlCrN PVD-COATED PUNCHES

Electrolysis, electrode polarisation, decomposition voltage, galvanic elements, Faraday s law.

Water Vapor and Carbon Nanotubes

Characteristic and efficiency of PEM fuel cell and PEM electrolyser

MODEL 1051 TEM Mill ION MILLING. Ion milling is used on physical science. specimens to reduce thickness to electron

Sub-5 nm Structures Process Development and Fabrication Over Large Areas

High-Speed Direct Laser Deposition: Technology, Equipment and Materials

Title: COLD -CATHODE ELECTRON FIELD EMISSION OF BORON NITRIDE THIN FILM WITH A MEMS-BASED GATE FOR SPACE APPLICATIONS

Annealing Nano-to-Micro Contacts for Improved Contact Resistance

STRESS -STRAIN ANALYSIS AND EXPERIMENTAL VERIFICATION OF THREE-ROLL PYRAMIDAL SHAPE CONFIGURATION ROLL BENDING MACHINE

ENS 06 Paris, France, December 2006

Oligomer-Coated Carbon Nanotube Chemiresistive Sensors for Selective Detection of Nitroaromatic Explosives

Electron Emission. The reader is familiar with the current conduction (i.e. flow of electrons) through a conductor. 28 Principles of Electronics

Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study

Catherine G. Reyes, Anshul Sharma and Jan P.F. Lagerwall. July 18, Complete description of experimental details

Oxide Growth. 1. Introduction

Sheet) Graphite Sheet

Microstructure and Vacuum Leak Characteristics of SiC coating Layer by Three Different Deposition Methods

APN029. The SER2 Universal platform for material testing. A.Franck TA Instruments Germany

Ceramic and glass technology

Nanoscale Conformable Coatings for Enhanced Thermal Conduction of Carbon Nanotube Films

Surface Characterization of Laser Polished Indirect-SLS Parts

Electricity. Characteristic and efficiency of PEM fuel cell and PEM electrolyser Stationary currents. What you need:

Workshop on Nanoscience and Catalysts March 2008, QAU, Islamabad Nanocomposites for Thermal management Applications

THE EFFECTS OF ANODIZING CONDITION AND POST TREATMENT ON THE GROWTH OF NICKEL NANOWIRES USING ANODIC ALUMINUM OXIDE

Thick Film Heater for Sensor Application

Gold Bond BRAND Gypsum Sheathing

Technology Of MIG-MAG Welds Strength Enhancement

MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING. Bo Cheng and Kevin Chou

Development and optimization of a two-stage gasifier for heat and power production

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

The Feasibility of Wind and Solar Energy Application for Oil and Gas Offshore Platform

Synthesis of Multi Wall Carbon Nanotube (WCNT) over thin films of SiO 2 -Fe 2 O 3 deposited by Combustion Chemical Vapor Deposition

Specimen configuration

Diode laser beam absorption in laser transformation hardening of low alloy steel

Quenching steels with gas jet arrays

NANOELECTRONIC SENSOR FOR DETECTION OF PROSTATE CANCER BIOMAKERS

Surface formation in direct chill (DC) casting of 6082 aluminium alloys

High Rate Deposition of Reactive Oxide Coatings by New Plasma Enhanced Chemical Vapor Deposition Source Technology

Use of levitating liquid micro-droplets as tracers to study the evaporation in the vicinity of the contact line

Low-Voltage Ionization of Air with Carbon-Based Materials

JSM-7800F Field Emission Scanning Electron Microscope

Effect of Ti on Charpy Fracture Energy and Other Mechanical Properties of ASTM A 710 Grade B Cu-Precipitation-Strengthened Steel

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Semiconductor Device Fabrication Study

Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions

Grain Sizes and Surface Roughness in Platinum and Gold Thin Films. L.L. Melo, A. R. Vaz, M.C. Salvadori, M. Cattani

EDDY-CURRENT TECHNIQUE FOR SUB-SURFACE TEMPERATURE MEASUREMENT. BHP Melbourne Research Laboratories P.O. Box 264 Clayton, Victoria 3168 Australia

Study on rheo-diecasting process of 7075R alloys by SA-EMS melt homogenized treatment

Effect of grain size on the mobility and transfer characteristics of polysilicon thin-film transistors

ELECTRICAL RESISTIVITY AS A FUNCTION OF TEMPERATURE

Laser Synthesis of Metal Oxide Crystals with the Use of Carbon Nanotubes

Thermal Analysis of Solar Flat Plate Collector

Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ

NanoSystemsEngineering: NanoNose Final Status, March 2011

Researches on the production of self-reducing briquettes from waste containing iron and carbon

On the use of slag from silicomanganese production for welding flux manufacturing

Crack prediction in EB-PVD thermal barrier coatings based on the simulation of residual stresses

Effect of aging on the reinforcement efficiency of carbon nanotubes in epoxy matrix

An XPS and Atomic Force Microscopy Study of the Micro-Wetting Behavior of Water on Pure Chromium* 1

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

350 C for 8 hours in argon atmosphere. Supplementary Figures. Supplementary Figure 1 High-temperature annealing of BP flakes on SiO 2.

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA

Transcription:

IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Comparison between Single-Walled CNT, Multi- Walled CNT, and Carbon Nanotube-Fiber Pyrograf III To cite this article: Marwan S. Mousa 2018 IOP Conf. Ser.: Mater. Sci. Eng. 305 012025 Related content - Study of the Emission Characteristics of Single-Walled CNT and Carbon Nano- Fiber Pyrograf III Marwan S. Mousa, M-Ali H. Al-Akhras and Samer Daradkeh - Growth Valley Dividing Single- and Multi- Walled Carbon Nanotubes: Combinatorial Study of Nominal Thickness of Co Catalyst Kazunori Kakehi, Suguru Noda, Shigeo Maruyama et al. View the article online for updates and enhancements. - Analytical modeling to study the effect of hydrogen plasma on the growth of multiwalled carbon nanotubes U Sharma, N Gupta, R Gupta et al. This content was downloaded from IP address 148.251.232.83 on 22/05/2018 at 14:22

Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf Ш Marwan S. Mousa Surface Physics and Materials Technology Lab, Department of Physics, Mu'tah University, AL- Karak, Jordan marwansmousa@yahoo.com & mmousa@mutah.edu.jo Abstract: Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf Ш PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7 mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf Ⅲ PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) µm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) µm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region. 1. Introduction Multi-Walled Carbon Nanotubes (MWCNTs) and Single Wall Carbon Nanotubes (SWCNTs) [1-5] have a growing attention due to their perfect properties that make them the best candidate to be the next generation of field emitters such as, low turn-on fields, high emission current, stable emission current, long lifetime, low energy spreading, and high brightness [5,6]. In addition, Stacked-Cup Carbon Nanotubes (SCCNTs) or Carbon Nanotube-Fibers (CNTFs) have unique structures with highly graphitic as shown in figure 1. The graphene planes in the structures of (SCCNTs) or (CNTFs) are canted from the fiber axis, resulting in exposed edge plane on the interior and exterior surfaces of the fiber; CNTs, on the other hand, typically resemble an assembly of concentric cylinders of graphene [7-9]. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by Ltd 1

Figure 1 Nanotube-Fibers sizes from Single Wall Carbon Nanotubes to conventional Carbon Fibers. Fowler-Nordheim (FN) first derived a semiclassical theory of FE based on physical assumptions and mathematical approaches; the theory has been modified many times over years to describe Cold Field Emission (CFE) from bulk metal where it is known as Fowler-Nordheim (FN) equation which is given by [10,11]: = { ( ) }exp ( ) Where is the current emission, where it is exponentially dependent on the barrier width and, when graphically expressed on ln(i/v 2 ) vs V -1 scales, will exhibit a linear relationship, is the local work function, is the applied voltage, and are the first and second FN constants, is the local voltage-to-surface field conversion factor at some specific reference point on the emitter surface, and is the national emission area defined by considering the local emission current density at the reference point. This equation uses the macroscopic field as an independent variable have often been used to describe CFE from Carbon Nanotubes (CNTs) including closed singlewalled (CNTs) of small apex radius, particularly in technological context [12]. The Nanotube tip does not necessarily behave like a metal; electrons are not completely free and the effect of the tips atomic structure can be dominant. Moreover, an SWCNT is a three-dimensional structure (3D) and not an infinitely wide surface; thus, a more detailed treatment than the FN model is required. In this work there are three type of emitters: Single-Walled CNT, Multi-walled CNT, and Carbon Nanotube-Fiber Pyrograf Ш will be investigated and tested using a technique of the glass puller. 2

2. Experimental Details Figures 2 and 3 showed the produced sample and the glass puller, respectively. Three types of CNTs were used: (a) Single-Walled Carbon Nanotubes (SWCNTs) were produced by highpressure CO over Fe particles (HiPCO: High-Pressure Carbon Monoxide process), having an average diameter ranging between (1-4) nm with length (1-3) µm. (b) Multi-Walled Carbon Nanotubes (MWCNTs) Nanocyl TM NC7000 with 9.5nm diameter and high aspect ratio (>150), fabricated by chemical vapor deposition. (c) Carbon Nanotube-Fibers pyrograf Ш PR-1 (CNTFs), having average fiber diameter that is ranging between (100-200) nm, with the length of (30-100) µm. Both tips prepared by employing a drawing technique using a glass puller apparatus (see figure 3), in this technique, two bearings are located accurately on plates supported by three stainless steel rods fixed rigidly to the frame of the control, this frame is strong enough to serve as a stable base for the instrument. A glass tube (outside diameter=1 mm, internal diameter=0.1 mm) fits inside these bearings between the upper and lower chunks, with a furnace loop located around it. The CNTs were entered into the opposite end of each glass tube so they would protrude at the tip with wire plunger [13] the lower chunk spindle can slide vertically in order to pull down the glass tube under gravity, after preparing the emitters, they are mounted in a standard Field Emission Microscopy (FEM) with an emitter-screen Figure 3 Schematic diagram of the glass puller. distance of ~10 mm [14], and current limiting resistor of (100 MΩ) is used. The system was evacuated to pressure ~10-8 mbar after baking at ~170⁰C overnight. The FEM applied voltage V is increased slowly until a switch-on voltage VSW is reached, at which point the emission current suddenly switch-on, at VSW the current increase rapidly from about a Nano- Figure 2 Optical micrograph at magnification 50X times for: (A) SWCNT-15. (B) CNTF-25. (C)MWCNT-A4. 3

ampere to a much greater saturated value ISW, by slowly decreasing the applied voltage to a lower value the emission current starts to be decreasing until limit reached, beyond which the emission current falls smoothly to zero as the applied voltage is decreased to the threshold value VTH. 3. Results and Discussion This section describes the results of experiments on the emission characteristics of the Carbon Nano-Fibers and Single-Walled Carbon Nanotubes. These results include the I-V characteristics, Fowler-Nordheim (FN) plot, and emission images. Emission current measurements are made using a pico-ammeter connected between the cathode and earth. As the applied electric field is slowly applied, the emission is only observed after a threshold field is reached, and emission suddenly jumps to a constant saturated value ISAT, further increasing the applied electric field the VMAX will be reached, after that the tip explode, as the voltage slowly decreasing, the emission current fall to nearly zero, reaching the threshold value VTH. In the first set of specimens, we perform two sweeps of increasing voltage then decreasing voltage.figure (4) showed the I-V characteristics for the three specimens, its related Fowler- Nordheim (FN) plot, and emission images (Fig. 4 (C), (D), and (E)) at VSW. From the figure, it is shown that the VSW for SWCNTs, CNTFs, and MWCNTs are 800 V, 1100 V, 4300 V with emission current 4 µa, 1.2 µa, and 25 µa, respectively, the slope for SWCNTs, MWCNTs, and CNTFs is (-3294.54), (-6484.71), and (-1727.94) decayed V, respectively, and we notice that the MWCNTs gave higher emission current the SWCNTs and CNTFs, but the turn-on field emission at SWCNTs and CNTFs is lower than MWCNTs. The experiment is repeated for another sweep of increasing and decreasing the applied voltage, and the result shown in the figure (5). 4

Figure 4. I-V characteristics for the three specimens. (B) Related FN Plot. (C) Emission Image at VSW = 800 V, 4 µa for SWCNTs emitter. (D) Emission Image at VSW = 1100 V, ISW = 1.2 µa for CNTFs emitter. (E) Emission Image at VSW = 4300 V, ISW=25 µa for MWCNTs emitter. Figure 5. 2nd cycle, increasing voltage. (A) I-V Characteristics. (B) FN plot. From figure 5, it shows the same result as in figure 4, it seems from the figure and the experimental observation that the value of the VSW of the SWCNTs, MWCNTs, and CNTFs are 650 V, 1100 V, and 4500 V, respectively with emission current value 1.6 µa, 3.6 µa, and 23 µa, and there is 5

some emission current fluctuation in the low range in (MWCNTs-A4) emitter, due to their sensitivity to gaseous molecules [15].As we decrease the applied voltage in the three specimens the saturated region extends down to VSAT value, which is for SWCNTs, CNTFs, and MWCNTs are 380 V, 750 V, and 1300 V with emission current 1.06 µa, 1.2 µa, and 1 µa. From the previous result, the emission current has been reduced by comparing the emission current between the first and second sweep of voltage, that would be referred to the existence adsorbate, and the variation of local electric field (F) [16]. The experiment has been performed on another set of specimens. Figure 6 shows the SWCNTs, CNTFs-26, and MWCNTs-A5 emitters. The voltage and emission current range in the three emitters as following; in case of the SWCNTs the turn-on applied voltage value is V=750 V and the last applied voltage value in increasing voltage is V=2850 V, with emission current 2 pa, and 18.9 µa, respectively, CNTFs, the emission current turned on at applied voltage value 340 V to 1350 V, with emission current 30 pa, 8.49 µa, respectively, and MWCNTs voltage ranges from 1600 V to 2700 V, with emission current 8 pa Figure 6 Optical Micrograph for (A) SWCNTs (B) CNTFs-26. (C) MWCNTs-A5. to 6 na. Figure 7 shows I-V characteristics and its relative FN plot. The SWCNTs and CNTFs emitters shows switch-on phenomenon at VSW value = 1900 V, 1000 V, with emission current value 1.2 µa, 4.8 µa, respectively. As we continue increasing the applied voltage on SWCNTs specimen after switch-on phenomena appeared at VSW=1900 V, ISW=1.2 µa, the emission current suddenly raised from few µa range up to ~20 µa, that behavior appeared because the contribution of the adsorbate in the electron emission [17], as we decreased the applied voltage the saturation region extends down to VSAT value for SWCNTs, CNTFs, and MWCNTs are 1050 V, 1000 V, and 1750 V, with emission current value 3.99 µa, 1.11 µa, and 1 µa, respectively. 6

Figure 7(A) I-V Characteristics for SWCNTs and CNTFs (B) FN plot for SWCNTs & CNTFs (C) I-V characteristic for MWCNTs. (D) FN Plot for MWCNTs. Figure 8. (A) I-V Characteristics for three type for specimen (B) Relate FN plot, where the slope value for SWCNTs, CNTFs, and MWCNTs are -16028.2, -1394.01, and -87187.2 respectively. figure 8 shows I-V characteristics and FN value during the decreased V. As we see from the figure 8, that the VTH for the CNTFs is less than SWCNTs, and MWCNTs and SWCNTs emitter gave 7

emission current higher than CNTFs, and MWCNTs. According to this equation: = 6.44 10 / where is the phenomenological field enhancement factor, and is the slope of FN plot, the value of for CNTFs will be higher than SWCNTs and MWCNTs, so that will explain the value of VTH for the three type of the emitter[18, 19]. Figure 9 Emission Image for (A) SWCNTs at VSW. (B) CNTFs at VSW. (C) MWCNTs. Figure 9 shows the emission image at VSW for the second set of the emitter. 4. Conclusion Three type of emitters have been tested, and all prepared with the same technique, by employing a drawing technique using a glass puller. Theoretically, the field emission from carbon nanotubes is a very challenging topic in many respects. Fundamentally, the field emission phenomena are highly non-equilibrium quantum mechanical processes that require the precise description of electronic structures of the nanotubes, and the equation of FN still in development to fully describe the electron emission from single-walled carbon nanotubes. From the result we can say that the SWCNTs and CNTFs have approximately similar behavior, while SWCNTs emission current turned on earlier, and that referring to the smaller radius of the nanotubes, but there are other influences on this matter, like the effect of the enhancement factor and field penetration, which the electric field can penetrate to CNTs to suppress the charge potential near the tip of tube and induce a few extra electrons [13], and the effective work function where its affected by the penetration of the electric field [18]. The cleanness the Carbon Nanotubes (CNT) surface effects on the current fluctuation, which is can be achieved by wet chemical cleaning and thermal post-treatment [19]. 8

References [1] Chambers, T. V. H. a. C. R. (1889). USA Patent No. U.S. Patent. [2] De Jong, K. P., & Geus, J. W. (2000). Carbon Nanofibers: Catalytic Synthesis and Applications. Catalysis Reviews, 42(4), 481-510. doi: 10.1081/CR-100101954 [3] de Jonge, N., Allioux, M., Oostveen, J. T., Teo, K. B. K., & Milne, W. I. (2005). Low noise and stable emission from carbon nanotube electron sources. Applied Physics Letters, 87(13), 133118. doi: 10.1063/1.2058225 [4] Forbes, R. G. (2010). Thin-slab model for field electron emission. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 28(2), C2A43-C42A49. doi: 10.1116/1.3322736 [5] Forbes, R. G., & Deane, J. H. B. (2007). Reformulation of the standard theory of Fowler Nordheim tunnelling and cold field electron emission. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 463(2087), 2907-2927. doi: 10.1098/rspa.2007.0030 [6] Fowler, R. H., Nordheim, L. W. (1982). Electron emission in intense electric fields. Proceedings of the Royal Society of London, series A: Mathematical, Physical and Engineering science, 119 (781), 137-181. [7] Lijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58. [8] Lijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603-605. [9] Lassagne, B., Raquet, B., Broto, J. M., Cleuziou, J. P., Th, O., Monthioux, M., & Magrez, A. (2006). Electronic fluctuations in multi-walled carbon nanotubes. New Journal of Physics, 8(3), 31. [10] More, M. A., Kashid, R. V., Patil, S. S., Shinde, D. R., & Joag, D. S. (2012, 9-13 July 2012). Field emission current noise analysis of carbon based materials. Paper presented at the 25th International Vacuum Nanoelectronics Conference. [11] Mousa, M. S. (1988). Effect of lacomit films on cold-cathode hot-electron emission. Journal de physique, 49(C6), C6-237 - C236-242. [12] Mousa, M. S., & Hibbert, D. B. (1993). Analysis of some properties of metal-glass microemitters subjected to strong electric fields. Applied Surface Science, 67(1), 59-65. doi: http://dx.doi.org/10.1016/0169-4332(93)90295-m [13] Peng, J., Li, Z., He, C., Chen, G., Wang, W., Deng, S.,... Forbes, R. (2008). The roles of apex dipoles and field penetration in the physics of charged, field emitting, single-walled carbon nanotubes (Vol. 104). [14] S. Alnawasreh, M. S. M., and A. N. Al-Rabadi. (2015). Investigating the Effects of Sample Conditioning on Nano-Apex Carbon Fiber Tips for Efficient Field Electron Emission. Jordan Journal of Physics, 8, 95-101 [15] Peng, J., Li, Z., He, C., Deng, S., Xu, N., Zheng, X., & Chen, G. (2005). Quantum mechanical understanding of field dependence of the apex barrier of a single-wall carbon nanotube. Physical Review B, 72(23), 235106. [16] De Jong, K. P., & Geus, J. W. (2000). Carbon Nanofibers: Catalytic Synthesis and Applications. Catalysis Reviews, 42(4), 481-510. doi: 10.1081/CR-100101954. [17] More, M. A., Kashid, R. V., Patil, S. S., Shinde, D. R., & Joag, D. S. (2012, 9-13 July 2012). Field emission current noise analysis of carbon based materials. Paper presented at the 25th International Vacuum Nanoelectronics Conference. 9

[18] Qiu, H., Joshi, R. P., Neuber, A., & Dickens, J. (2015). A model study of the role of workfunction variations in cold field emission from microstructures with inclusion of field enhancements. Semiconductor Science and Technology, 30(10), 105038. [19] Tittmann-Otto, J., Hermann, S., Kalbacova, J., Hartmann, M., Toader, M., Rodriguez, R. D.,... Gessner, T. (2016). Effect of cleaning procedures on the electrical properties of carbon nanotube transistors A statistical study. Journal of Applied Physics, 119(12), 124509. doi: 10.1063/1.4944835. 10