R.M.Cornell U. Schwertmann. The Iron Oxides. Structure, Properties, Reactions, Occurrence and Uses. Weinheim New York Basel Cambridge Tokyo VCH

Similar documents
ICSE-Science 2 (Chemistry) 2004

CONTENTS INTRODUCTION EXPERIMENTAL

In-situ X-ray Diffraction of Corrosion Products Formed on Iron Surfaces

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER ICSE

One of the most striking features of iron oxides is their

Table of Contents. Preface...

Properties of Matter. Chemical Properties and Effects on Pollutant Fate. Characteristics of Chemical Changes. Physical Characteristics

Formation of Corrosion Protective Rust on Steel. Exposed to the Atmosphere ABSTRACT

ACID DISSOLUTION OF HEMATITES OF DIFFERENT MORPHOLOGIES

CHEMICAL METAL PRE-TREATMENT

Influence of montmorillonite on oxidation products

CO forms CO 2. forms. (a) The coke reacts with the oxygen in the air to form carbon dioxide. C + O 2

1. Scaling. H.O.: H-5/21, KRISHNA NAGAR, DELHI Tel.: , Fax:

Performance Attributes of Organic Corrosion Inhibitors

ELUTION BEHAVIOR OF PHOSPHATE CONTAINED IN Mg/Fe AND Zn/Fe LAYERED DOUBLE HYDROXIDES

2.4 Period 3. Na Mg Al Si P S Cl Ar

General Principles of Biomineralization

Propagation of Localised Corrosion: FEM Approach

Iron oxide(iii) nanoparticles fabricated by electron beam irradiation method

What does each part of the equation mean? q=cm T

CRYSTAL NUCLEATION AND GROWTH IN HYDROLYSING IRON(Ill) CHLORIDE SOLUTIONS

not to be republished NCERT GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS Unit I. Multiple Choice Questions (Type-I)

SYNTHESIS OF MAGNETITE NANO-PARTICLES BY REVERSE CO- PRECIPITATION

Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution

X-ray Photoelectron Spectroscopy

Boiling point in C. Colour in aqueous solution. Fluorine 188 colourless. Chlorine 35 pale green. Bromine X orange.

Distribution Review. Corrosion Control. Corrosion Control Vocabulary. American Water College 1. Corrosion Control Training Objectives

Lecture 3: Biomaterials Surfaces: Chemistry

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals

INFLUENCE OF MANGANESE OXIDE MINERALS ON THE FORMATION OF IRON OXIDES 1

Matrix-free synthesis of spin crossover micro-rods showing large hysteresis loop. centered at room temperature

Magnetite Oxidation in Aqueous Systems

2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate

Crop, Soil, and Environmental Sciences - CSES

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons.

Chemistry of Mineral Matter and Ash in Coal: An Overview

This is an author produced version of A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide.

Sodium, Na. Gallium, Ga CHEMISTRY Topic #2: The Chemical Alphabet Fall 2017 Dr. Susan Findlay See Exercises 7.3 to 7.5.

Center for Advanced Sustainable Iron & Steel Making

Synthesis and Characterization of Mesoporous Carbon Hybrids for Environmental Applications

Corrosion and Protection of Metal in the Seawater Desalination

TiO 2 Thin Film: Preparation, Characterization, and its Photocatalytic Degradation of Basic Yellow 28 Dye

Chapter 20 CHEMISTRY. Metallurgy and the Chemistry of Metals. Dr. Ibrahim Suleiman

LANDOLT-BÖRNSTEIN. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie. Gesamtherausgabe: K.-H. Hellwege

Draw a ring around the correct word in the box to complete the sentence.

Application of Mössbauer Spectroscopy to the Study of Corrosion


GEOLOGY 284: MINERALOGY

Study on catalytic pyrolysis and efficient gasification of cellulose as biomass samples

Problems and Prospects of Halogen Element Contained Dust Treatment in Recycling

(a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out. piece of zinc shiny surface

Romanian Academy Institute of Physical Chemistry Ilie Murgulescu. PhD THESIS SUMMARY

FERROMAGNETIC MINERALS

Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency

INTRODUCTION:- 1.Classification of magnetic material Diamagnetic

Electricity and Chemistry

Cambridge International Examinations Cambridge International General Certificate of Secondary Education. Published

Synthesis of potassium manganese oxides under hydrothermal conditions

IWA Nutrient Removal and Recovery 2015: moving innovation into practice MAY 18-21, 2015 GDAŃSK, POLAND

V. Z. Abdrakhimov, I. V. Kovkov ANALYSIS OF PHASE STRUCTURE OF THE CERAMIC BRICK OF OVER FIVE HUNDRED YEARS

Well Stimulation and Sand Production Management (PGE 489 ) Sandstone Acidizing. By Dr. Mohammed A. Khamis

ATOM STRUCTURE AND BONDING OF METALS

AP Chemistry A. Allan Chapter 18 - The Representative Elements: Groups 1A through 4A

Investigation of alumino-silicic reagent interaction with iron in water by Mössbauer spectroscopy

Effect of Chloride on Localized Corrosion Initiation of Carbon Steel in a CO 2 Aqueous Environment Xin Gao, Bruce Brown, Srdjan Nesic

Some chemistry of Iron

Application Note. Introduction. Analysis of crystal polymorphism by Raman Spectroscopy for Medicine Development

Cycling and Biogeochemical Transformations of N, P and S

Slag formation during high temperature interactions between refractories containing SiO 2 and iron melts with oxygen

METALS

TRANSFORMATION OF AKAGANI~ITE INTO GOETHITE AND HEMATITE IN THE PRESENCE OF Mn

Anti-Corrosion - Technical Training

Electronic Supplementary Information

(06) WMP/Jun10/CHEM5

CORROSION BEHAVIOR OF AUSTENITIC AND FERRITIC STEELS IN SUPERCRITICAL WATER

Loss On Ignition measurement for oxidizable iron ores with C / H analyzer

1. Which of the given statements about the reaction below are incorrect?

Chapter: The d and f Block Elements

Suggest one reason why spoons are electroplated. ... Why is hydrogen produced at the negative electrode and not sodium?

PREPARATION OF VISIBLE-LIGHT-DRIVEN TIO 2 PHOTOCATALYST DOPED WITH IRON IN SUPERCRITICAL CARBON DIOXIDE

Today! Demonstrations of Redox Chemistry! Electrochemistry! electrons moving about! equilibrium with a control knob! The disappearing Aluminum Rod!

CHAPTER 2: ATOMIC ARRANGEMENTS AND MINERALOGICAL STRUCTURES. Sarah Lambart

Effect of Temperature and Activator Molar of Na 2 O to SiO 2 in the Process of Synthesis and Microstructure of Cement Geopolymer

Synthesis of a red iron oxide/montmorillonite pigment in a CO2-rich brine solution

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY

CORROSION of Metals CORROSION CORROSION. Outline ISSUES TO ADDRESS... Why does corrosion occur? What metals are most likely to corrode?

Extracting and using metals. ores. native. Only the most unreactive metals such as gold and platinum are found as native metals.

Module: 9 Lecture: 39

SAMPLE PAGES PAGES. Extraction of metals from metal oxides. mixture of iron sand and coal are heated as they move down kiln, by force of gravity

Utilization of steam from thermal power plant to recover the caustic & alumina from red mud slurry

Oxides and Hydroxides

There s also got to be a wire, but that s kind of taken for granted.

Oxidation And Degradation Products Of Common Oxygen Scavengers

Chemistry in our World, 3days

Solutions. for Severe Corrosion

7.3 Bonding in Metals > Chapter 7 Ionic and Metallic Bonding. 7.3 Bonding in Metals. 7.1 Ions 7.2 Ionic Bonds and Ionic Compounds

EFFECT OF SILICATE SPECIES ON THE TRANSFORMATION OF FERRIHYDRITE INTO GOETHITE AND HEMATITE IN ALKALINE MEDIA

An overview of nitrates-induced corrosion of reinforced concrete structures: case studies, laboratory investigations and corrosion mechanisms

Introduction to Metallurgy

Ceramic Processing Research

Transcription:

R.M.Cornell U. Schwertmann The Iron Oxides Structure, Properties, Reactions, Occurrence and Uses VCH Weinheim New York Basel Cambridge Tokyo

Contents 1 Introduction to the iron oxides 1 2 Crystal structure 7 2.1 General 7 2.2 Iron oxide structures 7 2.2.1 Close packing of anion layers 10 2.2.2 Linkages of octahedra or tetrahedra 12 2.3 Structures of the individual iron oxides 14 2.3.1 The oxide hydroxides 14 2.3.1.1 Goethite a-feooh 14 2.3.1.2 Lepidocrocite y-feo(oh) 16 2.3.1.3 Akaganeite ß-FeO(OH) and schwertmannite Fe 16 0 16 (OH) y (S0 4 ) z n H 2 0 18 2.3.1.4 5-FeOOH and 8'-FeOOH (feroxyhyte) 20 2.3.1.5 High pressure FeOOH 21 2.3.1.6 Ferrihydrite 22 2.3.2 The hydroxides 24 2.3.2.1 Bernalite Fe(OH) 3 nh 2 0 24 2.3.2.2 Fe(OH) 2 25 2.3.2.3 Green rusts 25 2.3.3 The oxides 26 2.3.3.1 Haematite a-fe 2 0 3 26 2.3.3.2 Magnetite Fe 3 0 4 28 2.3.3.3 Maghemite y-fe 2 0 3 30 2.3.3.4 Wüstite Fe^O 31 2.4 The Fe-Ti oxide System 33 3 Cation Substitution 35 3.1 General 35 3.2 Goethite 38 3.2.1 AI Substitution 38 3.2.1.1 Synthetic goethites 38 3.2.1.2 Natural goethites 43 3.2.2 Other substituting cations 43 3.3 Haematite 48 3.4 Other Fe oxides 50

VIII Contents 4 Crystal morphology and size 53 4.1 General 53 4.1.1 Crystal growth 53 4.1.2 Crystal morphology 55 4.1.3 Crystal size 57 4.2 The iron oxides 58 4.2.1 Goethite 59 4.2.1.1 General 59 4.2.1.2 Domainic character 64 4.2.1.3 Twinning 66 4.2.1.4 Effect of additives on goethite morphology 68 4.2.2 Lepidocrocite 70 4.2.3 Akaganeite and schwertmannite 71 4.2.4 Ferrihydrite 73 4.2.5 Haematite 74 4.2.6 Magnetite 82 4.2.7 Maghemite 85 4.2.8 Other iron oxides 85 5 Surface area and porosity 87 5.1 Surface area 87 5.2 Porosity 91 5.3 Surface roughness and fractality 93 5.4 The iron oxides 94 5.4.1 Goethite 95 5.4.2 Lepidocrocite 97 5.4.3 Akaganeite and schwertmannite 97 5.4.4 5-FeOOH and feroxyhyte 98 5.4.5 Ferrihydrite 99 5.4.6 Haematite 101 5.4.7 Magnetite 102 5.4.8 Maghemite 102 6 Electronic, electrical and magnetic properties 103 6.1 Electronic properties 103 6.1.1 Free Fe 3+ and Fe 2+ ions 103 6.1.2 Bound Fe ions 104 6.1.3 Molecular orbital description of bonding in iron oxides 107 6.2 Electrical properties 108 6.2.1 Semiconductor properties of iron oxides 110 6.3 Magnetic properties 110 6.3.1 Basic definitions 112 6.3.2 Types of magnetism 113 6.3.3 Magnetic behaviour of iron oxides 115 6.3.4 The different iron oxides 118 6.3.4.1 Goethite 118 6.3.4.2 Lepidocrocite 119

Contents IX 6.3.4.3 Akaganeite 119 6.3.4.4 8-FeOOH and feroxyhyte 119 6.3.4.5 High pressure FeOOH 120 6.3.4.6 Ferrihydrite 120 6.3.4.7 Haematite 120 6.3.4.8 Magnetite 123 6.3.4.9 Maghemite 123 6.3.4.10 e-fe 2 0 3 124 6.3.4.11 Fe(OH) 2 124 6.3.4.12 Wüstite 125 7 Characterization 127 7.1 Introduction 127 7.2 Infrared spectroscopy 128 7.2.1 Goethite 129 7.2.2 Lepidocrocite 132 7.2.3 Ferrihydrite 132 7.2.4 Haematite 133 7.2.5 Other iron oxides 134 7.3 Raman spectroscopy 135 7.4 Ultraviolet-visible spectroscopy 136 7.4.1 UV-Vis spectra 138 7.4.2 Colour and optical properties 141 7.4.2.1 Colour 144 7.4.2.2 Pigment properties 146 7.5 Mössbauer spectroscopy and magnetometry 146 7.5.1 Mössbauer spectra and parameters 146 7.5.1.1 Goethite 148 7.5.1.2 Lepidocrocite 148 7.5.1.3 Ferrihydrite 148 7.5.1.4 Haematite 151 7.5.1.5 Magnetite and maghemite 152 7.5.1.6 Other iron oxides 153 7.5.2 Magnetometry 154 7.5.2.1 General 154 7.5.2.2 Initial magnetic susceptibility 155 7.5.2.3 Magnetic anisotropy, coercivity and Saturation magnetization... 155 7.5.2.4 Domain type 158 7.5.2.5 Curie temperature analysis 161 7.5.2.6 Applications 161 7.6 Other spectroscopic techniques 162 7.7 Diffraction techniques 165 7.7.1 X-ray diffraction 165 7.7.2 Other diffraction techniques 168 7.8 Microscopy 170 7.9 Thermoanalysis 171 7.9.1 Thermal gravimetric analysis (TGA) 171

X Contents 7.9.2 Differential thermal analysis (DTA) 171 7.10 Dissolution methods 173 8 Thermodynamics of the Fe-0 2 -H 2 0 system 175 8.1 General 175 8.2 Standard free energy of reaction and the equilibrium constant... 176 8.3 Redox reactions 178 8.4 Effect of complexing agents on redox potential 180 8.5 Stability 181 8.5.1 "Bulk" crystals 181 8.5.2 Effect of particle size and AI Substitution 187 9 Solubility 189 9.1 General 189 9.2 The solubility product 189 9.3 The effect of hydrolysis reactions and ph on solubility 190 9.4 Other factors influencing solubility and the solubility product... 195 9.4.1 Complexation 196 9.4.2 Redox reactions 196 9.4.3 Ionic strength 198 9.4.4 Properties of the solid 199 9.4.4.1 Particle size 199 9.4.4.2 Ageing and isomorphous Substitution 201 9.5 Methods of determining or calculating the solubility products... 201 9.6 Solubility products 203 10 Surface chemistry and colloidal stability 207 10.1 Surface functional groups 207 10.2 Surface acidity and acidity constants 213 10.3 The electrical double layer 216 10.4 Electrochemical properties 218 10.5 Surface charge and point of zero charge 221 10.6 Stability of colloidal suspensions 226 10.6.1 General 226 10.6.2 Stability of iron oxide suspensions 229 11 Adsorption of ions and molecules 235 11.1 General 235 11.2 Treatment of adsorption data 236 11.2.1 The Langmuir, Freundlich and Temkin isotherm equations 236 11.2.2 Surface complexation modeis 236 11.3 Anion adsorption 240 11.3.1 Modes of coordination 246 11.3.2 Selected inorganic anions 247 11.3.3 Organic anions and other organic Compounds 251 11.4 Cation adsorption 254 11.5 Ternary adsorption 261

Contents XI 11.6 Adsorption of gases 263 11.7 Photochemical reactions 264 12 Dissolution 267 12.1 Introduction 267 12.2 Dissolution reactions and mechanisms 268 12.2.1 Principles 268 12.2.2 Protonation 270 12.2.3 Complexation 272 12.2.4 Reduction 276 12.2.4.1 General 276 12.2.4.2 Examples of reductants 277 12.2.4.3 Photochemical reduction 281 12.2.4.4 Biological and other reduction reactions in natural environments. 285 12.2.5 Comparison of the three different types of dissolution reactions.. 286 12.3 Dissolution modeis 287 12.4 Individual iron oxides 291 12.4.1 Goethite 291 12.4.1.1 Unsubstituted goethite 291 12.4.1.2 Substituted goethite 297 12.4.1.3 Natural goethite and haematite 300 12.4.2 Lepidocrocite and akaganeite 301 12.4.3 Ferrihydrite 303 12.4.4 Haematite 303 12.4.5 Magnetite and maghemite 304 12.4.6 Comparison of different oxides 306 13 Formation 313 13.1 General 313 13.2 Formation in Fe 111 Systems 314 13.2.1 Hydrolysis reactions 314 13.2.2 Polynuclear species 317 13.2.3 Crystalline products formed in acid media 319 13.2.4 Mechanisms of formation 320 13.2.5 Transformation of ferrihydrite in neutral to alkaline media 323 13.2.6 Factors affecting the goethite-to-haematite ratio 327 13.2.7 Effect of foreign Compounds 329 13.2.7.1 General 329 13.2.7.2 Anions and neutral molecules in acid media 331 13.2.7.3 Anions and neutral molecules in alkaline media 332 13.2.7.4 Cations 335 13.3 Formation in aqueous Fe 11 Systems 339 13.3.1 General 339 13.3.2 Effect of ph 340 13.3.3 Effect of oxidation rate 343 13.3.4 Effect of foreign Compounds 344 13.4 Decomposition of Fe complexes 347

XII Contents 14 Transformations 349 14.1 Introduction 349 14.2 Thermal transformations 351 14.2.1 Dehydration and dehydroxylation 351 14.2.1.1 General 351 14.2.1.2 Goethite 352 14.2.1.3 Lepidocrocite 356 14.2.1.4 Akaganeite and schwertmannite 359 14.2.1.5 8-FeOOH and feroxyhyte 360 14.2.1.6 Ferrihydrite 361 14.2.2 Isochemical transformations 363 14.2.2.1 Maghemite to haematite 363 14.3 Via-solution transformations 364 14.3.1 Lepidocrocite to goethite/haematite 364 14.3.2 Akaganeite to goethite/haematite 365 14.3.3 Schwertmannite to goethite 367 14.3.4 Maghemite and goethite to haematite 368 14.4 Oxidative and reductive transformations 368 14.4.1 Oxidation of magnetite to maghemite or haematite 368 14.4.2 Reduction of Fe 111 oxides and oxyhydroxides to magnetite 370 14.4.3 Reduction of iron ores to iron 372 14.5 Interaction of iron oxides with other metal oxides and carbonates 373 15 Rocks and ores 375 15.1 Introduction 375 15.2 Magmatic and metamorphic rocks and ores 376 15.3 Sediments and sedimentary rocks 378 15.3.1 Red beds 379 15.3.2 Sedimentary iron ores 381 15.3.3 Other Sediments 385 15.3.4 Ferricretes and bauxites 386 15.4. Recent geological environments 387 15.4.1 Terrestrial surfaces 388 15.4.2 Spring and ground water 388 15.4.3 Deep sea 389 15.4.4 Continental shelves 389 15.4.5 Lakes and streams 389 15.4.6 Hydrothermal marine environments 390 15.4.7 Martian surface 391 16 Soils 395 16.1 Soils - a unique environment for iron oxide formation in terrestrial ecosystems 395 16.2 Iron oxide formation in soils 397 16.3 Iron oxide content and soil development 399 16.4 Occurrence and formation 399 16.4.1 Historical aspects 399

Contents 16.4.2 Morphology of appearance 400 16.4.3 The various oxides 401 16.4.3.1 Goethite 401 16.4.3.2 Haematite and its association with goethite 402 16.4.3.3 Lepidocrocite and feroxyhyte 406 16.4.3.4 Ferrihydrite 407 16.4.3.5 Magnetite and maghemite 409 16.4.3.6 Iron oxide mineralogy based on differential dissolution 411 16.5 Properties 411 16.5.1 Crystal morphology and size 411 16.5.2 Aluminium Substitution 415 16.6 Significance for soil properties 418 16.6.1 Colour 419 16.6.2 Charge and redox properties 421 16.6.3 Anion and cation binding 423 16.6.4 Aggregation 427 17 Organisms 433 17.1 General 433 17.2 Goethite and lepidocrocite 434 17.3 Ferrihydrite 435 17.4 Magnetite 438 17.4.1 Magnetite in Chirons' teeth 438 17.4.2 Magnetite in bacteria and other organisms 439 17.5 Biotically induced precipitation 441 18 Products of iron metal corrosion 445 18.1 General 445 18.2 Electrochemical corrosion 445 18.3 High temperature oxidation/corrosion in gases 448 18.4 Other types of corrosion 450 18.5 The products of corrosion 451 18.5.1 Iron oxides formed by electrochemical corrosion 453 18.5.2 Iron oxides in passive films 457 18.5.3 Thermally grown oxide films 458 18.6 Prevention of corrosion; protective oxide layers 460 19 Applications 463 19.1 Historical background 463 19.2 Pigments 464 19.2.1 Natural pigments 466 19.2.2 Synthetic pigments 469 19.3 Magnetic pigments 472 19.4 Ferrites 473 19.5 Catalysts 474 19.6 Other uses of iron oxides 477 19.6.1 Abrasives 477

XIV Contents 19.6.2 Thermite welding 477 19.6.3 Ferrofluids 477 19.6.4 Water purification and treatment of radioactive waste 478 19.6.5 Other applications 479 19.7 Raw material for the iron and steel industries 480 19.8 Undesirable iron oxides 480 20 Synthesis of iron oxides 483 20.1 Industrial synthesis 483 20.1.1 General 483 20.1.2 Solid State transformations 484 20.1.2.1 The copperas process 484 20.1.2.2 Other solid State processes 484 20.1.3 Reduction of organic Compounds 485 20.1.4 Precipitation from Fe 11 Solutions 486 20.1.5 Other processes 487 20.1.6 Magnetic pigments 488 20.2 Laboratory synthesis methods 488 20.2.1 Goethite 489 20.2.2 Lepidocrocite 490 20.2.3 Akaganeite 490 20.2.4 Schwertmannite 491 20.2.5 Feroxyhyte 491 20.2.6 Ferrihydrite 491 20.2.7 Haematite 492 20.2.8 Magnetite 493 20.2.9 Maghemite 493 20.2.10 Fe(OH) 2 494 20.2.11 Green rusts 494 20.2.12 Other Compounds 495 20.2.13 Production of iron oxides on subtrates and in confined spaces... 495 References 497 Index 559 Sources of figures and tables 571