Mössbauer Spectroscopy Applied to Inorganic Chemistry

Similar documents
Unit-1 THE SOLID STATE QUESTIONS VSA QUESTIONS (1 - MARK QUESTIONS)

Unit 1 The Solid State

ICP/ICP-MS Standards. High Purity Standards for ICP/ICP-MS

Hei Wong.

THE PERIODIC TABLE. Chapter 15

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons.

LANDOLT-BÖRNSTEIN. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie. Gesamtherausgabe: K.-H. Hellwege

(FeNaP) 2 O 9 Glasses Doped with Different TM Ions

Investigation of alumino-silicic reagent interaction with iron in water by Mössbauer spectroscopy

Preface...xix. CHAPTER 1 Overview CHAPTER 2 Rare Earth Production, Use and Price... 15

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

General Characteristics of Solid State

AP Chemistry A. Allan Chapter 18 - The Representative Elements: Groups 1A through 4A

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel

Optical and Photonic Glasses. Lecture 33. RE Doped Glasses III Decay Rates and Efficiency. Professor Rui Almeida

Douglas G. Brookins. Eh-pH Diagrams. for. Geochemistry. With 98 Figures and 61 Tables. Springer -Verlag Berlin Heidelberg New York London Paris Tokyo

Mössbauer and Magnetic Studies of Surfactant Mediated Ca-Mg Doped Ferrihydrite Nanoparticles

CARBON. Carbon is an element of symbol C, with atomic number 6 (this means it has 6. available to form covalent bonds (tetravalent).

Magnetic properties of hematite nanoparticles

Name Class Date. Does it have a crystalline structure? Minerals are crystals. Each mineral has a certain crystal structure that is always the same.

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

9:00 Intro to pyrite, collaboration Matt Law 9:20 Phase Field Crystal (PFC) modeling John Lowengrub 9:40 CVD thin film growth Nick Berry 9:55 XPS

Magnetostriction Theory and Applications of Magnetoelasticity

These metal centres interact through metallic bonding

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities)

Inorganic ScintiUators for Detector Systems

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

Fe doped Magnetic Nanodiamonds made by Ion

Dilute magnetic semiconductors. Iuliia Mikulska University of Nova Gorica Doctoral study, programme physics

Microstructure and Magnetic Properties of Iron Oxide Nanoparticles Prepared by Wet Chemical Method

The Structure of Materials

Overall Conclusions and Future Projections OVERALL CONCLUSIONS

Physical Science Chapter 19. Elements and Their Properties Quick Notes

International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS. PAPER 3 OCTOBER/NOVEMBER SESSION hour 15 minutes

A.M. MONDAY, 18 January minutes

A.M. MONDAY, 18 January minutes

THE PERIODIC TABLE AND THE METALLURGIST

Figure 16.31: Two-dimensional representations of (a) a quartz crystal and (b) a quartz glass.

By-Product Metals of Nickel Production. Environmental and Economics Committee Item 6 Lisbon 27 September 2011

Chapter 5-The Periodic Table

Material Evaporation Application Comment MP P / Optical films, Oxide films, Electrical contacts. Doping, Electrical contacts.

Structural and magnetic characterization of Nd-based Nd-Fe and Nd-Fe-Co-Al metastable alloys D I S S E R T A T I O N

Structure of silica glasses (Chapter 12)

Chemistry I. Final Examination Reference Materials

SUPPLEMENTARY INFORMATION

APPLICATIONS OF MÖSSBAUER SPECTROSCOPY IN INDUSTRY. Desmond C. Cook. Department of Physics, Old Dominion University, Norfolk, Virginia USA 23529

YIELD POINT PHENOMENA IN METALS AND ALLOYS

The University of Jordan School of Engineering Chemical Engineering Department

4. Where do the names of the elements come from? Some were named as substances before they were known to be elements. sulfur 16

Classification and Nomenclature of Minerals. Unit 3

id : class06 passwd: class06

AIM: SWBAT determine the location of metals, nonmetals and metalloids on the periodic table. What is another name for a column in the periodic table?

Chapter 1. Semiconductor Materials

samarskites and gadolinites

Solids SECTION Critical Thinking

Ferromagnetism in Fe-doped ZnO Nanocrystals: Experimental. and Theoretical investigations

Chemistry/Additional Science

This resource contains three different versions of the periodic table, including a blank one for colouring!

Electrical and Ionic Transport Properties. (1) Laboratoire de Recherches sur la Réactivité des Solides

Alloys and Solid Solutions

BINDING OF Fe2 + BY MAMMALIAN FERRITIN

Magnetic and Structural Properties of Fe Mn Al Alloys Produced by Mechanical Alloying

Sodium, Na. Gallium, Ga CHEMISTRY Topic #2: The Chemical Alphabet Fall 2017 Dr. Susan Findlay. Forms of Carbon

Moshe P. Pasternak a, Gregory Kh. Rozenberg a, Weiming M. Xu a & R. Dean Taylor b a School of Physics and Astronomy, Tel Aviv University, 69978, Tel

CHAPTER 3 Electronic Structure and the Periodic Law

Class XII Chapter 1 The Solid State Chemistry

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Crystal Structures of Interest

GCSE 4462/01 CHEMISTRY 1 FOUNDATION TIER SCIENCE A/CHEMISTRY. P.M. FRIDAY, 12 June hour JUN S

Chapter: The Periodic Table

PREPARATION OF VISIBLE-LIGHT-DRIVEN TIO 2 PHOTOCATALYST DOPED WITH IRON IN SUPERCRITICAL CARBON DIOXIDE

Chapter: The d and f Block Elements

7.3 Bonding in Metals > Chapter 7 Ionic and Metallic Bonding. 7.3 Bonding in Metals. 7.1 Ions 7.2 Ionic Bonds and Ionic Compounds

LN Introduction to Solid State Chemistry. Lecture Notes No. 9 DIFFUSION

Integration of Materials Knowledge into Design: Challenges and Opportunities. Surya R. Kalidindi. Funding: NSF, AFOSR-MURI, NIST

SCIENCE 5124/3, 5126/3 PAPER 3 Chemistry OCTOBER/NOVEMBER SESSION 2001

Hyperfine field distributions in disordered Mn 2 CoSn and Mn 2 NiSn Heusler alloys

Candidate Number. In addition to this paper you will require: a calculator. Number

RARE-EARTH DOPED PHOSPHATE GLASSES FOR NEODYMIUM LASER SYSTEMS POSSESSING A GREATLY ENHANCED PUMP POWER CONVERSION

Magnetic semiconductors

The content assessed by the examination papers and the type of questions is unchanged.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

ALE 20. Crystalline Solids, Unit Cells, Liquids and the Uniqueness of Water

CHAPTER 2: ATOMIC ARRANGEMENTS AND MINERALOGICAL STRUCTURES. Sarah Lambart

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

2 Identifying Minerals

Periodic Table of the Elements

CH141, Fall 2016 Practice Exam 1. Name: Part I. Circle your answers

X-Ray Diffraction by Macromolecules

Electrical conduction in ceramics

Chemistry/Science Unit C1: Chemistry in Our World

Abstract. High Performance Structures and Materials III 301

Chapter 6 Ion Implantation

V. Z. Abdrakhimov, I. V. Kovkov ANALYSIS OF PHASE STRUCTURE OF THE CERAMIC BRICK OF OVER FIVE HUNDRED YEARS

Table of Contents. Preface...

Summer Assignment Coversheet

Periodic Table of the Elements Current View MCHS Periodic Table of the Elements

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Energy and Packing. Materials and Packing

INORGANIC CHEMISTRY LANTHANIDES

Transcription:

Mössbauer Spectroscopy Applied to Inorganic Chemistry Volume 2 Edited by Gary J. Long University of Missouri Rolla Rolla, Missouri \ PLENUM PRESS NEW YORK AND LONDON

Chapter 1. Ion Implantation Mössbauer Effect Studies H. de Waard and L. Niesen 1. Introduction 1 2. The Ion Implantation Process 2 2.1. Energy Loss and Range of Implanted Ions 2 2.2. Radiation Damage Distribution 3 2.3. Microscopic Description of the Damage Cascade.. 3 2.4. Final Site of Implanted Impurities 5 2.5. Recovery Phenomena 8 3. Ion Implantation Techniques 9 3.1. Isotope Separators 10 3.2. Recoil Implantation 15 4. Implantation in Metals 19 4.1. Magnetic Hyperfine Fields of Impurities in Ferromagnetic Metals 20 4.2. Crystalline Electric Field on Rare Earth Impurities 23 4.3. Trapping of Intrinsic Point Defects 25 4.4. Clus\ers of Impurities and Light Interstitial Atoms 38 4.5. Aggregation Phenomena in Implanted Metals 47 4.6. Implantation-Induced Structural Changes 54 5. Implantation into Semiconductors 58 5.1. Introduction to Annealing Techniques 58 5.2. Tetravalent Semiconductors 59 5.3. III-V Compound Semiconductors 67 5.4. II-VI Compound Semiconductors 69 6. Implantation into Insulators 70 6.1. Implantation Studies in Diamond and Graphite... 70 6.2. Studies of Implantation in Chemical Compounds.. 72 6.3. Implantation in Frozen Gases and Liquids 77 7. Conclusions 79 Ref erences 80 IX

x Chapter 2. Contents Mössbauer Effect Studies of Microcrystalline Materials Steen M0rup 1. Introduction 89 2. Magnetic Properties of Microcrystals 89 2.1. Single-Domain Particles 90 2.2. Superparamagnetic Relaxation 91 2.3. Collective Magnetic Excitations 93 2.4. Applied Magnetic Fields 94 2.5. Superferromagnetism 95 2.6. Surface Effects 96 3. Applications 98 3.1. Biology 98 3.2. Catalysis ( 102 3.3. Ferrofluids 108 3.4. Terrestrial and Extraterrestrial Minerals 112 3.5. Magnetic Tapes 116 4. Conclusions 119 References 119 Chapter 3. Mössbauer Spectroscopy of Mixed-Valence Compounds Hellmut Eckert 1. Introduction 125 2. General Principles of Mössbauer Spectroscopy in Mixed- Valence Compounds 127 3. Valence Fluctuations in Intermetallic Compounds and Related Systems 130 3.1. Zero Interconfigurational Excitation Energies: Mixed-Valence Samarium Compounds 132 3.2. Finite Interconfigurational Excitation Energies: Mixed-Valence Europium Compounds 132 4. Mixed-Valence Oxide Systems 137 4.1. Simple Binary and Ternary Oxides 138 4.2. Magnetite, Fe 3 0 4 140 4.3. Cation Distribution and Charge Relaxation in Spineis 149 4.4. High Mixed-Valence Oxidation States in Perovskite Phases 153 4.5. Charge Transfer in Intercalation Compounds 153 5. Silicate, Borate, and Phosphate Minerals 157 5.1. The Fe(III):Fe(II) Ratio 158 5.2. Valence Distribution Studies 160

xi 5.3. Electron Exchange Properties 164 5.4. Borate and Phosphate Systems 168 6. Halide Systems 169 6.1. Simple Binary and Ternary Metal Halides 169 6.2. Metal Halide Intercalation Compounds 170 6.3. Iodine Charge Transfer Complexes, Polyiodides, and Iodine-Doped Conducting Polymers 173 7. Sulfides: Covalent Effects in Mixed-Valence Compounds.. 176 7.1. Ionic Mixed-Valence Sulfides 177 7.2. Covalent Sulfides with Intermediate Valences 180 8. Molecular Systems 184 8.1. Compounds with Unknown Molecular Structures.. 184 8.2. Valence States in Iron and Ruthenium Cyanides and Related Systems 185 8.3. Dynamic Disorder and Electron Transfer in Trinuclear Iron Acetate Complexes ; 186 8.4. Organometallic Systems 188 9. Conclusions 194 References 195 Chapter 4. Mössbauer Effect Studies on Low-Dimensional Magnetic Solids M.F. Thomas 1. Introduction 209 1.1. Magnetic Dimensionality 210 1.2. Magnetic Anisotropy 212 2. Spin Fluctuations in Antiferromagnets 215 2.1. Spin Fluctuations and Hyperfine Field 215 2.2. Effect of Applied Field on Hyperfine Field 217 2.3. Effect of Applied Field on Neel Temperature 224 3. Magnetic Ordering 228 3.1. Effect of Dimensionality and Anisotropy on the Existence of an Ordered Magnetic Phase 228 3.2. A Mössbauer Investigation of Ordering in Quasi-Two-Dimensional Heisenberg Systems 229 3.3. Critical Fluctuations 230 4. Nonlinear Excitations in One-Dimensional Magnetic Systems 231 4.1. Linear and Nonlinear Excitations 231 4.2. Observation of Nonlinear Excitations in Mössbauer Spectra 233

xü Contents 4.3. A Study of Nonlinear Excitations in RbFeCl 3-2H 2 0 234 5. Conclusions 239 References 239 Chapter 5. Chemical Influences on the Supertransferred Hyperfine Field Fernande Grandjean 1. Introduction 241 2. Theoretical Background _^. 242 3. Experimental Results 244 3.1. Ionic Compounds 244 3.2. Semimetallic Compounds 269 4. Conclusions 270 References 271 Chapter 6. Mössbauer Spectroscopy of Reduced Ferritin R.B. Frankel, G.C. Papaefthymiou, and G.D. Watt 1. Introduction 273 2. Mössbauer Spectroscopy of Oxidized Ferritin 274 3. Reduction of Ferritin 276 4. Mössbauer Spectroscopy of Reduced Ferritin 278 5. Binding of Fe 2+ by Ferritin 282 6. Conclusions 284 References 287 Chapter 7. Mössbauer Effect Studies of Metallic Glasses Geoffrey Longworth 1. Introduction 289 2. Historical Background 290 2.1. Definition and Classification of Metallic Glasses... 290 2.2. Methods of Preparation 291 2.3. Properties and Uses 292 3. Analysis of Spectra 294 3.1. Survey of Methods 294 3.2. Use of Discrete Hyperfine Fields 296 3.3. Use of Analytical Functions 296 3.4. Use of Fourier Techniques 297 3.5. Use of Step Functions 298

xiii 3.6. Influence of Magnetic Texture 300 3.7. Range of Validity of P(H) Calculations 302 3.8. Correlations between Hyperfine Parameters 303 3.9. Distribution of Quadrupole Splittings 306 4. Mössbauer Measurements in Metal-Metalloid Glasses 307 4.1. Shape of P(H) Distribution 307 4.2. Temperature Variation of Hyperfine Field 308 4.3. Magnetic Ordering 311 4.4. Magnetic Texture 315 4.5. Crystallization 316 4.6. Local Structure 319 5. Mössbauer Measurements in Metal-Metal Glasses 325 5.1. Isomer Shifts 325 5.2. Magnetic Properties 327 5.3. Iron-Zirconium Glasses 329 5.4. Hydrogenation of Metallic Glasses 330 5.5. Magnetic Structures in Metallic Glasses 330 5.6. Magnetic Properties of Fe-Y Glasses 331 5.7. Magnetic Structures in Dy-TM Glasses 332 5.8. Magnetic Structures in Amorphous Europium Alloys 333 6. Summary 335 Ref erences 337 Chapter 8. Tellurium-125 Mössbauer Spectroscopy in the Characterization of Tellurium Compounds Frank J. Berry 1. Introduction 343 2. Tellurium-125 Mössbauer Spectroscopy 343 2.1. Sources 344 2.2. Detectors 345 2.3. Other Considerations 345 3. Metallic Phases and Inorganic Tellurides 348 3.1. Tellurium 348 3.2. Inorganic Tellurides 350 4. Inorganic Compounds 354 4.1. Halides 354 4.2. Oxides and Related Compounds 358 5. Organic Compounds 360 5.1. Organic Tellurides and Ditellurides 360 5.2. Organotellurium(IV) Halides 364

xiv Contents 5.3. Additivity Model for the Quadrupole Splittings... 373 5.4. Heterocyclic Tellurium Compounds 376 6. Other Compounds 379 6.1. Tellurium Ligands 379 6.2. Compounds with Tellurium to Metal Bonds 381 6.3. Tellurium-Containing Charge Transfer Complexes 383 6.4. Tellurium Complexes with Thiourea and Related Compounds 384 7. Iodine-125 Emission Mössbauer Studies 384 8. Conclusions 385 References 386 Chapter 9. Mössbauer Spectroscopy with the lodine Isotopes R.V. Parish 1. Introduction 391 2. Interpretation of Data 396 3. Brief Overview of Data 397 4. IonicHalides 401 5. Covalent Iodides 404 6. Two-Coordinate Iodine(I) 412 7. Polyiodides 416 8. The Di-and Tetraiodine Cations 420 9. Iodine(III) 421 10. Iodine(V) 423 11. Conclusions 424 References 425 Chapter 10. Mössbauer Spectroscopic Studies of Compounds of the 5d Transition Metals Alan F. Williams 1. Introduction 429 2. Nuclear Properties and Practical Details 430 2.1. Hafnium 431 2.2. Tantalum 433 2.3. Tungsten 435 2.4. Rhenium 437 2.5. Osmium 437 2.6. Iridium 438 2.7. Platinum 441 2.8. Gold 441 2.9. Mercury 442

xv 2.10. Summary 443 3. Trends in Hyperfine Interactions 443 3.1. IsomerShifts 444 3.2. Quadrupole Coupling 450 4. Survey of Results for Individual Elements 454 4.1. Hafnium Compounds 455 4.2. Tantalum Compounds 455 4.3. Tungsten Compounds 457 4.4. Osmium Compounds 461 4.5. Iridium Compounds 463 4.6. Platinum Compounds 472 4.7. Gold Compounds 473 4.8. Mercury Compounds 474 5. Conclusions 474 References 475 Chapter 11. Mössbauer Effect Studies of the Actinides B.D. Dunlap 1. Introduction 481 2. Methodology 482 3. Hyperfine Parameters 487 4. Halides 491 5. Actinyl Compounds 494 6. Organometallics 500 7. Chalcogenides 501 8. Oxides 502 9. Conclusions 503 References 504 Chapter 12. Iron Oxides and Oxyhydroxides Enver Murad and James H. Johnston 1. Introduction 507 2. Structures, Magnetic Properties, and Mössbauer Spectra of Individual Oxides 512 2.1. Stoichiometric Spineis 512 2.2. Nonstoichiometric Iron Oxides 517 2.3. Rhombohedral Iron Oxides 523 2.4. FeOOH Polymorphs 531 2.5. Ferrihydrite 542 2.6. Hydrolysis Polymers 547 2.7. GreenRust 550

3. Applications 556 3.1. Iron Oxides in the Marine and Limnic Environments 556 3.2. Soils 563 3.3. Meteorites 568 3.4. Anthropogenic Artifacts 570 References 574 Author Index 583 Subj ect Index 601