Managing Beef Cow Efficiency 1

Similar documents
Relationship of Cow Size to Nutrient Requirements and Production Management Issues 1

Phase-Feeding the Beef Herd for Improved Feed Utilization 1

Nutrient Requirements of Beef Cattle

Relationship of Cow Size, Cow Requirements, and Production Issues

Improve Reproductive Performance in Your Cow Herd Using Calf Removal 1

Managing Body Condition to Improve Reproductive Efficiency in Beef Cows

Relationship of Cow Size, Cow Requirements, and Production Issues

Creep Grazing for Suckling Calves A Pasture Management Practice 1

Animal and Forage Interactions in Beef Systems

Managing Body Condition Score to Improve Reproductive Efficiency in Postpartum Beef Cows.

Relationship of Cow Size, Requirements, and Production Issues. Dr. Matt Hersom UF/IFAS Department of Animal Sciences

Body Condition: Implications for Managing Beef Cows

Section 5: Production Management

Time of Weaning and Cow Condition

Long Calving Seasons. Problems and Solutions

EFFECTS OF EARLY-WEANING AND BODY CONDITION SCORE (BCS) AT CALVING ON PERFORMANCE OF SPRING CALVING COWS

Proceedings, The Range Beef Cow Symposium XX December 11, 12 and 13, 2007 Fort Collins, Colorado

Effect of Body Condition on Rebreeding 1

Comparison of Weaning System on Cow-Calf Performance and Intake

3-Step Body Condition Scoring (BCS) Guide

Real-Life Implementation of Controlled Breeding Season

Reproductive Management of Commercial Beef Cows. Ted G. Dyer, Extension Animal Scientist

What Hay Is Right For Your Livestock. Tom Gallagher Capital Area Agriculture Horticulture Program Livestock Specialist

The Modern Range Cow has Greater Nutrient Demand than the Old Style Range Cow

Matching Cow Type to the Nutritional Environment

Improving the Value of Cull Cows by Feeding Prior to Slaughter 1

Beef Cattle Management Update

Effects of Feeding Perennial Peanut Hay on Growth, Development, Attainment of Puberty, and Fertility in Beef Replacement Heifers

Crossbreeding Systems in Beef Cattle 1

Practices to Improve Beef Cattle Efficiency

Balancing Forage Demand with Forage Supply

Matching Calving Date With Forage Nutrients: Production and Economic Impacts

Florida Cow-Calf and Stocker Beef Safety and Quality Assurance Handbook: Record Keeping for Beef Quality Assurance 1

Body Condition, Nutrition and Reproduction of Beef Cows

THE 30-DAY GAME CHANGER: IMPROVING REPRODUCTIVE EFFICIENCY AND PROFITABILITY OF BEEF HERDS. G. Cliff Lamb

Cow Condition and Reproductive Performance

THE EFFECTS OF GRAZING SYSTEM AND EARLY WEANING ON PRODUCTIVITY OF FALL CALVING COWS IN OKLAHOMA

Comparison of target breeding weight and breeding date for replacement beef heifers and effects on subsequent reproduction and calf performance 1

REPLACEMENT HEIFER DEVELOPMENT & NUTRITION

Beef Cattle Handbook

Complexity in the ranching business makes it difficult

Proceedings, State of Beef Conference November 7 and 8, 2018, North Platte, Nebraska COW SIZE AND COWHERD EFFICIENCY. Introduction

Effects of Feeding Citrus Pulp Supplements on the Performance of Calves in a Preconditioning Program

Selection and Development of Heifers

Nutrition at Early Stages of Life Determines the Future Growth and Reproductive Performance of Beef Calves 1

Effects of Supplemental Undegradable Protein on the Performance of Fall-Calving Cows Grazing Dormant Native Range

Fall Calving in North Dakota By Brian Kreft

MATCHING FORAGES WITH LIVESTOCK NEEDS

Bath County Extension Agent for Agriculture and Natural Resources. January American Forage and Grassland Meeting Louisville

Details. Note: This lesson plan addresses cow/calf operations. See following lesson plans for stockers and dairy operations.

Proceedings, The Range Beef Cow Symposium XVIII December 9, 10 and 11, 2003, Mitchell, Nebraska

TIMELY INFORMATION. DAERS 08-4 August Making Adjustments To The Cattle Herd Due To Higher Production Costs

Effects of a High-linoleic Sunflower Seed Supplement on Performance and Reproduction of Primiparous Beef Cows and their Calves

FEED EFFICIENCY IN THE RANGE BEEF COW: WHAT SHOULD WE BE LOOKING AT?

UTILIZATION OF FIELD PEA AND SUNFLOWER MEAL AS DIETARY SUPPLEMENTS FOR BEEF COWS

Replacement Heifer Development: Part II - Nutrition

Dairy Replacement Programs: Costs & Analysis 3 rd Quarter 2012

Cow Herd Decisions for Future Tough Times

IMPACTS OF ESTROUS SYNCHRONIZATION ON COWHERD PERFORMANCE

Increase Profit: Feeding Cows by Body Condition and Production Potential

Incorporating Growth Performance with Youth Market Hog Shows 1

Nutrition (young/old) - Cattle Score (male/female)

Classes of Livestock. Numbers to Remember. Crude Protein. Nutrition for the Cow-calf. Factors influencing Requirements

co-products ethanol for cattle Distillers Grains for Beef Cows

Culling the Commercial Cow Herd: BIF Fact Sheet

Calculating Dry Matter Intake from Pasture for Ruminants

Cow/calf Management Winter and Spring

Body Condition Scoring Beef Cows:

Effects of Sulfates in Water on Performance of Cow-Calf Pairs

MANAGING THE REPLACEMENT HERD

Bull Management for Commercial Producers: Nutrition

Using EPDs in a Commercial Herd

REDUCED AGE AT FIRST CALVING: EFFECTS ON LIFETIME PRODUCTION, LONGEVITY, AND PROFITABILITY

HERD REPLACEMENTS: HEIFERS OR OPEN COWS?

EC Body Condition Scoring Beef Cows: A Tool for Managing the Nutrition Program for Beef Herds

Webster County Diversified Agriculture Conference

OSU CowCulator. A Tool for Evaluating Beef Cow Diets. Instructions for Use 1. Oregon State University. Beef Cattle Sciences. Introduction BEEF108

RANGE COW NUTRITION MANAGEMENT EVALUATOR

REPRODUCTION AND BREEDING Effects of Body Condition and Energy Intake on Reproduction of Beef Cows

Guide to Body Condition Scoring Beef Cows and Bulls

What does it Take to Start an AI Program? G. C. Lamb, Professor 1

Beef Cattle Energetics

Impact of Selection for Improved Feed Efficiency. Phillip Lancaster UF/IFAS Range Cattle Research and Education Center

Reproduction is the single most important factor associated with the economic success of the cow/calf producer

Effects of Feeding Whole Cottonseed on Calf Performance During Preconditioning

2013 Georgia Grazing School:

BREEDING YEARLING HEIFERS

Agricultural Science Past Exam Questions Animal Production Higher Level

Livestock Enterprise. Budgets for Iowa 2016 File B1-21. Ag Decision Maker

Developing a Forage Management Strategy to Maximize Fall and Winter Grazing

More Feed = More Milk. Dry Matter Intake Used To Express Feed. Intake ASC-135. Donna M. Amaral-Phillips, Roger W. Hemken, and William L.

Heifer Management to Make Successful Cows

6/29/2018. Trends and Opportunities in Calf and Heifer Rearing Costs

Effects of Creep Supplementation While Grazing Improved Irrigated Pastures

Increasing Value Captured From the Land Natural Resources

Backgrounding Calves on Co-products

Telephone: (706) Animal and Dairy Science Department Rhodes Center for Animal and Dairy Science

Integrating the Use of Spring- and Fall-Calving Beef Cows in a Year-round Grazing System (A Progress Report)

Designing Heifer Systems That Work on Your Farm

NUTRITIONAL IINFLUENCES ON REPRODUCTION. Scott Lake. Department of Animal Science University of Wyoming, Laramie, WY

Transcription:

AN233 T. D. Maddock, G. C. Lamb, and D. D. Henry 2 Introduction Optimizing the efficiency of beef cattle production can be complicated because of the many variables going into the equations that attempt to effectively represent breeding herd efficiency. Efficiency basically measures the inputs needed to create a desired output. In the case of a beef breeding herd, the output is generally regarded as the pounds of calf marketed, whereas the inputs are resources such as feed and labor. Thus, the goal of producers should be to attain as many pounds of calf to market utilizing the least amount of resources possible. The two factors that contribute to beef cow efficiency are reproductive efficiency and feed efficiency. Beef herds that reproduce efficiently will have more pregnant cows, which will result in more calves and thus more pounds available to be marketed. Feed is the largest expense in beef production; therefore, cows that have greater feed efficiency will produce more pounds of saleable calf at less cost. There are several factors that will affect both reproductive efficiency and feed efficiency in cows, and most of these are related to nutritional demands, diet, and body condition. The mature beef cow will prioritize dietary energy use as follows (Short et al. 990):. Basal metabolism (feed for maintenance) 2. Physical activity (walking to water, grazing, etc.) 3. Growth (especially in younger cows) 4. Supporting energy reserves (body condition) 5. Maintenance of pregnancy 6. Milk production 7. Adding to energy reserves (measure by body condition score change) 8. Estrous cycle and initiating pregnancy 9. Storing excess energy The dietary requirements of the cow are dependent upon maintenance needs, stage of pregnancy and lactation, and body condition score. Reproductive performance is directly related to meeting these nutritional needs, or the cow may not cycle on time, resulting in cows that become pregnant later in the breeding season or cows that fail to become pregnant at all. In order to successfully manage beef cow efficiency, it is important to consider several key points. Cow Weight Cow weight is a very important consideration when discussing beef cow efficiency. This is covered extensively in the EDIS publication Relationship of Cow Size to Nutrient Requirements and Production Management Issues (http:// edis.ifas.ufl.edu/an226) (Hersom 2009). Briefly, as a cow s weight increases, the amount of feed she must consume for. This document is AN233, one of a series of the Department of Animal Sciences, UF/IFAS Extension. Original publication date February 200. Revised April 203. Reviewed May 206. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. T. D. Maddock, former post-doctoral research associate; G. C. Lamb, professor; and D. D. Henry, graduate research assistant; Department of Animal Sciences, North Florida Research and Education Center, Marianna, FL. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county s UF/IFAS Extension office. U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension.

maintenance also increases. If she is unable to eat enough for maintenance, she will start losing weight, usually in the form of body condition. At this point, feed supplementation is necessary or reproduction can suffer. Either scenario results in decreased profit. In a mature cow, for every 00 pounds of additional body weight 500 550 lbs of additional dry matter (DM) intake per year is required. Table illustrates daily DM intake requirements based on stage of production along with the estimated yearly DM intake totals compared to a 200-pound cow. Using these numbers and making some assumptions, annual feed cost differences may be estimated. Assume that: ) hay is valued at $40 per ton at 88% DM; 2) supplement is valued at $260 per ton at 90% DM; and, 3) mineral supplements are valued at $830 per ton. In addition, assume that over the course of the year the as-fed diet will consist of 90% hay and 0% supplement and cows will ingest 4 ounces of mineral mix per day. This example demonstrates differences in the cost of feed among differing cow sizes. realized a value of $50 at weaning compared to $450 for calves from herd 2. Figure. Cow body weights and calf weaning weights in two herds at the University of Florida North Florida Research and Education Center, in Marianna, FL. Feed, in this example, would cost $52 per ton and contain 88% DM. This calculates to $72.73 per ton of DM or $0.086 per pound. Mineral adds $0. per day to the cost. The yearly feed costs for cows of differing weights are shown in Table 2. As previously stated, feed costs are the largest variable cost in beef production. Table 2 illustrates that as cow size increases, feed costs do as well. In this example, the 400-pound cow had 0% greater feed costs than the 200-pound cow. While the $36 difference may seem inconsequential, it becomes more significant across 00 or 300 cows, and could be the difference in a cow returning a profit, breaking even, or losing money for the cattle enterprise. In order to make up for the increase in feed costs, larger cows must return more income, either by being more reproductively efficient or by weaning heavier calves. In times of abundant feed, larger cows generally will return more pounds of calf at weaning. In times of limited feed supplies, however, such as a drought, the larger cow can actually wean a smaller calf compared to her lighter-weight contemporaries. This was demonstrated in two herds at the University of Florida North Florida Research and Education Center in Marianna (Figure ). Herd had cows that weighed approximately 00 lbs less than herd 2, yet the weaning weights of herd were greater than herd 2. In addition, the percentage of calf weaned compared to the weight of the calf s dam (weaning efficiency) was greater in herd than herd 2. The net result was that calves from herd Figure 2. Weaning efficiency (percentage of calf weaned compared to weight of the dam at weaning) and value at weaning of calves weaned in two herds at the University of Florida North Florida Research and Education Center, in Marianna, FL. It is possible that the nutritional requirements of both cows and calves were not being met with the available forage, and reductions in milk production may have adversely affected calf performance, more so in the larger cows. These data demonstrate that larger cows do not always wean heavier calves, especially in times of limited nutritional resources. Based on earlier assumptions, the heavier cows at this location were certainly less efficient than their lighter-weight contemporaries. Milking Potential Milk is an important consideration in evaluating the efficiency of the beef cow. Milk production is highly 2

correlated to levels of feed intake. Table 3 reflects DM intake requirements for cows of different milking levels according to the NRC (2000). Based on the data presented in Table 3, a high milk producing cow will need about 703 pounds more DM per year than the low producing cow. Many producers will select for greater milk when choosing herd sires and replacement heifers in order to maximize nursing calf gains. Early calf growth is affected by cow milk production (Clutter and Nielson 987), but Ansotegui et al. (99) found that calf gain after day 60 of lactation was as much a function of calf forage intake as dam s milk production. If available feed is not adequate to meet lactation requirements, the cow will begin to use body condition to meet her energy needs. The result can be sacrificing future reproductive activity and, ultimately, stopping lactation, which can have an adverse effect on calf performance. Consequently, producers who select for high milk production should have abundant feed resources available. Using the data presented in Table 3, a feed cost example can be calculated. Using the same feed costs presented earlier (90% hay and 0% supplement) that was valued at $68.03/ ton of DM, the high milking cows feed would cost about $24 more per year than the lower milk producing cow. Body Condition Score Body condition score (BCS) may be the most underutilized tool in the beef producers toolbox (Kunkle et al., 997). Assessing the herd average BCS relative to stage of production and feed availability gives producers useful information about how to nutritionally manage the beef breeding herd. Both reproductive efficiency and lactation are affected by the cow s body condition. Cows that are thin at calving can suffer due to the subsequent demands of lactation. This can lead to reduced milk production and will often extend time to rebreeding or can result in a failure to become pregnant. Conversely, a cow herd that has excessive BCS may have access to an abundance of feed, and the producer may be able to better manage feed resources, reducing feed costs. Table 4 presents the results of a study where spring-calving cows were assessed for BCS immediately prior to calving and the percent of those cows that cycled during the subsequent breeding season. The data is broken into early and late calving groups. These data simply illustrate the influence of body condition on post-calving reproductive performance. From an efficiency of production standpoint, it might be best to change BCS in cows during the period immediately following weaning. This stage of production is when cows are at the lowest plane of nutritional need, and will more easily gain body condition and can do so using lower quality feedstuffs. Producers who target an average BCS of 5 6 at calving should assess BCS at weaning and make the necessary adjustments to the diet at that time to bring cows to the desired BCS at least 2 months prior to calving. Trying to increase body condition in cows during late pregnancy requires a diet higher in energy and will be more costly. According to the NRC (2000), in order for a 200-pound, non-lactating cow in early- to mid-pregnancy to gain one body condition score in 60 days, that cow will have to consume daily 2.8 pounds DM, 2.6 pounds (58%) TDN and.38 pounds (6.3%) of CP (DM basis). Conversely, to increase one BCS in 60 days during late pregnancy, the same cow will require 23.5 pounds DM, 3.9 pounds TDN (59%) and.74 pounds CP (7.4%; DM basis). Conclusions Optimizing long-term beef cow-herd production efficiency is important to profitability in any beef cattle operation. In Florida, where feed and forage availability can be variable, matching cow size and milk to the available feed resources is important to the profitability of the beef enterprise. Understanding the importance of BCS in relation to stage of production could potentially result in more pregnant cows, return more pounds of calf at weaning, and lower feed costs. Increasing long-term beef cow-herd production efficiency will result in more profitable years and increase the value and sustainability of the beef cow herd. Literature Cited Ansotegui, R.P., K.M. Havstad, J.D. Wallace, and D.M. Hallford. 99. Effects of milk intake on forage intake and performance of suckling range calves. J. Anim. Sci. 69:899-904. Clutter, A.C. and M.K. Nielsen. 987. Effect of level of beef cow milk production on pre- and post-weaning calf growth. J. Anim. Sci. 64:33-322. Hersom, M.J., 2009. Relationship of Cow Size to Nutrient Requirements and Production Management Issues. UF/ IFAS EDIS Pub. AN226. Kunkle, W.E., R.S. Sand, and D.O. Rae. 997. Effects of body condition of productivity in beef cattle. UF/IFAS EDIS Pub. SP44. 3

NRC. 2000. Nutrient Requirements of Beef Cattle (updated 7th ed.). National Academy Press, Washington, D.C. Pruitt, R.J., and P.A. Momont. 988. Effects of body condition on reproductive performance of range beef cows. SD Beef Rpt. CATTLE 88-. Department of Animal Sciences, South Dakota State University, Brookings. Short, R.E., R.A. Bellows, R.B. Staigmiller, J.G. Berardinelli, and E.E. Custer. 990. Physiological mechanisms controlling anestrus and infertility in postpartum beef cattle. J. Anim. Sci. 68:799-86. Related Literature Hersom, M.J., 2007. Basic nutrient requirements of beef cows. UF/IFAS EDIS Pub. AN90. Kunkle, W.E., J. Fletcher, and D. Mayo. 2007. Florida cow-calf management, 2nd edition Feeding the cow herd. UF-IFAS EDIS Pub. AN7. 4

Table. Daily dry matter intakes (lbs) of beef cows of varying mature weights Stage of Production Lactation Pregnancy Yearly Total Compared to 200-lb cow Cow Weight Early Late Early Mid Late 000 24.8 23.5 2.0 2.0 8249-095 200 27.6 26.5 24. 24.2 9344 0 400 30.4 29.4 27.0 27. 0403 059 600 33. 32.2 29.9 30.0 425 208 Adapted from NRC (2000) Table 2. Comparisons of yearly feed costs between cows of different weights Cow Weight (pounds) Intake (DM) Yearly Cost Compared to 200-lb cow 000 8249 752.57-94.57 200 9344 847.4 0 400 0403 938.6 9.47 600 425 026.87 79.73 Assumes a feed that is 90% hay at $40/ton, 0% supplement at $260/ton, and 4 ounces of mineral/day at $830/ton. Table 3. Daily DM intake (lb/day) of cows across varying milk production levels Milk (pounds/day) Stage of lactation Early Late Yearly difference from 20 0 26.5 26.5-38 20 29.0 27.9 0 30 3.5 29.0 322 Based on NRC (2000) Table 4. Effect of body condition score on percent of cows cycling in the subsequent breeding season BCS in March (prior to calving) Early Calving Cows Percent of Cows Cycling Late Calving Cows May June July May June July < 4 0.0 28.2 70.5 0.0 0.0 44.7 5 7.8 43.5 85.6 0.0 26.0 74.4 6 4.9 77.5 97.5 0.0 35.3 98.5 > 7 45.9 76.6 94.7 0.0 65.8 99. Adapted from Pruitt and Momont, 988 5