Materials for High-Reliability Applications: All IPC-4101-Grouped Materials are not Created Equal

Similar documents
Yash Sutariya President

An Assessment of the Impact of Lead-Free Assembly Processes on Base Material and PCB Reliability

New Developments in PCB Laminates. Dean Hattula, John Coonrod Rogers Corporation Advanced Circuit Materials Division

Interconnection Evaluation Technology for Printed Wiring Boards

ICDs (InterConnect Defects) What are they? Where do they come from? How can we make them go away? Doug Trobough Suixin Zhang

Reliable Plated Through-Via Design and Fabrication. Cheryl Tulkoff DfR Solutions

Low CTE / High Tg FR-4 with High Heat Resistance

VIA RELIABILITY A HOLISTIC PROCESS APPROACH

A Novel Material for High Layer Count and High Reliability Printed Circuit Boards

Highly Accelerated Thermal Shock Reliability Testing

Via Life vs. Temperature Stress Analysis of Interconnect Stress Test

Corrective Action: 1. Determine type of nailhead, single sided nailheading or bidirectional

The latest activities related to the passive components in JAXA

PWB Dielectric Substrates for Lead-Free Electronics Manufacturing

Question: Are RO4000 materials compatible with lead-free processes? Answer:

Multek s lead free compatible and compliant material selection February 01, 2006

IPC-6012DA with Amendment 1. Automotive Applications Addendum to IPC-6012D Qualification and Performance Specification for Rigid Printed Boards

Interconnection Reliability of HDI Printed Wiring Boards

How Printed Circuit Boards are Made. Todd Henninger Field Applications Engineer Midwest Region

White Paper. Discussion on Cracking/Separation in Filled Vias. By: Nathan Blattau, PhD

Verifying The Reliability Of Connections In HDI PWBs

Lead Free Assembly: A Practical Tool For Laminate Materials Selection

RO4835T Core/RO4450T Bonding Layers Multi-Layer Board Processing Guidelines

Building HDI Structures using Thin Films and Low Temperature Sintering Paste

High Frequency Circuit Materials Attributes John Coonrod, Rogers Corporation

Mastering the Tolerances Required by New PCB Designs. Brad Hammack Multek Doumen, China

: GA-170-LL/ GA-170B-LL

Conductive Paste-Based Interconnection Technology for High Performance Probe Card

Electroplated Copper Filling of Through Holes on Varying Substrate Thickness

How to select PCB materials for highfrequency

Non-Functional Pads (NFPs)

IMPACT OF MICROVIA-IN-PAD DESIGN ON VOID FORMATION

MACDERMID ENTHONE ELECTRONICS SOLUTIONS BLACKHOLE/ECLIPSE

BASE MATERIALS Through Assembly

FABRICATING HIGH CURRENT, HEAVY COPPER PCBS

Modeling Printed Circuit Boards with Sherlock 3.2

ALTIUMLIVE 2018: NAVIGATING THE COMPLEXITIES OF PCB MATERIAL SELECTION

: GA-HF-14/ GA-HFB-14

Lead-Free HASL: Balancing Benefits and Risks for IBM Server and Storage Hardware

Flexible PCB Plating Through Hole Considerations, Experiences and Solutions

Component Palladium Lead Finish - Specification Approved by Executive Board 1997-xx-xx August 22 Version

Flex and Rigid-Flex Printed Circuit Design

Axiom Electronics LLC

No Process Guidelines. Laminate R-5775 Prepreg R High Speed, Low Loss Multi-layer Materials

UL PCB Recognition what is it & why do you need to know about it

Long Term Thermal Reliability of Printed Circuit Board Materials

Corporate Presentation

: GA-170-LE/ GA-170B-LE

LEAD-FREE ASSEMBLY COMPATIBLE PWB FABRICATION AND ASSEMBLY PROCESSING GUIDELINES.

Design and Construction Affects on PWB Reliability Paul Reid PWB Interconnect Solutions

B-IS400 IS420/3 IS400 IS420 PCL370HR. Temperature resistant mid and high T g - base materials with low z-axis expansion CAF ENHANCED

Laminates And Lead-Free Soldering

No Process Guidelines. Laminate R-1755C Prepreg R-1650C. High Reliability Glass Epoxy Multi-layer Materials

Sherlock 4.0 and Printed Circuit Boards

ThunderClad 2. TU-883 HF Very Low Loss Material. Laminates & Prepregs Mass Lamination Service Insulated Metal Substrate Materials

Qualification and Performance Specification for Flexible Printed Boards

12 Technical Paper. Key words: PPR electroplating, via fill, thermal management, through hole fill

The Effects of Board Design on Electroplated Copper Filled Thermal Vias for Heat Management

Gold Circuit Electronics

U.S. EPA-IPC Design for the Environment Printed Wiring Board Project Making Holes Conductive Performance Testing Results

IBM Laminate Study Group

Qualification and Performance Specification for High Frequency (Microwave) Printed Boards

ALTIUMLIVE 2018: FLEX: SOMETHING NEW FOR EVERYONE

Via Formation Process for Smooth Copper Wiring on Insulation Layer with Adhesion Layer

PCB Production Process HOW TO PRODUCE A PRINTED CIRCUIT BOARD

No Process Guidelines. Laminate R-5785 Prepreg R High Speed, Low Loss Multi-layer Materials

No Process Guidelines. Laminate R-5725 Prepreg R High Speed, Low Loss Multi-layer Materials

Characterizing the Lead-Free Impact on PCB Pad Craters

ELECTROPLATED COPPER FILLING OF THROUGH HOLES INFLUENCE OF HOLE GEOMETRY

A New Cyclic TMA Test Protocol for Evaluation of Electronic & Dielectric Materials

Welcome to Streamline Circuits Lunch & Learn. Design for Reliability & Cost Reduction of Advanced Rigid-Flex/Flex PCB Technology

PERFORMANCE SPECIFICATION SHEET

PRODUCT ASSURRANCE TESTING TO CORRELATE QUALITY DATA WITH PRODUCT PERFORMANCE

Mechanical Reliability A New Method to Forecast Drop Shock Performance

Passive component embedding in printed circuit boards for space applications

The Anatomy of a PCB SINGLE-SIDED BOARD

PCB Fabrication Specification

I-Speed Processing Guide

inemi BFR-Free Free PCB Material Evaluation Project Chair : Stephen Tisdale Intel Corporation SMTAi Presentation August 21, 2008

Designing With High-Density BGA Packages for Altera Devices. Introduction. Overview of BGA Packages

PRELIMINARY. RO4533, RO4534, AND RO4535 Laminates. Preliminary Data Sheet Antenna Grade Laminates

White Paper 0.3mm Pitch Chip Scale Packages: Changes and Challenges

INEMI Packaging Substrate Workshop, Toyama, Japan, 2014 Challenges of Organic Substrates from EMS Perspective Weifeng Liu, Ph. D.

Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview

Low Loss Laminate Trends and Performance - Taiwan Supply Perspective. IBM Symposium GCE November 2011

Future HDI An HDPUG project Proposal

Low Dielectric Constant 3.9. RoHS/WEEE compliant. SMT Board Designs using LCCC s or other low expansion chip carriers (See Figure 1)

IPC-2221B APPENDIX A Version 2.0 June 2018

Qualification of Thin Form Factor PWBs for Handset Assembly

PRINTED WIRING BOARDS, HIGH RELIABILITY, SPACE USE, GENERAL SPECIFICATION FOR

ATS Document Cover Page

Conductive Anodic Filament Growth Failure

FR402 Processing Guide

Stackup Planning, Part 1

METRIC The documentation and process conversion measures necessary to comply with this revision shall be completed by: 2 December 2017.

Company Overview Markets Products- Capabilities

Transcription:

they have arrived! f e a t u r e n e w a d v a n c e d p c b m a t e r i a l s Materials for High-Reliability Applications: All IPC-4101-Grouped Materials are not Created Equal By Yash Sutariya Saturn Electronics Corporation/ Saturn Flex Systems, Inc. summary When discussing high-reliability materials for printed circuit board applications, the conversation typically gears towards opinions of reliability: is one material system versus another better? Other times, it s materials properties that are stressed to imply reliability. A summary table of three commonly called out standards is provided in Figure 1 for reference. Once stacked next to each other, it s easy to see why one could infer reliability via higher-level IPC categories and/or underlying materials properties such as T g or T d. We argue, however, that these characteristics are almost meaningless when taken in a vacuum. They are merely indicators of the raw material, not the finished product, when it comes to reliability. Materials contribute only one part of a combination of systems that dictate the reliability of a product. In order to test the system, we have to undergo reliability testing. Materials Callouts One commonly cited document is the IPC-4101C Specification for Base Materials for Rigid and Multilayer Printed Boards. This standard creates slash sheets, or silos, to combine like materials based on meeting product or performance characteristics such as resin type or a minimum Glass Transition (T g ) rating. In recent years, new slash sheets have been created to address materials capable for lead-free assembly that incorporates Glass Decomposition Temperature (T d ). For purposes of this discussion, we will focus on these lead-free capable materials. Test Methods Thanks to our industrious friends on the other side of the Great Wall, we ve been pushed to diversify our customer base over the past decade away from our historical automotive supply base. This allowed us to experience a broad array of what people like to rely on for reliability testing. Industries we serve as a significant part of our business include Automotive, Military/Aerospace, Industrial Controls and Telecommunications. Typically, the most intensive tests focus on via hole wall reliability. We ll review a few of the common ones below. 22 The PCB Magazine June 2011

Materials contribute only one part of a combination of systems that dictate the reliability of a product. Figure 1: IPC-4101 Summary Table. Delphi C7000 Delphi s testing attempts to simulate real operating conditions of the PCB by applying temperature cycling to Daisy Chain coupons. Each coupon contains a series of vias linked to each other through plated vias and inner layer connections. The test qualifies the vendor based on layer count and min via diameter. Testing is performed using two airto-air test chambers. Standard parameters are five minutes transition time between peak temperatures, and 25 to 30 minutes at peak temperatures. Measurements are performed five times during the process, which terminates at 1000 cycles. Needless to say, this is not a quick test. Highly Accelerated Thermal Shock ( HATS ) The HATS test simulates the C7000 testing requirements by using an air-to-air thermal cycling procedure that rapidly heats and cools the test vehicles to the min and max temperatures by using a single chamber and introducing heated and cooled air. The benefit of this method is that it requires approximately 1/6 to 1/7 the time required for the C7000 testing. However, there are schools of thought that believe this method is not as aggressive as the full thermal cycling required by Delphi s testing. Interconnect Stress Test ( IST ) IST is another accelerated method of testing. Rather than use an air-to-air method to bring the test vehicles to temperature, this test method relies on an electrical charge to heat the coupon and stress the vias. To date, we are not aware of a direct correlation between this method and the previous air-to-air methods. The main difference between these tests is how they attempt to stress the test vehicles. The main commonality is that they measure reliability based on resistance measurements of the daisy-chained vias. Materials Comparison Testing Before we discuss the reliability of one material over another, it s critical to establish why a particular material may display better reliability testing results. Notice that the reliability test results are not of a particular June 2011 The PCB Magazine 23

materials for high-reliability applications continues they have arrived new advanced pcb materials characteristic or measurement of the laminate itself, but rather a measurement of a feature created in the material the via itself. The fact that we are testing the vias for reliability means that we are not testing the material, but rather the effect of the material on various manufacturing processes, and vice versa. The process/material combinations that have the most impact on these reliability tests are as follows: Drilling: Drilling parameters (feed, speed, retract, max hit count) must be optimized by resin system. Some systems are more abrasive against drill tools, while others are more brittle. Incorrect or non-optimum parameters can result in rough holes walls, gouges, incomplete de-smear and interconnect defects, among others. Desmear: Regardless of whether the fabricator uses plasma or permanganate methods, the process must be modified based on the resistance of each resin system. Cycles times may have to be increased if inefficient drill parameters result in excess smear across inner layer interconnects. Copper PLATING: Cycles to failure is often correlated directly with copper plating thickness. Rough holes can create turbulence during copper electroplating that has a negative effect on average plating thickness in the hole. Of course, plating a fine grain structure copper with high tensile strength and elongation properties is critical to increased life in a thermal cycling environment. Materials: Finally, there are the physical properties of the material itself. These include T g, Td, CTE, among others. IPC-4101C uses these and other materials properties to create classifications that are often used for product selection for particular applications. In order to establish a difference in reliability between two resin systems, the proper method would require us to hold as many things constant between the two test procedures, such as: Material Choice: We chose two materials that are qualified to the IPC-4101/126 slash sheet. Both have similar T g and T d values that are the most commonly called out characteristics in customer fabrication notes that we see as part of the normal course of business. Test Vehicle: Eight-layer daisy chain coupon with finished hole sizes (in mils): 6, 8, 10, 12 and 14. Figure 2: Failures recorded at test intermission points. 24 The PCB Magazine June 2011

materials for high-reliability applications continues th e y have arri ve d ne w advanced pcb materials Quantity: 11 coupons per resin system. Preconditioning: All coupons were passed six times through a lead-free reflow cycle. Test parameters: -40 C to 120 C temperature range. Five minutes transition between extremes. Twenty-five minutes at temperature. Test requirements: Endpoints of each daisy chain (one per hole size) are measured throughout the test at hours 0, 336, 504, 750 and 1,000. Hole size fails for qualification if any of the coupons show a change in resistance of more than 10%. Coupons that pass are cross-sectioned to validate no potential for latent failures exist, such as cracks in the copper plating. Figure 3: Barrel cracks due to Z-axis expansion. Test results As the charts display (Figure 2), there is a significant change in performance by changing the material type, but holding all other inputs constant (i.e., manufacturing process). Figure 4: Stress Crack in Copper plating. Figure 5: Stress Cracks in Copper plating. 26 The PCB Magazine June 2011

materials for high-reliability applications continues Failure analysis Failures in this test can include blistering and delamination, but are predominantly hole wall cracks or interconnect separations (Figures 3, 4 and 5). The thermal cycling causes the material to expand and contract in the Z-axis. As seen in the photos at left, this can cause hole wall failures if the expansion is too great compared to the ability of the copper plating in the hole wall to adjust accordingly. Conclusion When it comes to materials reliability, our first stop is typically and IPC-4101 category, or a specific material property, such as CTE, T g or T d. We have found that materials categorized into the same IPC slash sheet are not all equal. Unfortunately, laminators trying to meet a particular value of a higher performance property can overlook other properties that sometimes are not found on a datasheet or IPC- 4101 listing. The benefits of those properties can be easily diminished if the material diminishes the performance of other processes such as drilling or plating. If true reliability is of utmost concern, the PCB user must qualify not only the resin system, but also the entire system used to produce the PCB to ensure that the fabricator and laminate system are compatible. PCB Yash Sutariya is Vice President of Corporate Strategy at Saturn Electronics Corporation (SEC) and Owner/President of Saturn Flex Systems, Inc. (SFS). Since joining the team, SEC has successfully navigated from a low-mix, high volume, automotive supplier to a high-mix, medium-to-high-volume diversified supplier to a broad range of industries. Sutariya received his BBA from the University of Michigan, School of Business Administration. Rogers New High-Frequency Laminate by Real Time with...ipc APEX EXPO 2011 video interview Greg Bull of Rogers Corporation discusses RT/Duroid 6035HTC High Frequency laminate, their new material that s getting plenty of attention from designers, for its ability to manage heat. Bull also explains more about his company and their new factory in China. www.realtimewith.com June 2011 The PCB Magazine 27