The Effect of Cation Species on the Sulfide Capacity in CaO-FeO-Al 2 O 3 -SiO 2 Melts

Similar documents
Sulfide Capacity of CaO-SiO 2 -FeO-Al 2 O 3 -MgO satd. Slag

Oxidation of Iron, Silicon and Manganese

Sulphur Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka. Today s Topics

Sulfide Capacity of Molten CaO-SiO 2 -MnO-Al 2 O 3 -MgO Slags

Phosphorous Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka

Hot Metal Desulfurization by CaO SiO 2 CaF 2 Na 2 O Slag Saturated with MgO

Carbide Capacity of CaO SiO 2 CaF 2 ( Na 2 O) Slags at K

The Study on Sulfur and Nickel Distribution Behavior of Nickel between Fe-Ni alloy and MgO-FeO-SiO 2 Slag System

EFFECT OF ACTIVITY COEFFICIENT ON PHOSPHATE STABILITY IN MOLTEN SLAGS

Can Fluorspar be replaced in steelmaking? Eugene Pretorius Baker Refractories

Evaluation of Viscosity of Molten SiO_2-CaO-MgO- Al_2O_3 Slags in Blast Furnace Operation

Thermodynamic Behavior of Manganese Oxide in Lime-based Manganese Smelting Slags

SOLUBILITY OF MgO IN CaO-BASED SLAGS

Thermodynamics of Indium Dissolution in Molten CaO-based Slags

State of the thermodynamic database for the BOFdePhos project

THERMODYNAMICS OF MANGANESE OXIDE IN CaO-SIO 2 -MgO SAT. -Cr 2 O 3 -MnO SLAGS FOR THE PRODUCTION OF HIGH MN STAINLESS STEEL

THERMODYNAMIC MODEL AND DATABASE FOR GASEOUS SPECIES IN MOLTEN OXIDE SLAGS

EAF burdening How can EAF burdening best utilise DRI? Rutger Gyllenram Kobolde & Partners

Advanced vision systems to control ladle slag carry-over

SECONDARY STEELMAKING

Sulphur bonding in solidified ladle slags

GTOX. a multipurpose oxide + database. GTT Users Meeting, Herzogenrath K. Hack 1, T. Jantzen 1, Elena Yazhenskhik 2, Michael Müller 2

Effect of Oxygen Partial Pressure on Liquidus for the CaO SiO 2 FeO x System at K

Sulphide Capacities of CaO Al 2 O 3 SiO 2 MgO MnO Slags in the Temperature Range K

Influence of Sulfur on the Reaction between MnO SiO 2 FeO Oxide and Fe Mn Si Solid Alloy by Heat Treatment

FUNDAMENTALS OF EAF AND LADLE SLAGS AND LADLE REFINING PRINCIPLES. Eugene Pretorius Baker Refractories

Desulfurization. Eugene Pretorius and Helmut Oltmann Process Technology Group LWB Refractories

CHALLENGES IN PROCESS METALLURGY L. TENG, T. MATSUSHITA AND S. SEETHARAMAN

Distribution of sulfur between liquid iron and the system CaO MgO A1 2

Corrosion of Nozzle Refractories by Liquid Inclusion in High Oxygen Steels

General Principle of Isolation of Elements (NCERT)

Activities of SiO 2 in Some CaO Al 2 O 3 SiO 2 ( 10%MgO) Melts with Low SiO 2 Contents at K

Recent Developments in FactSage Thermochemical Software and Databases

ESTIMATE OF DESULPHURIZING ABILITY OF SLAGS WITH THE USE OF INTEGRAL TESTS WHICH CHARATCERISES MELTED SLAG AS A CHEMICALLY UNIFORM SYSTEM

Materials engineering. Iron and steel making

Heat Balance in Pyrometallurgical Processes

Slag formation during high-temperature interactions between SiO 2 -containing refractories and iron melts with oxygen

THE EFFECT OF ALUMINA IN FERROMANGANESE SLAG

Stainless Steelmaking

Thermodynamic database of P 2 O 5 -containing oxide system for De-P process in steelmaking

Lecture 17 Alternative Charge Materials in EAF

Thermodynamics and Mechanism of Silicon Reduction by Carbon in a Crucible Reaction

A.K. LAHIRI. Thermodynamics of refining in electric furnace steelmaking

Thermodynamic determination of low melting area in CaO-Al 2 O 3 -SiO 2 -MgO-MnO system inclusion and its control in spring steel

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

METALS

Thermal Conductivity of the Silicate Melts. The University of Tokyo Institute of Industrial Science 〇 YoungJo Kang and Kazuki Morita

The effect of carbon in slag on steel reoxidation by CaO-SiO 2 - Al 2 O 3 -MgO-MnO-Fe t O slags

Lecture 14 Modern trends in BOF steelmaking

The thermodynamic activity of MnO in stainless steel type slags

Chromium distribution between slag and non-carbon saturated metal phases under changing partial pressure of carbon monoxide

9/12/2018. Course Objectives MSE 353 PYROMETALLURGY. Prerequisite. Course Outcomes. Forms of Assessment. Course Outline

Characteristics of Solid waste Residues Gardanne Coal Power Plant Geochemistry, Petrography, Mineralogy

Gasifier Refractories, Coal Slags, and Their Interaction

Activity Measurement of CaO SiO 2 AlO 1.5 MgO Slags Equilibrated with Molten Silicon Alloys

THE INFLUENCE OF SLAG EVOLUTION ON BOF DEPHOSPHORISATION

Dr. Joseph J Poveromo, Raw Materials & Ironmaking Global Consulting DR Pellet Quality & MENA Applications


raw sinter mix ignition hood direction of strand wind main electrostatic wind boxes wind legs gas flow Fig. 1 Schematic of a typical sinter plant

Explain this difference. [2] [Total: 12] PhysicsAndMathsTutor.com

PYROMETALLURGY OF IRON

Influence of TiC on the Viscosity of CaO MgO Al 2 O 3 SiO 2 TiC Suspension System

A study on the accretion formation in DRI kilns and possible ways for its reduction

Feasibility Study on the Utilization Of Municipal Waste Fly Ash For The Manufacture Of Geopolymer Binder

CHAPTER-6: SUMMARY AND CONCLUSIONS

Japanese Iron and Steel Certified Reference Materials April 9, 2012

Thermo-Calc Software. Thermo-Calc User Seminar CALCULATING THERMODYNAMIC PROPERTIES. New versions of Databases. Aachen, September 11th, 2008

STUDY ON SLAG RESISTANCE OF REFRACTORIES IN SUBMERGED ARC FURNACES MELTING FERRONICKEL

Sulfoaluminate belite (SAB) cements from industrial by-products. Sada Sahu BASF Construction Chemicals Chagrin Blvd., Cleveland, OH-44122

Part III: Slag Practices and Oxygen/Carbon Injection when Melting Direct Reduced Iron

Effect of Nano-Sized Fe 2 O 3 on Microstructure and Hydration Resistance of MgO-CaO Refractories

Thermodynamic modeling of the Mn and Cr reduction from slag

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

Influence of Al 2 O 3 and MgO on the Viscosity and Stability of CaO MgO SiO 2 Al 2 O 3 Slags with CaO/SiO 2 = 1.0

EQUILIBRIUM IN PRODUCTION OF IDGH CARBON FERROMANGANESE

THERMODYNAMIC INVESTIGATION OF BRIQUETTE OBTAINED FROM WASTE FAYALITE WITH CALCIUM CARBIDE. Daniela Grigorova, Danail Stoyanov, Rossitza Paunova

RECOVERY OF CHROMIUM FROM STAINLESS STEEL SLAGS

Production of Iron and Steels

Waste Acid Recycling Technology by Slag

Implementation of Slag Engineering Techniques at CO-Steel Raritan to Improve Melting and Refining Practices

Never Stand Still Faculty of Science Materials Science and Engineering

Mould fluxes for steelmaking - composition design and characterisation of properties. Research Institute, Stockholm

Chapter 2 Portland Cement Clinker

Slag formation during high temperature interactions between refractories containing SiO 2 and iron melts with oxygen

Israeli coal ash characterization & environmental effects

A thermodynamic database for simulation of CMAS and TBC interactions

Liquidus and phase equilibria in CaO-SiO 2 -FeO x -Al 2 O 3 system under intermediate oxygen partial pressure

Electric Arc Furnace Simulation User Guide Version 1

Manganese Equilibrium Distribution between Carbon-saturated Iron. Melts and Lime Based Slags Containing MnO, BaO, and Na20*

Phase Equilibrium between Ni S Melt and CaO Al 2 O 3 Based Slag in CO CO 2 SO 2 Gas Mixtures at 1773 K

Phase Equilibrium for the CaO SiO 2 FeO 5mass%P 2 O 5 5mass%Al 2 O 3 System for Dephosphorization of Hot Metal Pretreatment

Effect of MgO and Al 2 O 3 variations in oxygen steelmaking (BOF) slag on slag morphology and phosphorus distribution

New software for Simulations of Metal-Slag Interactions. ACCESS Workshop/Users-Meeting September 25, 2007 Thermo-Calc Software, Stockholm, Sweden

Use of Direct Reduced Iron in the Electric Furnace P CaO + MgO... o. 20. Mn Cr... <o.o05

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Pyrometallurgy of iron is still the most important pyrometallurgical process economically.

Influence of Solid CaO and Liquid Slag on Hot Metal Desulfurization

Fuels, Furnaces & Refractories

X-ray Fluorescence Spectrometry X-ray Fluorescence Spectrometry (XRF) is a non-destructive, quantitative technique for determining chemical

Effect of Silicon Carbide on Reactions between Molten Steel and Fused Magnesia Silicon Carbide Composite Refractory

Transcription:

The Effect of Cation Species on the Sulfide Capacity in CaO-FeO-Al 2 Melts Joon Sung Choi*, Youngjoo Park, Sunghee Lee and Dong Joon Min Department of Materials Science and Engineering

Contents

Introduction Slag Formation in Iron- and Steelmaking Process Ores: Δ 0.016% (P, Al 2 )/yr Coals : Δ 0.015% S/yr, Δ 0.08% Ash/yr, Continuous Casting EAF Coals (Carbon + Ash) (Al 2,, S) Iron Ores (Al 2, FeO X, P) Blast Furnace Al 2 Inclusions (Ca Aluminate, Spinel) Converter CaO Limestone (CaC ) Fe t O Ladle Increase in FeO,Al 2 & S Contents in Material Desulfurization in High-FeO, Al 2 Bearing Slags?

Literature Review T 3+ Ionic Characteristics (T = Al, Fe) B.O. Mysen (1980) peraluminous peralkaline CCCC 0.5 NNNNNN + AAAA XXXX 44 AAAA CCCC D.B.Dingwell (1987) Sulfide Capacity & Basicity C.J.B. Fincham (1954) CC SS 22 = (wwwwwww) ( pp OO2) 1/2 pp SS 2 = Slag Property C. Wagner (1976) Cationic Effect on CC SS 2 Y.J. Park and D.J.Min (2016) Y.B. Kang and J.H.Park (2011) CC SS 22 = ff (aa OO 2, γγ SS 22 ) Low CaO Cation Structure Ca 2+ Increases High CaO Fe Network Former (4 C.N) OO 2 S OO SS 2 CC SS 22 = ff (aa OO 22 ) Slag Basicity Si Si Si Si Ca 2+ Free M 2+ S 2- Ca 2+ Free Ca 2+ S 2- Free M 2+ T 3+ ions form anionic structural unit TO 4 5- CC SS 22 = aa OO22 KK γγ SS 22 CC SS 22 = aa OO22 KK γγ SS 22 Study on the Relationship Between Sulfide Capacity and the Structure of High-FeO,Al 2 Bearing Slags

Objective Pauling s Principles for Molten Slag Electronegativity & Neutrality Ionic Bonding Covalent Bonding Basic Oxide Amphoteric Oxide Acidic Oxide Ionic Interaction of M 2+ with S 2- M 2+ M 2+ S 2- vs. T 3+ Ionic Interaction Sulfide Capacity Slag Structure Partially Covalent Spectra Analysis γγ SS 22 (Stability of Sulfur) CC SS 22 = aa OO 22 KK γγ SS 22 NBO/T, Al C.N Thermodynamic & Structural Approach to Figure Out the preference of M 2+ Figure out the Cationic Effect of M 2+ (M : Fe,Ca) on the Sulfide Capacity

Theoretical Background T 3+ 1 Charge Compensation Effect 2 Partially Covalent Ionic Interaction of M 2+ with S 2- M 2+ M 2+ M + interacts with TO 4 5- prior to S 2- charge balancing join (Ca 2+ +Fe 2+ )/(Fe 3+ +Al 2 )=1 S 2- Proportion of T-O-T Linkage 1.0 0.8 0.6 0.4 0.2 T-O-T Linkage CaO-Al 2 system ( /X Al2 =1.0) Proportion of T-O-T Linkage (S.K.Lee model) Al-O-Al Al-O-Si Si-O-Si Al-O-Al Al-O-Si 0.0 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 X SiO2 Thermodynamic Property (C.H.P. Lupis model) Stability function Si-O-Si 2.0 1.8 1.6 1.4 1.2 Ψ(Stability) Charge compensation effect on CC SS 22 (= aa OO 22/γγ SS 22 ) Slag dominant structure (Matrix) Figure out the Charge Compensation Effect of M 2+ (M : Fe,Ca) on the Sulfide Capacity

Experimental Slag Compositions CaO- FeO -Al 2 system 1 Charge Compensation (FeO Al 2 ) Experimental Apparatus Al 2 CaO 2 Cationic Substitution (FeO CaO) Experimental Analysis XRF CS Analyzer FeO K 2 Cr 2 O7 Titration -Sulfur potential controlled by mixture gas SO 2 (g) + 2CO (g) = CO 2 (g) + ½ S 2 (g) ΔG = 258.5 KJ/mol Slag Compositions Sulfur Contents Fe 2+ /T.Fe Content Temp. Partial Pressure (atm) Ar CO CO 2 SO 2 pp SS22 pp OO22 (pp SS22 /pp OO22 ) 11/22 Slag Structure with Micro-Raman Spectroscopy 1873K 0.196 0.435 0.348 0.0217 6.01 10 3 1.33 10 7 212

Results & Discussion (MO-Al 2 Ternary System) Effect of Al 2 / on Charge Balancing Join (MO/Al 2 =1) (Ca)Anorthite /(Fe)Cordierite Congruent Point CaO FeO Peralkaline (excess M 2+ ) -rich (Si-O-Si) (Si-O-Al) Al 2 -rich (Al-O-Al) (Si-O-Al) Peraluminous (deficient M 2+ ) 1) Silicate Dominant Structure (A/S 0.5) - Si-O-Si, Al-O-Si dominant ( stability Increase) - M 2+ -SiO 4 4- interaction, Fe-O-Si bonding - M 2+ -S 2- attraction increases (lower γγ SS 22 ) Si Free M 2+ Al Al M 2+ Al Fe 2 Al 2-6 -5 0.0 0.2 0.4 0.6 0.8 1.0 X SiO2 2) Aluminate Dominant Structure (A/S 0.5) - Al-O-Al, Al-O-Si dominant ( stability decrease) - M 2+ - AlO 4 5- interaction, Fe-O-Al bonding - M 2+ -S 2- attraction decreases (larger γγ SS 22 ) The Charge Compensation Domain Determined by Al 2 / (T-O-T Dominant Structure) logc S 2- -1-2 -3-4 -5 (CaO-Al 2 system) /X Al2 =1.0 log C S 2-- log a CaO (Al-O-Al) (Si-O-Al) Dominant T-O-T Structure Change (FeO-Al 2 system) X Fe 2+/(X Fe 3++X Al2 )=1.0 log C S 2- log a FeO (Si-O-Si) (Si-O-Al) 2 1 0-1 -2-3 -4 loga MO (M : Ca, Fe)

Results & Discussion (MO-Al 2 Ternary System) Effect of M 2+ on Charge Compensation of AlO 4 5- and CC SS 22 (MO/Al 2 ) 0.0-0.5-1.0-1.5-2.0-2.5 CaO-Al 2 Ca 2+ M 2+ Fe 2+ FeO-Al 2 CaO-Al 2 system (1873K) X Al2 /X O SiO2 3 0.1 0.3 0.7 0.9 1.4 1.7 CaO-Al 2 system (1873K) Solid Charge Balancing Join (Ca 2+ +Fe 2+ )/(Fe 3+ +Al 2 )=1 0 FeO-Al2 system (1873K) -1-2 X Al2 /X O SiO2 3 0.1 0.25 0.45 0.70. Satd. Al 2 log C S 2- -3.0-3.5 logc S 2- -3-4.0-4.5-5.0 Solid Free M 2+ S 2- peralkaline peraluminous -4 Solid -5.5-6.0 0 1 2 3 4 5 /X Al2-5 0 1 2 3 4 5 6 X Fe 2+/(X Fe 3++X Al2 ) 1) Charge Compensation Effect of Ca 2+ - CC SS 22 is independent as basicity changes below meta-aluminous join ( XX CCCCCC XX AAAA22 O3 )=1) in high- Al 2 region (A/S > 0.7) CaO, FeO Fe 2, Al 2 2) Charge Compensation Effect of Fe 2+ - CC SS 22 is independent as basicity changes below charge balancing join ( XX FFFF 22+ (XX FFFF 33+ + XX AAAA22 O3 )=1) The Charge Compensation Effect on the Sulfide Capacity (Deficit or Excess of M 2+ )

Results & Discussion (CaO-FeO-Al 2 Quaternary System) Slag Structural Analysis (CaO FeO) Raman Spectroscopy Deconvolution of Raman Spectra (Q 2 ) (CaO-FeO-Al 2 sytem) +X FeO = 0.4, X Al2 /X SiO2 = 0.1 A9 =0.4 CaO Al 2 100 80 (CaO-FeO-Al 2 sytem) +X FeO = 0.4 X Al2 /X SiO2 0.1 0.25 0.45 0.7 0.95 10 9 8 Fe 2 T-O-T Q n CF3-1 =0.3 CF2-1 =0.2 CF1-1 =0.1 F1-6 =0 0 200 400 600 800 1000 1200 1400 1600 1800 Raman Shift (cm -1 ) 1) Interpretation of Raman Spectra - XX AAAA2 O + XX AAAA2 O = 0.6, Q n unit (Q 1, Q 2, Q 3 ) - Increases FeO : 400~600cm -1 Fe 2 peak decreases, 600~700cm -1 T-O-T peak Increases, 800~1200cm -1 Q n peak left chemical shift FeO 0 0 0.0 0.2 0.4 0.6 0.8 1.0 2) Q 2 Unit : Fe 2+ --Q 2 -Increases FeO : Prefer Fe 2+ -Q 2 unit -Role of Fe 2+ : Fe 2+ -O-Al 3+ (-41000J/mol), Fe 2+ -O- Fe 3+ (-18660J/mol) Fe 2+ -O-Si 4+ (-41840J/mol) -FeS dominant Fe-O-Si prefer & CaS dominant Q 2 Increases (F/(C+F) >0.5) Fe 2+ - Q 2 Increases Proportion of Q 2 (%) Q 1 +Q 3 =2Q 2 (NBO/T=1~2) Fe 2+ -Q 2 >> Ca 2+ -Q 2 60 40 20 X FeO /(X FeO + ) Fe 2+ / (Fe 3+ + Al 2 ) >1 Fe-O-Si increase 7 6 5 4 3 2 1 Fe 2+ /(Fe 3+ +Al 2 )

log {(a FeO * a CaS ) / (a FeS * a CaO )} 15 10 5 0 Results & Discussion (CaO-FeO-Al 2 Quaternary System) Thermodynamic Facotrs (CaO FeO) Stability Function & CaS/FeS Preference (CaO-FeO-Al 2 sytem) +X FeO = 0.4 X Al2 /X SiO2 0.1 0.25 0.45 0.7 CaO+FeS=CaS+FeO, K= aa CCCCCC aa FFFFFF aa CCCCCC aa FFFFFF -5 2 0.0 0.2 0.4 0.6 0.8 1.0 X FeO /(X FeO + ) 10 CaO 8 1) Stability Function & CaS/FeS 6 4 Ψ(Stability function) - Stability Function : Upward concave as FeO increases (Low Al 2 ), Linearly decreases (High Al 2 ) - CaS/FeS : Increases CaS preferncy rather than FeS as FeO increases Q 1 +Q 3 =2Q 2 FeO Sulfide Capacity (CC SS 22 ) Al 2 O-1.5 3 Fe 2+ -Q 2 >> Ca 2+ -Q 2-4.5 0.0 0.2 0.4 0.6 0.8 1.0 X FeO /(X FeO + ) 2) FeO CaO Substitution Effect - Ionic Interaction (F/(C+F) 0.5) : ε Ca S 2 <ε Fe S 2, γ MS,C S 2 (γ FeS ) as FeO Increases - Fe-Q 2 effect (F/(C+F) 0.5) : γ MS,C S 2 (γ CaS ) as FeO Increases (F/(C+F) <0.5) : Fe 2+ -S 2- Ionic Interaction (γγ FFFFFF ), (F/(C+F) >0.5) : Fe-Q 2 Effect (γγ CCCCCC ) logc S 2- -1.0-2.0-2.5-3.0-3.5-4.0 (CaO-FeO-Al 2 sytem) +X FeO = 0.4 X Al2 /X SiO2 0.1 0.25 0.45 0.7 0.95 Ca 2+ Si Al Free Fe 2+ S 2- Excess Ca 2+ Fe 2+ -S 2- (Ionic Interaction) CaO -FeO at T=1773K, X SiO2 =0.48~0.5 After M.M.Nzotta et al. CaO -FeO at T=1776K, X SiO2 =0.45 After A.Bronson and G.R.St.Pierre CaO -MgO at T=1923K, X SiO2 =0.5 After K.P. Abraham et al. CaO -MnO at T=1873K, X SiO2 =0.47~0.54 After K.P. Abraham et al. MnO -FeO at T=1773K, X SiO2 =0.47~0.54 After M.M.Nzotta et al. Si Fe 2+ Al Free Ca 2+ S 2- Excess Fe 2+ Fe 2+ -Q 2 (Covalent Bonds)

Results & Discussion Iso-Sulfide Capacity Line & Iso-aa MMMM Line (M : Ca,Fe) CaO-Al 2 System FeO-Al 2 System CaO-FeO-Al 2 System FeO - Al 2-1873 K, Iso-FeO activity, Iso-Sulfide Capacity Dicalciumsilicate (Ca 2 SiO 4 ) Lime (CaO) Cristobalite ( ) -4.4-4.1-3.9-3.6-3.1-2.5-2.8-5.1-4.7 Grossite (CaAl 4 O 7 ) Iso-sulfide capacity line Iso-aa CCCCCC line Anorthite (CaAl 2 Si 2 O 8 ) Mullite (Al 6 Si 2 O 13 ) Hibonite (CaAl 12 O 19 ) Corrundum (Al 2 ) 0.9 0.8 0.7 Cristobalite ( ) 0.6 0.5 0.3 0.4 1) MO-Al 2 Ternary System (M:Ca,Fe) - CaO-Al 2 : Ca 2+ interact with AlO 4 5- - FeO-Al 2 : Fe 2+ interact with AlO 4 5-, FeO 4 5- - Not stabilize sulfur in peraluminous (γγ SS 22 ) 0.2 0.1-2.8-2.4-1.9 0.05 0.01 0.02 0.05-4.7-4.4-4.1-3.8-3.2 Iso-sulfide capacity line Iso-aa FFFFFF line Cordierite (Fe 2 Al 4 Si 5 O 18 ) Mullite (Al 6 Si 2 O 13 ) Corrundum (Al 2 ) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 FeO Al 2 O mole fraction 3 Hercynite (FeAl 2 O 4 ) 2) CaO-FeO-Al 2 Quaternary System - CaO-rich (F/(C+F) 0.5) : Ionic Interaction dominant, FeO stabilize sulfur (γγ FFFFFF ) - FeO-rich (F/(C+F) 0.5) : Fe-Q 2 effect, CaO stabilize sulfur (γγ CCCCSS ) The Cationic Substitution Effect on the Sulfide Capacity (Maximum : F/(C+F) = 0.5) CaO -4.0-4.2-3.8-3.3-3.0-3.4 FeO Al 2

Conclusion The effect of anionic slag structure and charge compensation behavior on sulfide capacity of CaO-FeO-Al 2 system is investigated by measurement of sulfide capacity and Micro-Raman spectroscopy. From the results of present work, founding are summarized as followings: 01 The charge compensation of M2+ (M:Fe,Ca) : The Inflection Point of the sulfide capacity in the charge balancing join due to the deficit or excess charge compensator. 02 The cationic substitution (CaO FeO) : The Fe-Q 2 units increases as CaO FeO substitution (F/(C+F)>0.5) by figure out the deconvolution of raman spectra 03 The cationic substitution (CaO FeO) : The strong interaction between Fe 2+ and S 2- in the CaO-rich region. The weak interaction between Fe 2+ and S 2- in the FeO-rich region.

Thank you