metal-organic compounds

Similar documents
metal-organic compounds

Experimental. Crystal data. C 3 H 6 N 6 O 6 M r = Orthorhombic, Pbca a = (8) Å b = (7) Å c = (9) Å.

= (7) V = (3) Å 3 Z =2 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

= (7) V = (3) Å 3 Z =2 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Iron(II) hydrazinium sulfate

Experimental. Crystal data. M r = Hexagonal, P6 3 =mmc a = (11) Å c = (7) Å V = (5) Å 3. Data collection.

metal-organic compounds

Z =2 Cu K radiation = 2.41 mm 1. Data collection. Refinement

Experimental. Crystal data. M r = Orthorhombic, P a = (2) Å b = (2) Å c = (3) Å. Data collection.

metal-organic compounds

A7.1 CRYSTAL STRUCTURE ANALYSIS OF

Sodium peroxodisulfate. Figure 1 The structure of sodium peroxodisulfate, showing 30% probability ellipsoids [symmetry code: (i) x +1, y +2, z + 1].

= (1) V = (2) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Appendix A. X-ray Crystal Structure of methyl 3-chlorothiophene-2-carboxylate

Experimental. Crystal data

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 52 parameters

A new polymorph of 1-hydroxy-2-naphthoic acid obtained

Supporting Material. for

Supplementary Figure S1 A comparison between the indium trimer in ITC-n and nickel trimer in ITC-n-Ni.

Supporting Information. Photochromic, Photoelectric and Fluorescent Properties

Supplementary Material (ESI) for Chemical Communications. Solid-state single-crystal-to-single-crystal transformation from a 2D

Na4.25Mo15S19: a novel ternary reduced molybdenum sulfide containing Mo6 and Mo9 clusters

Supporting Information. for. Advanced Materials, adma Wiley-VCH 2007

How Many Parameters Can Affect the Solid Form of Cocrystallization Products in Mechanochemical Reactions? A Case Study

Supporting Information. Metal-coordination-driven Mixed Ligand Binding in Supramolecular Bisporphyrin Tweezers

Brian T. Makowski, a Joseph Lott, a Brent Valle, b Kenneth D. Singer b* and Christoph Weder a,c*

A Designed 3D Porous Hydrogen-Bonding Network Based on a Metal-Organic Polyhedron

Crystallographic Information Files and Report Generation

π-stacking Synthon Repetitivity in Coordination Compounds

Gordon W. Downs, Betty N. Yang, Richard M. Thompson, Michelle D. Wenz and Marcelo B. Andrade

Shaunna M. Morrison, Marcelo B. Andrade, Michelle D. Wenz, Kenneth J. Domanik and Robert T. Downs

Supporting Information

Characterization and strong piezoelectric response of an. organometallic nonlinear optical crystal: CdHg(SCN) 4 (C 2 H 6 SO) 2

Generation Response. (Supporting Information: 14 pages)

Chiral Structure of Thiolate-Protected 28-Gold-Atom Nanocluster Determined by X-ray Crystallography

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 259 parameters 10 restraints

SUPPLEMENTARY INFORMATION

Nb 2 O 2 F 3 : A Reduced Niobium (III/IV) Oxyfluoride. with a Complex Structural, Magnetic and Electronic. Phase Transition

electronic reprint Redetermination of metarossite, CaV 5+ 2O 6 2H 2 O IUCr Journals Anaïs Kobsch, Robert T. Downs and Kenneth J.

The effect of metal distribution on the luminescence properties of mixedlanthanide metal-organic frameworks

Supporting Information

Supporting Information for

inorganic compounds Hg 3 Se 3 O 10, a mercury(ii) compound with mixed-valence oxoselenium(iv/vi) anions Comment

Supporting Information for

Ruthenium-catalyzed Olefin Metathesis Accelerated by Steric Effect of Backbone Substituent in Cyclic (Alkyl)(Amino)Carbenes

Electronic Supplementary Information

Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune (India) Sr. No. Contents Page Numbers

By: A. W. Cordes, B. Durham, P. N. Swepston, W. T. Pennington, S. M. Condren, R. Jensen, and J. L. Walsh

Workshop in X-ray structure analysis

Generation of cocrystals of Tavaborole (AN2690): opportunities for boron-containing APIs

Reversible Phase Transformation in Proton Conducting Strandberg-type POM Based Metal Organic Material

Electronic Supplementary Information. Jian-Rong Wang, Junjie Bao, Xiaowu Fan, Wenjuan Dai and Xuefeng Mei *

A pcu-type Metal-Organic Framework with Spindle [Zn 7 (OH) 8 ] 6+ Cluster as Secondary Building Units

Preparation and X-ray structure of 2-iodoxybenzenesulfonic. acid (IBS) a powerful hypervalent iodine(v) oxidant

Fluorine-free electrolytes for all-solid sodium-ion batteries based on percyano-substituted organic salts

Supporting Information

Electronic Supplementary Information. Trigonal prismatic Cu(I) and Ag(I) pyrazolato nanocage hosts: encapsulation of S 8 and hydrocarbon guests

Complexes of High-Valent Rhenium. Supported by the PCP Pincer

A Ferric Semiquinoid Single-Chain Magnet via Thermally-Switchable Metal- Ligand Electron Transfer

Supporting Information for

Supporting Information

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2009 Supplementary data

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Department of Chemistry and the Macromolecular Science and Engineering Program,

Supplementary Material

Supporting information. Synthesis of pyrimido[1,6-a]quinoxalines via intermolecular trapping of thermally

Characterization of amorphous pharmaceuticals what can you do in the home lab? Michael Evans, Christina Drathen Bruker AXS GmbH, Karlsruhe, Germany

A Stable Super-Supertetrahedron with Infinite Order via. Assembly of Supertetrahedral T4 Zinc-Indium Sulfide Clusters

Multi-step and multi-component organometallic synthesis in one pot using orthogonal mechanochemical reactions

Sulfonamide-Substituted Iron Phthalocyanine: Design, Solubility Range, Stability and Oxidation of Olefins. Content

Electronic Supplementary Information. Synthesis and crystal structure of a rare square-planar Co (II) complex of a hydroxyamidinate ligand.

IF YOUR ONLY SINGLE CRYSTAL IS NOT REALLY SINGLE

Supplementary Document: Si-Based Earth Abundant Clathrates for Solar Energy Conversion

Isomerism in Au 28 (SR) 20 Nanocluster and Stable Structures

Supplementary information for Nature Materials. Gas-induced transformation and expansion of a 'nonporous'

Department of Biology and Chemistry, City University of Hong Kong, Tat Chee

Supporting Information

Photoreduction of Carbon Dioxide to Carbon Monoxide with Hydrogen Catalyzed by a Rhenium(I)phenanthroline-Polyoxometalate Hybrid Complex

Controlled Fabrication and Optical Properties of Uniform CeO 2 Hollow Spheres

SUPPLEMENTARY INFORMATION

Syntheses of Bipyricorroles and their meso-meso coupled dimers

Regioselective (thio)carbamoylation of 2,7-di-tertbutylpyrene at the 1-position with iso(thio)cyanates

Ambi-Valence Taken Literally: Ru vs. Fe Oxidation in 1,1'- Diphosphinoferroceneruthenium(II) Hydride and Chloride Complexes as

This lecture is part of the Basic XRD Course.

Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p.

CHARACTER OF THE HIGH-TEMPERATURE STRUCTURAL CHANGES IN CsD 2 PO 4 AND RbD 2 PO 4

Complex Thermal Expansion Properties in a Molecular Honeycomb Lattice

Transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties

Gas Induced Conversion of Hybrid Perovskite Single Crystal to. Single crystal for Great Enhancement of Their Photoelectric

SOLUBILITY LIMITS OF ERBIUM IN PARTIALLY DISORDERED CRYSTALS LANGANITE AND LANGATATE *

Supramolecular imidazolium frameworks: direct analogues of metal azolate frameworks with charge-inverted node-and-linker structure

Basic Crystallography

Supporting Information. Direct Characterization of a Reactive Lattice-Confined Ru2 Nitride by Photocrystallography

Electronic Supplementary Information

Supplementary Figures:

Key crystallographic concepts: Theory of diffraction. (Crystallography y without tears, Part 1)

Supporting Information for. Nitric Oxide Reactivity of Copper(II) Complexes of Bidentate Amine Ligands: Effect of. Substitution on Ligand Nitrosation

Electronic Supplementary Information. Porphyrin-based mixed-valent Ag(I)/Ag(II) and Cu(I)/Cu(II)

Neutron diffraction residual stress mapping in same gauge and differential gauge tailor-welded blanks

Supporting Information

Transcription:

metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Tetrakis(1-allyl-1H-imidazole-jN 3 )bis- (thiocyanato-jn)manganese(ii) Juan Zhao a * and Yan-Ling Jin b a College of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People s Republic of China, and b Key Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People s Republic of China Correspondence e-mail: zhaojuanqd@163.com Received 19 November 2011; accepted 29 November 2011 Key indicators: single-crystal X-ray study; T = 293 K; mean (C C) = 0.009 Å; R factor = 0.059; wr factor = 0.162; data-to-parameter ratio = 15.8. Experimental Crystal data [Mn(NCS) 2 (C 6 H 8 N 2 ) 4 ] M r = 603.70 Monoclinic, C2=c a = 24.564 (5) Å b = 7.2200 (14) Å c = 21.287 (4) Å = 125.04 (3) Data collection Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.890, T max = 0.943 Refinement R[F 2 >2(F 2 )] = 0.059 wr(f 2 ) = 0.162 S = 1.01 2814 reflections V = 3091.0 (15) Å 3 Z =4 Mo K radiation = 0.60 mm 1 T = 293 K 0.20 0.10 0.10 mm 2885 measured reflections 2814 independent reflections 1750 reflections with I > 2(I) R int = 0.033 178 parameters H-atom parameters constrained max = 0.31 e Å 3 min = 0.34 e Å 3 The structure of the title compound, [Mn(NCS) 2 (C 6 H 8 N 2 ) 4 ], consists of isolated molecules of [Mn(NCS) 2 (Aim) 4 ] (Aim = 1- allylimidazole), which contain a compressed octahedral MnN 6 chromophore (site symmetry 1). The NCS anions are trans and four N atoms from the Aim ligands define the equatorial plane. The mean Mn N(Aim) and Mn N(NCS) distances are 2.270 and 2.229 Å, respectively. Weak C HN interactions contribute to the crystal packing stability. Related literature In the corresponding manganese compound [Mn(NCS) 2 (1- ethylimidazole) 4 ] (Liu, et al., 2008), the Mn II ions have a distorted octahedral environment. Table 1 Hydrogen-bond geometry (Å, ). D HA D H HA DA D HA C7 H7AN3 0.93 2.54 2.857 (9) 101 C6 H6AN4 0.93 2.88 3.355 (8) 113 C5 H5BN4 i 0.93 2.82 3.298 (7) 113 C12 H12AN5 i 0.93 2.72 3.224 (6) 115 Symmetry code: (i) x þ 1 2 ; y þ 3 2 ; z. Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs. This work was supported by the NSF of China (No. 20871072) and the Doctoral Science Foundation of Shandong Province (No. 2007BS04023). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5141). References Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Liu, F. Q., Li, R. X. & Li, S. X. (2008). Chin. J. Inorg. Chem. 24, 141 144. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112 122. doi:10.1107/s1600536811051282 Zhao and Jin m9

supporting information [doi:10.1107/s1600536811051282] Tetrakis(1-allyl-1H-imidazole-κN 3 )bis(thiocyanato-κn)manganese(ii) Juan Zhao and Yan-Ling Jin S1. Comment The molecular structure of (I) is shown in Fig. 1. The Mn atom displays an octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-allylimidazole ligands. The equatorial plane of the complex is formed by four Mn N(1-allylimadazole) bonds with lengths of 2.269 (3) and 2.271 (3) Å, and the axial positions are occupied by two N-bonded NCS groups [Mn N(NCS) = 2.229 (4) Å]. These values agree well with those observed in [Mn(NCS) 2 (1- ethylimidazole) 4 ] (Liu et al., 2008). The values of the bond angles around manganese are close to those expected for a regular octahedral geometry, the N Mn N angles range from 88.32 (13) to 91.68 (13), and the thiocyanate ligands are almost linear. Weak C H N interactions contribute to the crystal packing stability. In the corresponding manganese compound [Mn(NCS) 2 (1-ethylimidazole) 4 ] (Liu, et al., 2008), the Mn II ions have a distorted octahedral environment. S2. Experimental The title compound was prepared by the reaction of 1-allylimidazole (1.21 g, 20 mmol) with MnCl 2.4H 2 O(0.99 g, 5 mmol) and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in stainless-steel reactor with Teflon liner at 383 K for 24 h. Analysis, calculated for C 26 H 32 MnN 10 S 2 : C 51.73, H 5.34, N 23.20%; found: C 51.97, H 5.29, N 23.01%. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature. S3. Refinement H atoms were positioned geometrically(c H = 0.93 0.97 Å) and allowed to ride on their parent atoms with U iso (H) = 1.2 times U eq (C). sup-1

Figure 1 The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Figure 2 The packing of (I), viewed down the b axis. sup-2

Tetrakis(1-allyl-1H-imidazole-κN 3 )bis(thiocyanato- κn)manganese(ii) Crystal data [Mn(NCS) 2 (C 6 H 8 N 2 ) 4 ] M r = 603.70 Monoclinic, C2/c Hall symbol: -C 2yc a = 24.564 (5) Å b = 7.2200 (14) Å c = 21.287 (4) Å β = 125.04 (3) V = 3091.0 (15) Å 3 Z = 4 Data collection Bruker SMART 1K CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator thin slice ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.890, T max = 0.943 Refinement Refinement on F 2 Least-squares matrix: full R[F 2 > 2σ(F 2 )] = 0.059 wr(f 2 ) = 0.162 S = 1.01 2814 reflections 178 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1260 D x = 1.297 Mg m 3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 25 reflections θ = 9 12 µ = 0.60 mm 1 T = 293 K Block, colorless 0.20 0.10 0.10 mm 2885 measured reflections 2814 independent reflections 1750 reflections with I > 2σ(I) R int = 0.033 θ max = 25.3, θ min = 2.0 h = 0 29 k = 0 8 l = 25 20 Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ 2 (F o2 ) + (0.075P) 2 ] where P = (F o 2 + 2F c2 )/3 (Δ/σ) max < 0.001 Δρ max = 0.31 e Å 3 Δρ min = 0.34 e Å 3 Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wr and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ(f 2 ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq Mn 0.2500 0.7500 0.0000 0.0393 (3) S 0.38490 (7) 1.1290 (2) 0.23301 (7) 0.0754 (5) N1 0.20466 (18) 0.4508 (6) 0.1457 (2) 0.0542 (10) N2 0.21204 (16) 0.6197 (5) 0.06496 (19) 0.0447 (9) sup-3

N3 0.41287 (16) 0.3410 (5) 0.0976 (2) 0.0457 (9) N4 0.34393 (16) 0.5759 (5) 0.06687 (19) 0.0448 (9) N5 0.29713 (18) 0.9709 (5) 0.0893 (2) 0.0543 (10) C1 0.1320 (3) 0.1161 (10) 0.1924 (4) 0.116 (3) H1A 0.1358 0.1802 0.2327 0.139* H1B 0.1016 0.0196 0.1686 0.139* C2 0.1692 (3) 0.1613 (9) 0.1695 (3) 0.0911 (19) H2A 0.1640 0.0938 0.1291 0.109* C3 0.2181 (3) 0.3078 (8) 0.2018 (3) 0.0725 (16) H3A 0.2616 0.2548 0.2227 0.087* H3B 0.2191 0.3649 0.2437 0.087* C4 0.1559 (2) 0.5784 (7) 0.1165 (3) 0.0570 (13) H4A 0.1250 0.5921 0.1281 0.068* C5 0.1607 (2) 0.6819 (7) 0.0675 (3) 0.0540 (12) H5B 0.1332 0.7812 0.0394 0.065* C6 0.2375 (2) 0.4801 (7) 0.1133 (3) 0.0533 (12) H6A 0.2736 0.4103 0.1238 0.064* C7 0.4849 (3) 0.2836 (9) 0.0313 (3) 0.0841 (18) H7A 0.4652 0.3981 0.0257 0.101* H7B 0.5106 0.2656 0.0126 0.101* C8 0.4765 (2) 0.1509 (8) 0.0647 (3) 0.0626 (14) H8A 0.4972 0.0392 0.0689 0.075* C9 0.4373 (2) 0.1569 (7) 0.0974 (3) 0.0577 (13) H9A 0.3996 0.0740 0.0683 0.069* H9B 0.4647 0.1113 0.1497 0.069* C10 0.4487 (2) 0.4823 (7) 0.1465 (3) 0.0584 (13) H10A 0.4939 0.4811 0.1855 0.070* C11 0.4066 (2) 0.6240 (7) 0.1280 (3) 0.0556 (12) H11A 0.4182 0.7378 0.1530 0.067* C12 0.3500 (2) 0.4037 (7) 0.0506 (2) 0.0470 (11) H12A 0.3150 0.3340 0.0114 0.056* C13 0.3337 (2) 1.0360 (6) 0.1494 (3) 0.0467 (11) Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 Mn 0.0374 (5) 0.0426 (5) 0.0373 (5) 0.0014 (5) 0.0210 (4) 0.0017 (5) S 0.0671 (9) 0.1062 (13) 0.0473 (8) 0.0215 (8) 0.0295 (7) 0.0212 (8) N1 0.048 (2) 0.070 (3) 0.047 (2) 0.002 (2) 0.0289 (19) 0.012 (2) N2 0.047 (2) 0.049 (2) 0.042 (2) 0.0012 (18) 0.0277 (17) 0.0060 (19) N3 0.0365 (19) 0.052 (2) 0.047 (2) 0.0070 (18) 0.0229 (17) 0.0047 (19) N4 0.040 (2) 0.050 (2) 0.041 (2) 0.0055 (18) 0.0210 (17) 0.0058 (18) N5 0.056 (2) 0.052 (2) 0.053 (2) 0.010 (2) 0.030 (2) 0.011 (2) C1 0.107 (5) 0.108 (6) 0.130 (6) 0.023 (5) 0.067 (5) 0.032 (5) C2 0.116 (5) 0.065 (4) 0.073 (4) 0.007 (4) 0.043 (4) 0.011 (3) C3 0.069 (3) 0.081 (4) 0.064 (3) 0.003 (3) 0.036 (3) 0.023 (3) C4 0.055 (3) 0.072 (3) 0.056 (3) 0.001 (3) 0.039 (2) 0.002 (3) C5 0.059 (3) 0.052 (3) 0.056 (3) 0.004 (2) 0.036 (3) 0.003 (2) sup-4

C6 0.049 (3) 0.060 (3) 0.051 (3) 0.007 (2) 0.029 (2) 0.010 (3) C7 0.093 (4) 0.094 (5) 0.094 (4) 0.008 (4) 0.070 (4) 0.001 (4) C8 0.057 (3) 0.062 (3) 0.073 (3) 0.008 (3) 0.040 (3) 0.007 (3) C9 0.051 (3) 0.052 (3) 0.067 (3) 0.009 (2) 0.032 (3) 0.007 (3) C10 0.041 (3) 0.070 (4) 0.052 (3) 0.005 (3) 0.020 (2) 0.006 (3) C11 0.049 (3) 0.056 (3) 0.054 (3) 0.001 (2) 0.025 (2) 0.010 (3) C12 0.039 (2) 0.055 (3) 0.044 (2) 0.002 (2) 0.022 (2) 0.002 (2) C13 0.046 (3) 0.048 (3) 0.054 (3) 0.003 (2) 0.033 (2) 0.003 (2) Geometric parameters (Å, º) Mn N5 i 2.229 (4) C1 H1B 0.9300 Mn N5 2.229 (4) C2 C3 1.444 (7) Mn N2 2.269 (3) C2 H2A 0.9300 Mn N2 i 2.269 (3) C3 H3A 0.9700 Mn N4 i 2.271 (3) C3 H3B 0.9700 Mn N4 2.271 (3) C4 C5 1.342 (6) S C13 1.621 (5) C4 H4A 0.9300 N1 C6 1.345 (5) C5 H5B 0.9300 N1 C4 1.346 (6) C6 H6A 0.9300 N1 C3 1.465 (6) C7 C8 1.279 (7) N2 C6 1.315 (5) C7 H7A 0.9300 N2 C5 1.368 (5) C7 H7B 0.9300 N3 C12 1.348 (5) C8 C9 1.477 (6) N3 C10 1.358 (6) C8 H8A 0.9300 N3 C9 1.460 (6) C9 H9A 0.9700 N4 C12 1.322 (5) C9 H9B 0.9700 N4 C11 1.373 (5) C10 C11 1.342 (6) N5 C13 1.160 (5) C10 H10A 0.9300 C1 C2 1.301 (8) C11 H11A 0.9300 C1 H1A 0.9300 C12 H12A 0.9300 N5 i Mn N5 180.0 (2) N1 C3 H3A 109.0 N5 i Mn N2 91.68 (13) C2 C3 H3B 109.0 N5 Mn N2 88.32 (13) N1 C3 H3B 109.0 N5 i Mn N2 i 88.32 (13) H3A C3 H3B 107.8 N5 Mn N2 i 91.68 (13) C5 C4 N1 106.8 (4) N2 Mn N2 i 180.00 (19) C5 C4 H4A 126.6 N5 i Mn N4 i 91.04 (14) N1 C4 H4A 126.6 N5 Mn N4 i 88.96 (14) C4 C5 N2 110.0 (4) N2 Mn N4 i 89.22 (12) C4 C5 H5B 125.0 N2 i Mn N4 i 90.78 (12) N2 C5 H5B 125.0 N5 i Mn N4 88.96 (14) N2 C6 N1 111.5 (4) N5 Mn N4 91.04 (14) N2 C6 H6A 124.2 N2 Mn N4 90.78 (12) N1 C6 H6A 124.2 N2 i Mn N4 89.22 (12) C8 C7 H7A 120.0 N4 i Mn N4 180.0 C8 C7 H7B 120.0 C6 N1 C4 106.9 (4) H7A C7 H7B 120.0 sup-5

C6 N1 C3 127.5 (4) C7 C8 C9 126.7 (5) C4 N1 C3 125.6 (4) C7 C8 H8A 116.7 C6 N2 C5 104.8 (4) C9 C8 H8A 116.7 C6 N2 Mn 128.2 (3) N3 C9 C8 114.1 (4) C5 N2 Mn 126.8 (3) N3 C9 H9A 108.7 C12 N3 C10 106.2 (4) C8 C9 H9A 108.7 C12 N3 C9 127.0 (4) N3 C9 H9B 108.7 C10 N3 C9 126.9 (4) C8 C9 H9B 108.7 C12 N4 C11 104.6 (4) H9A C9 H9B 107.6 C12 N4 Mn 125.7 (3) C11 C10 N3 107.3 (4) C11 N4 Mn 129.6 (3) C11 C10 H10A 126.4 C13 N5 Mn 157.6 (4) N3 C10 H10A 126.4 C2 C1 H1A 120.0 C10 C11 N4 109.9 (4) C2 C1 H1B 120.0 C10 C11 H11A 125.0 H1A C1 H1B 120.0 N4 C11 H11A 125.0 C1 C2 C3 125.2 (7) N4 C12 N3 112.0 (4) C1 C2 H2A 117.4 N4 C12 H12A 124.0 C3 C2 H2A 117.4 N3 C12 H12A 124.0 C2 C3 N1 113.1 (4) N5 C13 S 179.4 (5) C2 C3 H3A 109.0 N5 i Mn N2 C6 81.3 (4) C4 N1 C3 C2 72.8 (7) N5 Mn N2 C6 98.7 (4) C6 N1 C4 C5 0.2 (5) N4 i Mn N2 C6 172.3 (4) C3 N1 C4 C5 179.9 (4) N4 Mn N2 C6 7.7 (4) N1 C4 C5 N2 0.5 (6) N5 i Mn N2 C5 105.3 (4) C6 N2 C5 C4 0.5 (5) N5 Mn N2 C5 74.7 (4) Mn N2 C5 C4 175.1 (3) N4 i Mn N2 C5 14.3 (4) C5 N2 C6 N1 0.3 (5) N4 Mn N2 C5 165.7 (4) Mn N2 C6 N1 174.8 (3) N5 i Mn N4 C12 8.1 (3) C4 N1 C6 N2 0.1 (5) N5 Mn N4 C12 171.9 (3) C3 N1 C6 N2 179.6 (4) N2 Mn N4 C12 83.6 (3) C12 N3 C9 C8 105.3 (5) N2 i Mn N4 C12 96.4 (3) C10 N3 C9 C8 76.3 (6) N5 i Mn N4 C11 167.3 (4) C7 C8 C9 N3 7.1 (8) N5 Mn N4 C11 12.7 (4) C12 N3 C10 C11 0.5 (5) N2 Mn N4 C11 101.0 (4) C9 N3 C10 C11 178.2 (4) N2 i Mn N4 C11 79.0 (4) N3 C10 C11 N4 0.7 (6) N2 Mn N5 C13 67.0 (9) C12 N4 C11 C10 0.7 (5) N2 i Mn N5 C13 113.0 (9) Mn N4 C11 C10 175.4 (3) N4 i Mn N5 C13 156.3 (9) C11 N4 C12 N3 0.4 (5) N4 Mn N5 C13 23.7 (9) Mn N4 C12 N3 175.9 (3) C1 C2 C3 N1 120.3 (7) C10 N3 C12 N4 0.1 (5) C6 N1 C3 C2 106.9 (6) C9 N3 C12 N4 178.6 (4) Symmetry code: (i) x+1/2, y+3/2, z. sup-6

Hydrogen-bond geometry (Å, º) D H A D H H A D A D H A C7 H7A N3 0.93 2.54 2.857 (9) 101 C6 H6A N4 0.93 2.88 3.355 (8) 113 C5 H5B N4 i 0.93 2.82 3.298 (7) 113 C12 H12A N5 i 0.93 2.72 3.224 (6) 115 Symmetry code: (i) x+1/2, y+3/2, z. sup-7