Invited Review. Value of genomics in breeding objectives for beef cattle

Size: px
Start display at page:

Download "Invited Review. Value of genomics in breeding objectives for beef cattle"

Transcription

1 Revista Brasileira de Zootecnia 2016 Sociedade Brasileira de Zootecnia ISSN Invited Review Value of genomics in breeding objectives for beef cattle Michael D. MacNeil 1,2 1 Delta G, Miles City, Montana, USA. 2 University of the Free State, Bloemfontein, South Africa. ABSTRACT - The objective of this research was to discern the contribution of genomic information to multiple-trait breeding objectives and thus understand the economic value of that information. True genetic values were simulated for each of n, possibly correlated, traits. These true genetic values, combined with uncorrelated random noise, resulted in both genomic and phenotypic estimated breeding values, EBVg and EBVp, respectively. The separate EBV were then merged (blended) as a function of their respective accuracies to produce a unified EBV for each of the n traits. Finally, for each simulated animal (N = 10000), the sum of products of economic weights and EBV was calculated to predict the economic value (net merit) of the individual. Accuracies of the EBV for the individual traits and net merit were calculated as correlations between predicted and true values. Predicted responses to selection for individual traits included in the breeding objectives were enhanced from 9% to 76% with the greatest benefit accorded to those economically relevant traits that are recorded after selection decisions are made at one year of age, measured less frequently in national cattle evaluation, or often predicted using information from indicator traits. Combining the EBV to predict net merit for terminal and maternal breeding objectives resulted in predicted increases in selection response due to incorporation of genomic information of 27% and 57%, respectively. The results are interpreted to suggest that the economic benefit to be derived from selection based on a multiple-trait economic breeding objective, which is predicted using genomically enhanced EBV, can substantially exceed the present day cost of genotyping the candidates for selection. Key Words: animal breeding, assisted selection, genetic gain, production system Introduction Genomics may have much to offer in the implementation of breeding objectives and conversely well-defined breeding objectives can lead to efficient capture of value from genomics. Advantages of genomic prediction include increased accuracy of estimated breeding values (EBV) for traits that have been components of routine genetic evaluations. Perhaps more importantly, genomic prediction makes it possible to include traits that are too costly or too difficult to measure and traits that are measured too late in life or are sex-limited, such that candidates for selection cannot have EBV with high accuracy at the time when selection decisions are made. In dairy, genomic selection also allows for a marked reduction in generation interval. Received October 15, 2015 and accepted August 29, Corresponding author: Copyright 2016 Sociedade Brasileira de Zootecnia. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Coupled with a less substantial increase in accuracy of genetic prediction, the decrease in generation interval can lead to a doubling in the rate of genetic gain without increasing rate of inbreeding per generation (Hayes et al., 2009). Consequently, the number of progeny-tested bulls can be greatly reduced without significant cost in terms of the rate of improvement per generation (de Roos et al., 2011). The immediate challenge for beef is to increase the explanatory power of genomic predictions for those traits with high economic value that have low accuracies at the time of selection (Johnston et al., 2012). Here, examination of the value of genomic prediction, on a trait-by-trait basis, is extended to an exploration of the contribution of genomic prediction to selection for a multi-trait breeding objective. In conducting this exercise, value is assumed to be derived through the sale of germplasm from a seedstock breeder to a commercial farmer at a particular point in time. Thus, it differs from an alternative assessment that attempts to evaluate the value of genetic improvement within a seedstock program. For the purposes of illustrating the approach, a simple two-trait objective reflective of postweaning feed efficiency is also presented.

2 MacNeil 795 Material and Methods In general, a breeding objective (O) reflects a functional relationship between breeding values (BV) of biological traits and profit (e.g., O = a 1 BV 1 + a 2 BV 2 + a 3 BV 3, in which a i is the economic value of the i-th economically relevant trait). Implementation of a breeding objective depends on a genetic evaluation system such that: Ô = a 1 EBV 1 + a 2 EBV 2 + a 3 EBV 3 Derivation of the economic weights corresponds to the partial derivative of a profit function with respect to each trait. The profit function is expected to reflect production system efficiency (Dickerson, 1970, 1976, 1982): in which R d = annualized replacement cost; I d = annual non-feed cost; F md = annual maintenance feed cost; F pd = annual feed cost for performance (e.g., milk production); N o = number of offspring marketed per breeding female (may be fractional); D o = number of days from weaning to harvest for offspring; I o = daily non-feed cost for progeny during the post-weaning period; F mo = daily feed cost for maintenance of offspring; F po = daily feed cost for performance of offspring; S o = annual non-feed cost per offspring marketed; P d = annualized product marketed from a breeding female (i.e., a cull cow); V d = unit value of product marketed from a breeding female; P o = annual product marketed from offspring; and V o = unit value of product marketed from offspring. It is anticipated that, in many instances, this breeding objective would be transformed from a ratio to some linear function (i.e., income expense). There is no guarantee that this transformation leads to similar selection criterion with selection based on the linear function, quite possibly leading to the enterprise being rescaled without changing production efficiency (reviewed by Goddard, 1998). It is important to recognize that, while the breeding objective itself may be complex, presentation of the evaluation that results from its use is simple; it is an EBV for profit. To facilitate calculation of the value of genomic estimates of breeding value, a simplified breeding objective corresponding to feed efficiency, with components average daily gain (ADG) and average daily feed intake (ADFI), was considered. Following Lin (1980), the ratio objective was transformed to a linear one and economic weights for the components of feed efficiency were estimated from the ratio of phenotypic means for the two traits. For this, example, the feed to gain ratio was assumed to be 5:1. Thus, following Henderson (1969), the selection index (I) to improve the feed efficiency breeding objective would be:, in which, EBV 1 = the EBV for ADG and EBV 2 = the EBV for ADFI. Then let be the genetic variance-covariance matrix for components of feed efficiency (MacNeil et al., 2013). In this example, the genetic correlation between the components of efficiency was 0.66±0.08 and heritability estimates for ADG and ADFI were 0.25±0.05 and 0.37±0.05, respectively. Let r p1 and r g1 be accuracies of the EBV for ADG calculated from phenotypes (EBV p1 ) and genotypes (1 ), respectively. Similarly, let r p2 and r g2 be accuracies of the EBV for ADFI, also calculated from phenotypes (EBV p2 ) and genotypes (2 ), respectively. As a consequence of the accuracies being less than 1.0, the variances of the EBV are reduced. Thus, variance ; variance ; variance ; and variance, in which V i is the additive genetic variance of the i-th trait. Then, following Kachman (2013), the EBV for ADG (EBV 1 ) and ADFI (EBV 2 ) that utilize appropriately blended information from phenotypes and genotypes are:, and The relationships above were then used to simulate a series of data sets with accuracies of phenotypic and genomic EBV that ranged from 0.1 to 0.9 in increments of 0.1. Details are presented for five analysis, in which accuracies of the EBV quartet [EBV p1, 1, EBV p2, and 2 ] were [0.50, 0.00, 0.61, and 0.00], [0.50, 0.40, 0.61, and 0.40], [0.50, 0.60, 0.61, and 0.60], [0.60, 0.40, 0.70, and 0.40], and [0.60, 0.60, 0.70, and 0.60]. Contributions of genomic predictions of EBV to two breeding objectives for Angus cattle were also evaluated. The first of these objectives was formulated by MacNeil and Herring (2005) to evaluate terminal sires (Table 1). Briefly, a simulation model was developed with parameters estimated from the average performance of steers produced by 363 purebred Angus sires that were evaluated in the Circle A Sire Alliance Program. Commercial Angus females were randomly mated to the sires being evaluated. Calves were.

3 796 Value of genomics in breeding objectives for beef cattle born during a 4-mo spring calving season and weaned at an average age of 192 d, over a 5-yr period. After weaning, the calves were fed a diet of moderate energy density for an average of 106 d before being transported to a feedlot for finishing. Daily feed intake of individual animals was measured in contemporary groups of 96 steers using a Calan Broadbent Feeding System. A stepwise series of five rations that increased in energy density were used throughout the finishing period. Harvest date was determined to target a contemporary group to an average 1.3 cm fat depth at the 12-13th rib and/or to avoid discounts for under- and overweight carcasses. In the afternoon before harvest, steers were weighed and transported overnight to the packing plant for harvest and collection of carcass data. Carcass data included harvest date, hot carcass weight, marbling score, fat depth, longissimus muscle area, and percentage kidney, pelvic, and heart fat. In all, the simulation model employed 76 production and economic variables to simulate performance of straightbred Angus. Expenses associated with production were accumulated as they occurred and income was derived solely from the sale of steers at harvest. For the simulation, a stochastic multivariate normal distribution of marbling, yield grade, and carcass weight was used to value the carcasses. Economic values were calculated by approximation of the partial derivatives of profit with respect to driving variables that corresponded to the EBV profile generated from the progeny test data arising from the sires being evaluated. The corresponding genetic (co)variance matrix employed in the simulation is as follows: The second objective, for a specialized dam line with calves marketed at weaning, was more recently developed and is unpublished (Table 2). Much of the simulation model used for this objective was similar to that described above for the terminal objective, with the addition of a more detailed description of the cow herd based on a matrix model (Leslie, 1945; 1948) describing development (progress through the life cycle) as a function of age-specific mortality and reproduction. Parameters for the Leslie matrix model were derived from data of breed associations that use inventory-based recording systems. In addition, rather than considering a straightbred Angus system, the maternal objective was formulated based on a two-breed rotation of biologically similar dam lines. The corresponding genetic (co)variance matrix employed in the simulation is as follows: Table 1 - Estimates of mean (μ), phenotypic standard deviation (σ), heritability (h 2 ), economic weight ( P/ t), and accuracy for traits (t) included in an Angus terminal sire breeding objective Accuracy Trait µ σ h 2 P/ t Relative value, % EBV p Birth weight, kg Weaning weight, kg Average daily gain, kg/d Daily feed intake, kg/d Marbling score Yield grade genomic estimated breeding values; EBV p - phenotypic estimated breeding values slight 00 ; small 00 ; etc. Table 2 - Estimates of mean (μ), phenotypic standard deviation (σ), heritability (h 2 ), economic weights ( P/ t), and accuracies for traits (t) included in a breeding objective for an Angus specialized dam line Accuracy Trait µ σ h 2 P/ t Relative value, % EBV p Stayability, % Heifer pregnancy, % Calving ease (d), % Calving ease (m), % Weaning weight (d), kg Weaning weight (m), kg genomic estimated breeding values; EBV p - phenotypic estimated breeding values.

4 MacNeil 797 For each breeding objective, two scenarios were simulated: where the accuracies of both the phenotypic and genomic EBV were >0.0 (as presented in Tables 1 and 2); and where the accuracies of the genomic EBV were = 0.0 (i.e., no genomic information was available). When an appropriate estimate for Angus was not available, the necessary accuracy estimates were taken from Saatchi et al. (2012). Accuracy estimates for the phenotype-based EBV were extracted from a 2015 Angus national cattle evaluation for 2014 bulls that were not genotyped. Thus, the accuracies of the EBV were approximately those that would be available from choosing among yearling bull candidates for selection. The evaluation of these scenarios was otherwise parallel to the evaluation of the feed efficiency objective as described above. Finally, the univariate form of the Breeder s equation :, in which, R = response to selection; h = square root of heritability or accuracy; σ a = genetic standard deviation; and i = selection intensity, was used to assess selection response as a function of changes in accuracy due to the addition of genomic information to traditional phenotypebased predictions of genetic merit. Results and Discussion While much research into genetic improvement has been enamored with statistical and genomic technologies, the critical question of what exactly constitutes improvement also requires attention (MacNeil et al., 1997). An obvious, though far from trivial, question in defining objectives of genetic improvement is the identification of the economic values of traits affecting the breeding goal. Here, simulation models were developed to aid in addressing this question. Existence of industry-wide specifications for beef products, production systems, and, therefore, different enterprises do not necessarily suggest that there should be an industrywide selection index. Resources available for production and level of production also vary among production systems and individual farms or ranches, resulting in different economic structures. As a result, relative economic values may differ among production systems and units and each may have a numerically different selection index. However, even across production and marketing systems as widely divergent as those existing between South Africa and the United States, the correlation between breeding objectives for Angus used as terminal sires was found to be positive and substantial (MacNeil, 2005a). Additionally, correlations among breeding objectives for terminal sires across breeds and marketing systems in the United States ranged from 0.74 to 0.98 (MacNeil, 2005b). The use of simulation to calculate an economic value is not without difficulty, particularly when the desired economic value is relevant to a state variable rather than a driving variable. For a driving variable, the use of a straightforward perturb-and-observe approach can be used to approximate the appropriate partial derivative and yield the desired economic value. This equation illustrates the approach: in which a i is the economic value of trait i; P is profit; μ i is the population mean for trait I; and is the unit increase in μ i. However, for a state variable, whose value changes as one or more driving variables changes, the possibility of double counting is introduced. In the Angus maternal breeding objective, an economic value for stayability was desired. However, stayability is a state variable calculated as a consequence of age-specific reproduction and survival parameters that drive the Leslie-matrix component of the simulation. Driving variables, for which economic values were desired, were simultaneously required to have partial derivatives with respect to stayability equal to zero, thus avoiding the possibility of double counting, which would inflate their economic values. The five scenarios analyzed with respect to the feed efficiency objective were intended to reflect meaningful circumstances. In the first three scenarios, accuracies of the EBV based on phenotypes are equal to the square roots of the corresponding heritability estimates and thus, the EBV are assumed to be based only on individual performance records. In the fourth and fifth scenarios, the accuracies of these EBV were increased to reflect the addition of records from sibs. Accuracies of the genomic EBV (Figure 1) were selected to reflect no genomic information (scenario 1), modest accuracy genomic EBV (scenarios 2 and 4), and higher accuracy genomic EBV (scenarios 3 and 5). Higher accuracy EBV from phenotypes were not considered as it is thought to be unlikely that greater levels of accuracy could be attained prior to the time selection decisions are typically made. It should be noted that these results are not at all general, but correspond only to the breeding objective considered here. However, the results were insensitive to the value of the covariance between ADG and ADFI used to simulate the data (not presented herein). The actual improvement in accuracy of the predicted value of the breeding objective does depend on the specific traits in the objective that is employed.,

5 798 Value of genomics in breeding objectives for beef cattle For individual traits in the terminal objective, selection response is increased through the use of genomic predictors by 9% to 41% with the least effect on birth weight and the greatest effect on dry matter intake (Figure 2). In general, these effects were greater on post-weaning traits that are less frequently recorded and (or) monitored with indicator traits. For individual traits in the maternal objective, selection response is increased through genomic predictors by 12% to 76% with by far the greatest effects on stayability and heifer pregnancy (Figure 3), traits that are unobserved on bull candidates for selection at the time when the selection decisions are typically reached. As identified by Johnston et al. (2012), in many circumstances, the accuracy of genomic prediction is low in beef, most likely due to the relatively few animals with genotypes and phenotypes that have been used in developing genomic prediction equations. Furthermore, improving the accuracy of genomic predictions will require genotypes and phenotypes from many more animals with even greater numbers of observations needed for lowly heritable traits, such as female reproduction and other fitness traits (Johnston et al., 2012). The use of breeding objectives also allows the consequences of incorporating genomic information to be translated into economic terms, assuming the classical pyramid paradigm for flows of genetic and economic signals in the beef industry (Figure 4). Conceptually, the industry is divided into two segments: one, a seedstock or stud breeding sector, wherein data recording and subsequent Figure 1 - Accuracy of feed efficiency breeding objective as a function of scenarios defined by differences in accuracies of conventional and genomic EBV for average daily gain (trait 1) and daily food intake (trait 2). Figure 3 - Effects of genomic information on accuracy of estimated breeding values for stayability (STY), heifer pregnancy (HFP), direct (CEd) and maternal (CEm) calving ease, and direct (WWd) and maternal (WWm) weaning weights. Figure 2 - Effects of genomic information on accuracy of estimated breeding values for birth weight (BWT), weaning weight (WWT), post-weaning ADG, daily dry matter intake (DFI), marbling score (MRB), and USDA yield grade (YG). Figure 4 - Envisioned relationship of the stud or seedstock sector, in which genetic improvement is made, and the commercial sector that benefits from and pays for that genetic improvement.

6 MacNeil 799 genetic evaluation facilitate genetic improvement that results in enhanced profitability for the commercial producers that form the second segment. These commercial producers benefit from the selection decisions that have been made by stud breeders and reward them for the enhanced genetic merit of the stock that they sell for use in commercial production. Here, assume that in the seedstock segment, 5% of bulls and 30% of heifers are retained for breeding and thus i = (2.06 and 1.16)/2 = For the terminal (Table 1) and maternal (Table 2) objectives outlined above, σ a 25 and 67, respectively. A degree of caution is warranted in interpreting these standard deviations, as the breeding objectives that they result from were based on different economic scenarios. These results indicate selection response for economic merit, as reflected in the breeding objectives, would be increased and 1.56-fold by including genomic information in the EBV in the terminal and maternal objectives, respectively (Figure 5). The difference in selection response when adding genomic information to the prediction of EBV is $5.64 for the terminal index and $24.81 for the maternal objective. These values reflect the potential that may be attainable in the seedstock sector. When the genetically improved seedstock is used in the commercial sector, one-half of the increase in economic merit can be captured across the number of progeny produced. If an individual terminal sire were to produce 60 offspring, then the expected net increase in merit would total $ For comparative purposes, the net increase in merit resulting from selection based on the maternal objective should be regressed to a present value that is one generation in arrears. Considering a generation interval of four years (for sires of daughters) and a real interest rate of 4%, genomic prediction would, in total, add $ for a sire producing 15 daughters that were retained as replacement females. The results found here are sensitive to the accuracies of the genomic EBV, with less accurate genomic EBV resulting in diminished value of the genotyping. In addition, the results are contingent on the number of progeny that the commercial producer expects to produce for the purpose anticipated by the breeding objective. The assessment of the value resulting from bulls evaluated by the maternal objective is further clouded by any potential change in value of the sibs of the retained females. Fortunately, it appears that maternal and terminal breeding objectives may be positively correlated (Oschner, 2016) and thus, here, the value to a commercial producer using a maternal breeding objective would have been underestimated. It is also unknown the degree to which having genomically enhanced EBV as opposed to only phenotypic EBV affects the demand and, consequently, the prices paid for the bulls that a seedstock producer offers for sale (Miller, 2010). The approach used here is consistent with the philosophy advocated by Thallman (2004), in which all information that adds to the accuracy of prediction is incorporated into a single EBV for each trait (Figure 6). True genetic values for each of n, possibly correlated traits, are the cause of differences in both genomic and phenotypic estimated breeding values and EBV p, respectively. The separate EBV are then merged (blended) as a function of their respective accuracies to produce an EBV for each of the n traits. Finally, for each animal, the sum of products of economic weights and EBV is calculated to predict its economic value. An alternative approach in which - genomic estimated breeding values; EBV p - phenotypic estimated breeding values. Figure 5 - Effect of adding genomic information to traditional phenotype-based estimated breeding values on the accuracy of breeding objectives for beef cattle selected specialized sire (terminal) and dam (maternal) lines. Figure 6 - Conceptual model employed to incorporate of genomic information into multiple-trait economic breeding objectives.

7 800 Value of genomics in breeding objectives for beef cattle the genomic and conventional EBV remained separate was examined by Togashi et al. (2011). They found it was important to combine the EBV p and into a genomically enhanced index to maximize genetic response to selection. Similar to the result found here, Togashi et al. (2011) found that the -assisted index was consistently more effective than EBV p -only index (scenario 1) and that the incorporation of genomic information was particularly valuable when the accuracy of the conventional EBV was low. It is noteworthy that these results are also consistent with those obtained when the contribution of genomic values to prediction of EBV for single traits has been evaluated (e.g., Spangler, 2011). Conclusions The perspective taken in this paper is that of a commercial beef producer buying bulls. Does that producer make a better (more profitable) decision if the bulls have been genotyped? Without doubt, genomically enhanced estimated breeding values are more accurate predictors of merit than traditional estimated breeding values. The value of this increase in accuracy can be assessed through consideration of the breeding objective of a commercial producer, with the results being unique to that particular objective. Genomic prediction is likely to be of greatest value to the commercial producer when the breeding objective includes traits that are not recorded on candidates for selection at the time when the choice among them is made, and thus their estimated breeding values for those traits have low accuracy. It is logical that if the commercial producer receives greater value as a result of the seedstock producer having genotyped the bulls that are offered for sale, then the commercial producer will also willingly pay more for those bulls and thus offset the cost of genotyping by the seedstock producer. Acknowledgments This work contributes to the following projects: Development of breeding objectives, selection indexes and cost-benefit of economic selection, and genomic selection for Brazilian beef cattle, which is supported by CNPq-CSF- PVE grant / from the National Council for Scientific and Technological Development of the Ministry of Science, Technology, and Innovation as a component of the Brazilian Science Without Borders Program; and Identification and management of alleles impairing heifer fertility while optimizing genetic gain in Angus cattle, which is supported by award no from National Institute of Food and Agriculture to the University of Missouri. The author gratefully acknowledges Jim Gibb (Neogen) for the original motivation for this work, substantive critiques by Matthew Spangler (University of Nebraska) and Scott Newman (Genus), and the assistance of Dan Moser (American Angus Association) in providing current estimates of most of the accuracies used in evaluation of the indexes. References de Roos, A. P.; Schrooten, C.; Veerkamp, R. F. and van Arendonk, J. A Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls. Journal of Dairy Science 94: Dickerson, G. E Efficiency of animal production molding the biological components. Journal of Animal Science 30: Dickerson, G. E Inbreeding and heterosis in animals. p In: Proceedings of the Animal Breeding and Genetics Symposium in Honor of Dr. J. L. Lush. American Society of Animal Science and American Dairy Science Association, Champaign, IL. Dickerson, G. E Effect of genetic changes in components of growth on biological and economic efficiency of meat production. In: Proceedings of the 2nd World Congress Genetics Applied Livestock Production. Madrid, Spain. V: Goddard, M. E Consensus and debate in the definition of breeding objectives. Journal of Dairy Science 81(Suppl. 2):6-18. Hayes, B. J.; Bowman, P. J.; Chamberlain, A. J. and Goddard, M. E Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science 92: Henderson, C. R Index and Expected Genetic Advance. NAS-NRC Publ. National Academy of Science, Washington, DC, USA. Publication No p Johnston, D. J.; Tier, B. and Graser, H-U Beef cattle breeding in Australia with genomics: opportunities and needs. Animal Production Science 52: Kachman, S. D Derivation of a blended BV. University of Nebraska, Lincoln. Available at: < document_library/get_file?uuid=ee09c533-a8ca-4d06-9b40-ddfd &groupId= &.pdf >. Accessed on: Apr. 1, Leslie, P. H The use of matrices in certain population mathematics. Biometrika 33: Leslie, P. H Some further notes on the use of matrices in population mathematics. Biometrika 35: Lin, C. Y Relative efficiency of selection methods for improvement of feed efficiency. Journal of Dairy Science 63: MacNeil, M. D. 2005a. Breeding objectives for Angus cattle in South Africa and the United States. p In: Proceedings of the 9th World Angus Forum Technology Meeting, Cape Town, South Africa. MacNeil, M. D. 2005b. Breeding objectives for terminal sires for use in U.S. beef production systems. p In: Proceedings of the Beef Improvement Federation 37th Annual Research Symposium and Annual Meeting. Billings, Montana, USA. MacNeil, M. D.; Scholtz, M. M. and Maiwashe, A Estimates of variance components for postweaning feed intake and growth in Bonsmara bulls and evaluation of alternative measures of feed efficiency. South African Journal of Animal Science 43:18-24.

8 MacNeil 801 MacNeil, M. D.; Nugent, R. A. and Snelling, W. M Breeding for profit: an introduction to selection index concepts. In: Proceedings of the Range Beef Cow Symposium XV. Rapid City, South Dakota, USA. MacNeil, M. D. and Herring, W. O Economic evaluation of genetic differences among Angus bulls. Proceedings of the Western Section of the American Society of Animal Science 56: Miller, S Genetic improvement of beef cattle through opportunities in genomics. Revista Brasileira de Zootecnia 39(Supl.): Oschner, K. P Development of terminal and maternal economic selection indices in Beefmaster cattle. M.S. Thesis. University of Nebraska, Lincoln. Saatchi, M.; Schnabel, R. D.; Rolf, M. M.; Taylor, J. F. and Garrick, D. J Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle. Genetics Selection Evolution 44:38. Spangler, M Integrating molecular data into NCE: expectations, benefits, and needs. In: p Proceedings of the Beef Improvement Federation 43th Annual Research Symposium and Annual Meeting. Bozeman, Montana, USA. Thallman, R. M DNA testing and marker assisted selection. p In: Proceedings of the Beef Improvement Federation 36th Annual Research Symposium and Annual Meeting. Sioux Falls, South Dakota, USA. Togashi, K.; Lin, C. Y. and Yamazaki, T The efficiency of genome-wide selection for genetic improvement of net merit. Journal of Animal Science 89:

Breeding Objectives Indicate Value of Genomics for Beef Cattle M. D. MacNeil, Delta G

Breeding Objectives Indicate Value of Genomics for Beef Cattle M. D. MacNeil, Delta G Breeding Objectives Indicate Value of Genomics for Beef Cattle M. D. MacNeil, Delta G Introduction A well-defined breeding objective provides commercial producers a mechanism for extracting value from

More information

EPD Info 1/5. Guide to the American Gelbvieh Association Expected Progeny Differences (EPDs)

EPD Info 1/5. Guide to the American Gelbvieh Association Expected Progeny Differences (EPDs) EPD Info gelbvieh.org/genetic-technology/epd-info/ Guide to the American Gelbvieh Association Expected Progeny Differences (EPDs) Expected progeny differences (EPDs) can be used to predict the average

More information

Alison Van Eenennaam, Ph.D.

Alison Van Eenennaam, Ph.D. The Value of Accuracy Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis alvaneenennaam@ucdavis.edu (530) 752-7942 animalscience.ucdavis.edu/animalbiotech

More information

1999 American Agricultural Economics Association Annual Meeting

1999 American Agricultural Economics Association Annual Meeting Producer Prediction of Optimal Sire Characteristics Impacting Farm Profitibility In a Stochastic Bio-Economic Decision Framework William Herring, and Vern Pierce 1 Copyright 1999 by Vern Pierce. All rights

More information

Proceedings, The Range Beef Cow Symposium XXII Nov. 29, 30 and Dec. 1, 2011, Mitchell, NE. IMPLEMENTATION OF MARKER ASSISTED EPDs

Proceedings, The Range Beef Cow Symposium XXII Nov. 29, 30 and Dec. 1, 2011, Mitchell, NE. IMPLEMENTATION OF MARKER ASSISTED EPDs Proceedings, The Range Beef Cow Symposium II Nov. 29, 30 and Dec. 1, 2011, Mitchell, NE IMPLEMENTATION OF MARKER ASSISTED EPDs Matt Spangler Department of Animal Science University of Nebraska Lincoln,

More information

1 This research was conducted under cooperative agreements between USDA, ARS, Montana Agric. Exp.

1 This research was conducted under cooperative agreements between USDA, ARS, Montana Agric. Exp. Breeding Objectives for Terminal Sires For Use in U.S. Beef Production Systems,2 M. D. MacNeil 3 USDA Agricultural Research Service Miles City, Montana 5930 USA ABSTRACT Breeding objectives facilitate

More information

Understanding and Using Expected Progeny Differences (EPDs)

Understanding and Using Expected Progeny Differences (EPDs) Agriculture and Natural Resources FSA3068 Understanding and Using Expected Progeny Differences (EPDs) Brett Barham Associate Professor Animal Science Arkansas Is Our Campus Visit our web site at: http://www.uaex.edu

More information

TECHNICAL BULLETIN GENEMAX ADVANTAGE IS DESIGNED FOR COMMERCIAL BEEF HERDS. August Zoetis Genetics 333 Portage Street Kalamazoo, MI

TECHNICAL BULLETIN GENEMAX ADVANTAGE IS DESIGNED FOR COMMERCIAL BEEF HERDS. August Zoetis Genetics 333 Portage Street Kalamazoo, MI TECHNICAL BULLETIN August 2016 GENEMAX ADVANTAGE IS DESIGNED FOR COMMERCIAL BEEF HERDS Zoetis Genetics 333 Portage Street Kalamazoo, MI 49007-4931 KEY POINTS GeneMax Advantage is a genomic test for commercial

More information

TECHNICAL BULLETIN GENEMAX ADVANTAGE IS DESIGNED FOR COMMERCIAL BEEF HERDS. August Zoetis Genetics 333 Portage Street Kalamazoo, MI

TECHNICAL BULLETIN GENEMAX ADVANTAGE IS DESIGNED FOR COMMERCIAL BEEF HERDS. August Zoetis Genetics 333 Portage Street Kalamazoo, MI TECHNICAL BULLETIN August 2016 GENEMAX ADVANTAGE IS DESIGNED FOR COMMERCIAL BEEF HERDS Zoetis Genetics 333 Portage Street Kalamazoo, MI 49007-4931 KEY POINTS GeneMax Advantage is a genomic test for commercial

More information

BLUP and Genomic Selection

BLUP and Genomic Selection BLUP and Genomic Selection Alison Van Eenennaam Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis, USA alvaneenennaam@ucdavis.edu http://animalscience.ucdavis.edu/animalbiotech/

More information

Introduction to Indexes

Introduction to Indexes Introduction to Indexes Robert L. (Bob) Weaber, Ph.D. University of Missouri, Columbia, MO 65211 Why do we need indexes? The complications of multiple-trait selection and animal breeding decisions may

More information

The economics of using DNA markers for bull selection in the beef seedstock sector A.L. Van Eenennaam 1, J.H. van der Werf 2, M.E.

The economics of using DNA markers for bull selection in the beef seedstock sector A.L. Van Eenennaam 1, J.H. van der Werf 2, M.E. The economics of using DNA markers for bull selection in the beef seedstock sector A.L. Van Eenennaam 1, J.H. van der Werf 2, M.E. Goddard 3 1 Cooperative Extension Specialist Animal Biotechnology and

More information

Selecting and Sourcing Replacement Heifers

Selecting and Sourcing Replacement Heifers Selecting and Sourcing Replacement Heifers 10 to 20% of a cowherd is replaced annually. Approximately 30% of weaned heifers are needed for replacement Additional heifers are needed for expansion Heifers

More information

Goal Oriented Use of Genetic Prediction

Goal Oriented Use of Genetic Prediction Goal Oriented Use of Genetic Prediction Mark Johnson Inheritance of Quantitative Traits P = G + E Phenotype = Genotype + Environment Genotype Additive due to individual genes Non-additive due to combinations

More information

Using Genomics to Affect Cow Herd Reproduction

Using Genomics to Affect Cow Herd Reproduction Using Genomics to Affect Cow Herd Reproduction Matt Spangler, Extension Beef Genetics Specialist 1 1 Animal Science, University of Nebraska-Lincoln, Lincoln, NE Introduction It should be common knowledge

More information

Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist

Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Beef Cattle Industry Structure: Implications for whole genome selection Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Animal Biotechnology and Genomics Department of Animal Science University

More information

Effective Use Of EPDs. Presented to: Minnesota Beef Producers Presented by: Kris A. Ringwall, Ph. D. NDSU Extension Beef Specialist

Effective Use Of EPDs. Presented to: Minnesota Beef Producers Presented by: Kris A. Ringwall, Ph. D. NDSU Extension Beef Specialist Presented to: Minnesota Beef Producers Presented by: Kris A. Ringwall, Ph. D. NDSU Extension Beef Specialist February 10-11, 2016 2 Background EPDs have been available for more than 30 years. The use of

More information

EFFICIENCY OF THE COW HERD: BULL SELECTION AND GENETICS

EFFICIENCY OF THE COW HERD: BULL SELECTION AND GENETICS EFFICIENCY OF THE COW HERD: BULL SELECTION AND GENETICS Oregon State University/Beef Industry Tour Corvallis, Oregon Thursday, October 25, 2018 Overview Introduction/importance of sire selection Selection

More information

Alison Van Eenennaam, Ph.D.

Alison Van Eenennaam, Ph.D. WHAT ARE HERD BULLS ACCOMPLISHING IN MULTIPLE SIRE BREEDING PASTURES?" Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Animal Biotechnology and Genomics Department of Animal Science University

More information

Traditional genetic selection for fertility: Indicator traits and potential antagonisms

Traditional genetic selection for fertility: Indicator traits and potential antagonisms 2016 Applied Reproductive Strategies in Beef Cattle Des Moines, Iowa September 7-8, 2016 229 Traditional genetic selection for fertility: Indicator traits and potential antagonisms Matt Spangler, University

More information

Alison Van Eenennaam, Ph.D.

Alison Van Eenennaam, Ph.D. Update: Integrating DNA Information into Beef Cattle Production Systems" Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Animal Biotechnology and Genomics Department of Animal Science University

More information

Using Live Animal Carcass Ultrasound Information in Beef Cattle Selection

Using Live Animal Carcass Ultrasound Information in Beef Cattle Selection Using Live Animal Carcass Ultrasound Information in Beef Cattle Selection In some instances, value-based marketing systems can be economically advantageous to cattle producers. Monetary rewards are sometimes

More information

USING GENOMICS TO AFFECT COW HERD REPRODUCTION. Matt Spangler University of Nebraska-Lincoln

USING GENOMICS TO AFFECT COW HERD REPRODUCTION. Matt Spangler University of Nebraska-Lincoln USING GENOMICS TO AFFECT COW HERD REPRODUCTION Matt Spangler University of Nebraska-Lincoln Relative Economic Weights for Traditional Beef Firm Reproduction:Growth:End Product 10:5:1 (Melton, 1995) Improvement

More information

Understanding EPDs and Accuracies

Understanding EPDs and Accuracies Understanding EPDs and Accuracies Expected Progeny Differences (EPDs) Expected Progeny Differences (EPDs) are used to compare the genetic merit of animals in various traits. An EPD predicts the difference

More information

Understanding Expected Progeny Differences (EPDs) Scott P. Greiner, Extension Animal Scientist, Virginia Tech

Understanding Expected Progeny Differences (EPDs) Scott P. Greiner, Extension Animal Scientist, Virginia Tech publication 400-804 Understanding Expected Progeny Differences (EPDs) Scott P. Greiner, Extension Animal Scientist, Virginia Tech Expected progeny differences (EPDs) provide estimates of the genetic value

More information

Crossbreeding for the Commercial Beef Producer Alison Van Eenennaam, University of California, Davis

Crossbreeding for the Commercial Beef Producer Alison Van Eenennaam, University of California, Davis 2017-2 Crossbreeding for the Commercial Beef Producer Alison Van Eenennaam, University of California, Davis alvaneenennaam@ucdavis.edu Dr. Darrh Bullock Dr. Jared Decker Dr. Megan Rolf Dr. Matthew Spangler

More information

Welcome to Igenity Brangus and the Power of Confident Selection

Welcome to Igenity Brangus and the Power of Confident Selection Now available exclusively through the International Brangus Breeders Association: Welcome to Igenity Brangus and the Power of Confident Selection - - - - - - - - - - - - - - - - - - - - - - - - - - - -

More information

Proceedings, The Range Beef Cow Symposium XXI December 1, 2 and 3, 2009, Casper, WY USING INFORMATION TO MAKE INFORMED SELECTION DECISIONS

Proceedings, The Range Beef Cow Symposium XXI December 1, 2 and 3, 2009, Casper, WY USING INFORMATION TO MAKE INFORMED SELECTION DECISIONS Proceedings, The Range Beef Cow Symposium XXI December 1, 2 and 3, 2009, Casper, WY Formatted: Right: 1.25" USING INFORMATION TO MAKE INFORMED SELECTION DECISIONS Matt Spangler Department of Animal Science

More information

Proceedings, The Range Beef Cow Symposium XVIII December 9, 10, 11, 2003, Mitchell Nebraska

Proceedings, The Range Beef Cow Symposium XVIII December 9, 10, 11, 2003, Mitchell Nebraska Proceedings, The Range Beef Cow Symposium XVIII December 9, 10, 11, 2003, Mitchell Nebraska THE ECONOMIC BENEFITS AND POTENTIAL WHEN USING CURRENT AND FUTURE EPD ECONOMICALLY RELEVANT TRAITS R. Mark Enns

More information

Ma# Spangler Sept. 8, 2016

Ma# Spangler Sept. 8, 2016 Relative Economic Weights for Traditional Beef Firm Reproduction:Growth:End Product 10:5:1 Traditional genetic selection for fertility: indicator traits and potential antagonisms Matt Spangler University

More information

Canadian Hereford Association

Canadian Hereford Association Canadian Hereford Association Pan American Hereford Cattle Evaluation Fall 2017 EPD Averages, Tools and Trends Includes: Introduction to Genomically Enhanced EPD Post-Weaning Gain EPD Residual Feed Intake

More information

2018 ICBF and Sheep Ireland Genetics Conference 20 th Anniversary. Dorian Garrick

2018 ICBF and Sheep Ireland Genetics Conference 20 th Anniversary. Dorian Garrick 2018 ICBF and Sheep Ireland Genetics Conference 20 th Anniversary Genetic Improvement of Cattle and Sheep Focus on The Future Dorian Garrick AL Rae Centre for Genetics & Breeding, New Zealand D.Garrick@massey.ac.nz

More information

Genetics of Beef Cattle: Moving to the genomics era Matt Spangler, Assistant Professor, Animal Science, University of Nebraska-Lincoln

Genetics of Beef Cattle: Moving to the genomics era Matt Spangler, Assistant Professor, Animal Science, University of Nebraska-Lincoln Genetics of Beef Cattle: Moving to the genomics era Matt Spangler, Assistant Professor, Animal Science, University of Nebraska-Lincoln Several companies offer DNA marker tests for a wide range of traits

More information

Improving Genetics in the Suckler Herd by Noirin McHugh & Mark McGee

Improving Genetics in the Suckler Herd by Noirin McHugh & Mark McGee Section 4 23 by Noirin McHugh & Mark McGee Introduction Carefully identifying better animals and breeding them with other superior animals will gradually improve the genetics of a herd. Enhanced genetics

More information

Strategy for Applying Genome-Wide Selection in Dairy Cattle

Strategy for Applying Genome-Wide Selection in Dairy Cattle Strategy for Applying Genome-Wide Selection in Dairy Cattle L. R. Schaeffer Centre for Genetic Improvement of Livestock Department of Animal & Poultry Science University of Guelph, Guelph, ON, Canada N1G

More information

Understanding and Applying Economically Relevant Traits (ERT) and Indices for the Commercial Cattle Rancher

Understanding and Applying Economically Relevant Traits (ERT) and Indices for the Commercial Cattle Rancher University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Range Beef Cow Symposium Animal Science Department 2013 Understanding and Applying Economically Relevant Traits (ERT) and

More information

Optimizing Traditional and Marker Assisted Evaluation in Beef Cattle

Optimizing Traditional and Marker Assisted Evaluation in Beef Cattle Optimizing Traditional and Marker Assisted Evaluation in Beef Cattle D. H. Denny Crews, Jr., 1,2,3 Stephen S. Moore, 2 and R. Mark Enns 3 1 Agriculture and Agri-Food Canada Research Centre, Lethbridge,

More information

Breed Utilization and Production Efficiency

Breed Utilization and Production Efficiency Breed Utilization and Production Efficiency Merlyn Nielsen 1 1 University of Nebraska-Lincoln Introduction Maximizing production efficiency, or perhaps more specifically economic efficiency, is a goal

More information

MOOTOPIA: AN ANIMAL BREEDERS WISH LIST FOR THE BEEF INDUSTRY. Matt Spangler University of Nebraska-Lincoln

MOOTOPIA: AN ANIMAL BREEDERS WISH LIST FOR THE BEEF INDUSTRY. Matt Spangler University of Nebraska-Lincoln MOOTOPIA: AN ANIMAL BREEDERS WISH LIST FOR THE BEEF INDUSTRY Matt Spangler University of Nebraska-Lincoln THE THINGS YOU DO THAT DRIVE ME BSC ON A SCAFFOLD OF EDUCATIONAL MATERIAL A guy you might love

More information

Value of DNA information for beef bull selection

Value of DNA information for beef bull selection Value of DNA information for beef bull selection A.L. Van Eenennaam 1, J.H. van der Werf 2, M.E. Goddard 3 1 Cooperative Extension Specialist Animal Biotechnology and Genomics University of California,

More information

Uses of DNA information on Commercial Cattle Ranches. Alison Van Eenennaam

Uses of DNA information on Commercial Cattle Ranches. Alison Van Eenennaam Uses of DNA information on Commercial Cattle Ranches Alison Van Eenennaam Animal Genomics and Biotechnology Cooperative Extension Specialist Department of Animal Science University of California, Davis

More information

11/30/2018. Introduction to Genomic Selection OUTLINE. 1. What is different between pedigree based and genomic selection? 2.

11/30/2018. Introduction to Genomic Selection OUTLINE. 1. What is different between pedigree based and genomic selection? 2. Introduction to Genomic Selection imagefriend.com OUTLINE 1. What is different between pedigree based and genomic selection? 2. Selection tools - Selection Indexes - Genotyping resources 3. DNA-based markers

More information

WAGYU BREEDOBJECT $INDEXES TECHNICAL UPDATE

WAGYU BREEDOBJECT $INDEXES TECHNICAL UPDATE WAGYU BREEDOBJECT $INDEXES TECHNICAL UPDATE AUTHORS Dr Matthew McDonagh and Carel Teseling Australian Wagyu Association Suite 6, 146 Marsh St, Armidale NSW 2350 Dr Brad Walmsley Animal Genetics and Breeding

More information

Proceedings, The Range Beef Cow Symposium XXI December 1, 2 and , Casper, WY. Integrating Information into Selection. Loren Berger.

Proceedings, The Range Beef Cow Symposium XXI December 1, 2 and , Casper, WY. Integrating Information into Selection. Loren Berger. Proceedings, The Range Beef Cow Symposium XXI December 1, 2 and 3 2009, Casper, WY Integrating Information into Selection Loren Berger Introduction Berger s Herdmasters is located on the southern edge

More information

The role and power of ultrasound in predicting marbling

The role and power of ultrasound in predicting marbling The role and power of ultrasound in predicting marbling Wayne Upton 1 and Matt Wolcott 2 1 Animal Genetics and Breeding Unit. University of New England, Armidale, NSW 2351. Phone: 02 6773 3141; Email:

More information

Making Beef Out of Dairy

Making Beef Out of Dairy Making Beef Out of Dairy Dairy beef cross cattle have become an increasingly popular option for dairy farmers looking to capture additional market value on calves that aren t needed for the dairy herd.

More information

Mark Enns BIF 2013 LA- C- EP Commi9ee Breakout 6/13/13. Beef industry has historically adopted technology EPD Ultrasound

Mark Enns BIF 2013 LA- C- EP Commi9ee Breakout 6/13/13. Beef industry has historically adopted technology EPD Ultrasound R. Mark Enns Colorado State University Uniformity To work for establishment of accurate and uniform procedures for measuring, recording and assessing data concerning the performance of beef cattle. Development

More information

Proceedings, The Range Beef Cow Symposium XXIII December 3, 4 and 5, 2013 Rapid City, South Dakota

Proceedings, The Range Beef Cow Symposium XXIII December 3, 4 and 5, 2013 Rapid City, South Dakota Proceedings, The Range Beef Cow Symposium XXIII December 3, 4 and 5, 2013 Rapid City, South Dakota Understanding and Applying Economically Relevant Traits (ERT) and Indices for the Commercial Cattle Rancher

More information

REDUCED SNP PANELS creation, realistic expectations, and use in different livestock industries

REDUCED SNP PANELS creation, realistic expectations, and use in different livestock industries REDUCED SNP PANELS creation, realistic expectations, and use in different livestock industries Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Animal Biotechnology and Genomics University

More information

TECHNICAL SUMMARY April 2010

TECHNICAL SUMMARY April 2010 TECHNICAL SUMMARY April 2010 High-Density (HD) 50K MVPs The beef industry s first commercially available Molecular Value Predictions from a High-Density panel with more than 50,000 markers. Key Points

More information

Management Decisions. Management Decisions. Tradition. Legacy. ReproGene /3/2018. Jared Decker, University of Missouri 1

Management Decisions. Management Decisions. Tradition. Legacy. ReproGene /3/2018. Jared Decker, University of Missouri 1 Tradition Using Genomics to Make Dr. Jared Decker University of Missouri To download session handouts, text HANDOUTS to 313131 Legacy Why would I want to develop a plan? a.k.a. breeding objective Focus

More information

Proceedings, State of Beef Conference November 7 and 8, 2018, North Platte, Nebraska COW SIZE AND COWHERD EFFICIENCY. Introduction

Proceedings, State of Beef Conference November 7 and 8, 2018, North Platte, Nebraska COW SIZE AND COWHERD EFFICIENCY. Introduction Proceedings, State of Beef Conference November 7 and 8, 2018, North Platte, Nebraska COW SIZE AND COWHERD EFFICIENCY J. T. Mulliniks, M. Benell, and R. N. Funston University of Nebraska West Central Research

More information

Genetic Evaluations. Stephen Scott Canadian Hereford Association

Genetic Evaluations. Stephen Scott Canadian Hereford Association Genetic Evaluations Stephen Scott Canadian Hereford Association Canadian Hereford Association Herefords were first imported into Canada in 1860 The CHA was incorporated in 1902 under the Government of

More information

Modern Genetic Evaluation Procedures Why BLUP?

Modern Genetic Evaluation Procedures Why BLUP? Modern Genetic Evaluation Procedures Why BLUP? Hans-Ulrich Graser 1 Introduction The developments of modem genetic evaluation procedures have been mainly driven by scientists working with the dairy populations

More information

Beef Production and the Brahman-Influenced Cow in the Southeast

Beef Production and the Brahman-Influenced Cow in the Southeast Beef Production and the Brahman-Influenced Cow in the Southeast J. W. Turner Department of Animal Science Texas A&M University The importance of the brood cow to efficient beef production is often overlooked

More information

Using EPDs in a Commercial Herd

Using EPDs in a Commercial Herd Using EPDs in a Commercial Herd R. R. Schalles and K. O. Zoellner Department of Animal Sciences and Industry Kansas State University Manhattan, KS 66506 Today, beef cattle producers have the best tools

More information

SELECTION FOR IMPROVED FEED EFFICIENCY: A GENOMICS APPROACH. Matt Spangler, Ph.D. University of Nebraska-Lincoln

SELECTION FOR IMPROVED FEED EFFICIENCY: A GENOMICS APPROACH. Matt Spangler, Ph.D. University of Nebraska-Lincoln SELECTION FOR IMPROVED FEED EFFICIENCY: A GENOMICS APPROACH Matt Spangler, Ph.D. University of Nebraska-Lincoln Where We Rank (F:G) 2:1 1:1 6:1 3:1 Fundamental Principles P = G + E Feed Intake = Expected

More information

Genomic selection in the Australian sheep industry

Genomic selection in the Australian sheep industry Genomic selection in the Australian sheep industry Andrew A Swan Animal Genetics and Breeding Unit (AGBU), University of New England, Armidale, NSW, 2351, AGBU is a joint venture between NSW Department

More information

GENETIC IMPROVEMENT FOR FORAGE USE GENETIC IMPROVEMENT PRINCIPLES FOR THE COWHERD 1/2/2014. Qualifications. Matt Spangler University of Nebraska

GENETIC IMPROVEMENT FOR FORAGE USE GENETIC IMPROVEMENT PRINCIPLES FOR THE COWHERD 1/2/2014. Qualifications. Matt Spangler University of Nebraska GENETIC IMPROVEMENT FOR FORAGE USE Matt Spangler University of Nebraska GENETIC IMPROVEMENT PRINCIPLES FOR THE COWHERD Spangler s interpretation Qualifications Fertile at a young age Short post-partum

More information

Predicting Profit. The Rancher s Guide to EPDs

Predicting Profit. The Rancher s Guide to EPDs Predicting Profit The Rancher s Guide to EPDs EPDs (Expected Progeny Differences) are the most powerful selection tool the beef industry has ever had. Their use has converted breeding seedstock cattle

More information

IMPROVING EPD ACCURACY BY COMBINING EPD INFORMATION WITH DNA TEST RESULTS 1. Alison L. Van Eenennaam

IMPROVING EPD ACCURACY BY COMBINING EPD INFORMATION WITH DNA TEST RESULTS 1. Alison L. Van Eenennaam Proceedings, Applied Reproductive Strategies in Beef Cattle August 31 September 1, 2011; Joplin, MO IMPROVING EPD ACCURACY BY COMBINING EPD INFORMATION WITH DNA TEST RESULTS 1 Alison L. Van Eenennaam Department

More information

Utilization of Molecular Information to Date. Methods of Reporting (past and present)

Utilization of Molecular Information to Date. Methods of Reporting (past and present) Proceedings, Applied Reproductive Strategies in Beef Cattle August 31 September 1, 2011; Joplin, MO IMPROVING EPD ACCURACY BY COMBINING EPD INFORMATION WITH DNA TEST RESULTS 1 Alison L. Van Eenennaam Department

More information

Prediction of Carcass Traits Using Live Animal Ultrasound

Prediction of Carcass Traits Using Live Animal Ultrasound Prediction of Carcass Traits Using Live Animal Ultrasound A.S. Leaflet R53 D.E. Wilson, professor of animal science, G.H. Rouse, professor of animal science, G.-H. Graser, research director, University

More information

TECHNICAL BULLETIN GENEMAX FOCUS - EVALUATION OF GROWTH & GRADE FOR COMMERCIAL USERS OF ANGUS GENETICS. November 2016

TECHNICAL BULLETIN GENEMAX FOCUS - EVALUATION OF GROWTH & GRADE FOR COMMERCIAL USERS OF ANGUS GENETICS. November 2016 TECHNICAL BULLETIN November 2016 GENEMAX FOCUS - EVALUATION OF GROWTH & GRADE FOR COMMERCIAL USERS OF ANGUS GENETICS Zoetis Genetics 333 Portage Street Kalamazoo, MI 49007-4931 KEY POINTS GeneMax Focus

More information

Impact of Selection for Improved Feed Efficiency. Phillip Lancaster UF/IFAS Range Cattle Research and Education Center

Impact of Selection for Improved Feed Efficiency. Phillip Lancaster UF/IFAS Range Cattle Research and Education Center Impact of Selection for Improved Feed Efficiency Phillip Lancaster UF/IFAS Range Cattle Research and Education Center Importance of Feed Efficiency By 2050, the world population is expected to increase

More information

Collecting Abattoir Carcase Information

Collecting Abattoir Carcase Information Collecting Abattoir Carcase Information Abattoir carcase information, along with live animal ultrasound scanning measurements and genomic information, is used to calculate Carcase EBVs within BREEDPLAN.

More information

How might DNA-based information generate value in the beef cattle sector?

How might DNA-based information generate value in the beef cattle sector? How might DNA-based information generate value in the beef cattle sector? Animal Biotechnology & Genomics Cooperative Extension Specialist Department of Animal Science University of California, Davis Davis,

More information

REDUCED AGE AT FIRST CALVING: EFFECTS ON LIFETIME PRODUCTION, LONGEVITY, AND PROFITABILITY

REDUCED AGE AT FIRST CALVING: EFFECTS ON LIFETIME PRODUCTION, LONGEVITY, AND PROFITABILITY Dairy Day 2004 REDUCED AGE AT FIRST CALVING: EFFECTS ON LIFETIME PRODUCTION, LONGEVITY, AND PROFITABILITY M. J. Meyer 1, R. W. Everett 1, and M. E. Van Amburgh 1 Summary The primary advantages of reducing

More information

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS FREQUENTLY ASKED QUESTIONS GENEMAX ADVANTAGE : THE SOLUTION FOR COMMERCIAL ANGUS HEIFER SELECTION August 2016 GENEMAX ADVANTAGE Q. What is GeneMax Advantage? A. GeneMax Advantage is a DNA test for prospective

More information

WHETHER dealing with a commercial

WHETHER dealing with a commercial Selecting, Producing, and Marketing Beef Cattle WHETHER dealing with a commercial cow-calf, purebred cow-calf, or feedlot operation, a beef producer needs to be capable of analyzing and selecting high-quality

More information

MateSel: A Software Mating Tool to Aid in Selection for Improved Fertility

MateSel: A Software Mating Tool to Aid in Selection for Improved Fertility MateSel: A Software Mating Tool to Aid in Selection for Improved Fertility Alison Van Eenennaam Animal Genomics and Biotechnology Cooperative Extension Specialist Department of Animal Science University

More information

Economic Weighting of Traits

Economic Weighting of Traits Economic Weighting of Traits 1 Introduction The breeding objective in any livestock species is to improve the overall economic merit of the animals. Many traits contribute to the Total Economic Value of

More information

ECONOMICS OF USING DNA MARKERS FOR SORTING FEEDLOT CATTLE Alison Van Eenennaam, Ph.D.

ECONOMICS OF USING DNA MARKERS FOR SORTING FEEDLOT CATTLE Alison Van Eenennaam, Ph.D. ECONOMICS OF USING DNA MARKERS FOR SORTING FEEDLOT CATTLE Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis alvaneenennaam@ucdavis.edu

More information

BREEDPLAN EBVs The Traits Explained

BREEDPLAN EBVs The Traits Explained BREEDPLAN EBVs The Traits Explained BREEDPLAN currently reports EBVs for a range of economically important traits. These traits include: Weight Fertility/Calving Carcase Other Birth Weight Scrotal Size

More information

User Guide

User Guide User Guide get connected Welcome This Welcome Pack is aimed at helping you make full use of your HerdPlus membership. The HerdPlus service will furnish you with breeding and management tools you need to

More information

HERD REPLACEMENTS: HEIFERS OR OPEN COWS?

HERD REPLACEMENTS: HEIFERS OR OPEN COWS? HERD REPLACEMENTS: HEIFERS OR OPEN COWS? J. F. Baker Coastal Plain Experiment Station University of Georgia INTRODUCTION It is common to find opinions, rules of thumb or suggestions for livestock operations

More information

Genomic selection applies to synthetic breeds

Genomic selection applies to synthetic breeds Genomic selection applies to synthetic breeds Jérémie Vandenplas, Mario P.L. Calus 21 November 2015 Traditional selection Aim Selection of the best animals to create the next generation Based on estimated

More information

Impacts of Crossbreeding on Profitability in Vertically Coordinated Beef Industry Marketing Systems

Impacts of Crossbreeding on Profitability in Vertically Coordinated Beef Industry Marketing Systems B Impacts of Crossbreeding on Profitability in Vertically Coordinated Beef Industry Marketing Systems *Preliminary Report Year 1 David A. Daley and Sean P. Earley California State University, Chico College

More information

29 th Annual BIC Bull Sale

29 th Annual BIC Bull Sale One Bar Eleven Ranch John E. Rouse Beef Improvement Center 29 th Annual BIC Bull Sale Monday April 13 th, 12:30 p.m. Selling Approximately 50 Yearling Bulls One Bar Eleven Ranch John E. Rouse Beef Improvement

More information

TECHNICAL BULLETIN December 2017

TECHNICAL BULLETIN December 2017 TECHNICAL BULLETIN December 2017 MORE INFORMED COMMERCIAL ANGUS REPLACEMENT HEIFER DECISIONS WITH GENEMAX ADVANTAGE Zoetis Genetics Angus Genetics Inc. 333 Portage Street 3201 Frederick Avenue Kalamazoo,

More information

UNDERSTANDING & USING GENEMAX FOCUS TM

UNDERSTANDING & USING GENEMAX FOCUS TM UNDERSTANDING & USING GENEMAX FOCUS TM GeneMax Focus is a genomic test created through collaboration between Angus Genetics Inc. (AGI), Certified Angus Beef (CAB) and Zoetis to help inform commercial Angus

More information

The powerful new genomic selection tool. Built By Angus Genetics Inc.

The powerful new genomic selection tool. Built By Angus Genetics Inc. The powerful new genomic selection tool Built By Angus Genetics Inc. For Angus. by angus. Angus GS sets the standard for genetic testing in Angus cattle. More power More accuracy More value As a new genomic

More information

HOW DO I PROFIT FROM REPRODUCTION? HITTING THE TARGET FOR HIGH-QUALITY PRODUCT. L.R. Corah. Certified Angus Beef LLC Manhattan, KS.

HOW DO I PROFIT FROM REPRODUCTION? HITTING THE TARGET FOR HIGH-QUALITY PRODUCT. L.R. Corah. Certified Angus Beef LLC Manhattan, KS. Proceedings, Applied Reproductive Strategies in Beef Cattle December 3-4, 2012; Sioux Falls, SD HOW DO I PROFIT FROM REPRODUCTION? HITTING THE TARGET FOR HIGH-QUALITY PRODUCT L.R. Corah Certified Angus

More information

DEVELOPMENT OF TERMINAL AND MATERNAL ECONOMIC SELECTION INDICES IN BEEFMASTER CATTLE

DEVELOPMENT OF TERMINAL AND MATERNAL ECONOMIC SELECTION INDICES IN BEEFMASTER CATTLE University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses and Dissertations in Animal Science Animal Science Department 8-2016 DEVELOPMENT OF TERMINAL AND MATERNAL ECONOMIC

More information

Developments in the Genetic Improvement of a Large Commercial Population in the New Zealand Sheep Industry

Developments in the Genetic Improvement of a Large Commercial Population in the New Zealand Sheep Industry Developments in the Genetic Improvement of a Large Commercial Population in the New Zealand Sheep Industry G B Nicoll Landcorp Farming Ltd Rotorua, New Zealand Landcorp Farming Ltd State Owned Enterprise.

More information

Overview. 50,000 Markers on a Chip. Definitions. Problem: Whole Genome Selection Project Involving 2,000 Industry A.I. Sires

Overview. 50,000 Markers on a Chip. Definitions. Problem: Whole Genome Selection Project Involving 2,000 Industry A.I. Sires Whole Genome Selection Project Involving 2,000 Industry A.I. Sires Mark Thallman, Mark Allan, Larry Kuehn, John Keele, Warren Snelling, Gary Bennett Introduction Overview 2,000 Bull Project Training Data

More information

Application of Carcass Ultrasound in Beef Production. T. Dean Pringle Animal and Dairy Science University of Georgia

Application of Carcass Ultrasound in Beef Production. T. Dean Pringle Animal and Dairy Science University of Georgia Application of Carcass Ultrasound in Beef Production T. Dean Pringle Animal and Dairy Science University of Georgia Foodservice Sector Demand for High-Quality Beef Demand for Choice, Upper 2/3 Choice,

More information

Sire Selection. Dr. Tim Marshall Retired UF Professor of Animal Science Retired Dean and Professor, Abraham Baldwin Agricultural College

Sire Selection. Dr. Tim Marshall Retired UF Professor of Animal Science Retired Dean and Professor, Abraham Baldwin Agricultural College Sire Selection Dr. Tim Marshall Retired UF Professor of Animal Science Retired Dean and Professor, Abraham Baldwin Agricultural College Reflections of a middle aged bull buyer Like most of you reading

More information

Genetics Effective Use of New and Existing Methods

Genetics Effective Use of New and Existing Methods Genetics Effective Use of New and Existing Methods Making Genetic Improvement Phenotype = Genetics + Environment = + To make genetic improvement, we want to know the Genetic value or Breeding value for

More information

Culling the Commercial Cow Herd: BIF Fact Sheet

Culling the Commercial Cow Herd: BIF Fact Sheet 1 of 6 10/26/2009 1:52 PM University of Missouri Extension G2036, Reviewed October 1993 Culling the Commercial Cow Herd: BIF Fact Sheet John Massey Department of Animal Sciences Beef cow owners should

More information

QTL Mapping, MAS, and Genomic Selection

QTL Mapping, MAS, and Genomic Selection QTL Mapping, MAS, and Genomic Selection Dr. Ben Hayes Department of Primary Industries Victoria, Australia A short-course organized by Animal Breeding & Genetics Department of Animal Science Iowa State

More information

REALISED RESPONSES TO DIVERGENT SELECTION FOR YEARLING GROWTH RATE IN ANGUS CATTLE

REALISED RESPONSES TO DIVERGENT SELECTION FOR YEARLING GROWTH RATE IN ANGUS CATTLE REALISED RESPONSES TO DIVERGENT SELECTION FOR YEARLING GROWTH RATE IN ANGUS CATTLE P.F. PARNELL1, R. BARLOW2, and B. TIER3, AUSTRALIA 1 Agricultural Research Centre, Trangie, NSW, 2 Agricultural Research

More information

Genomic-Polygenic and Polygenic Evaluation of Multibreed Angus-Brahman Cattle for Direct and Maternal Growth Traits Under Subtropical Conditions

Genomic-Polygenic and Polygenic Evaluation of Multibreed Angus-Brahman Cattle for Direct and Maternal Growth Traits Under Subtropical Conditions Genomic-Polygenic and Polygenic Evaluation of Multibreed Angus-Brahman Cattle for Direct and Maternal Growth Traits Under Subtropical Conditions M. A. Elzo 1, M. G. Thomas 2, D. D. Johnson 1, C. A. Martinez

More information

Mike Davis, The Ohio State University 6/19/14

Mike Davis, The Ohio State University 6/19/14 2014 Beef Improvement Federation Meeting! The optimum beef cow is indeed an elusive beast. I have searched for her for more than 20 years, and have come up empty handed. But I believe I m getting close.!

More information

More protifable beef cattle by genetic improvement - balancing your breeding program

More protifable beef cattle by genetic improvement - balancing your breeding program More protifable beef cattle by genetic improvement - balancing your breeding program Wayne Upton and Peter Parnell Animal Genetics & Breeding Unit, University of New England, Armidale NSW 2351 Ph: (02)

More information

Genetic variance and covariance and breed differences for feed intake and average daily gain to improve feed efficiency in growing cattle

Genetic variance and covariance and breed differences for feed intake and average daily gain to improve feed efficiency in growing cattle Published April 13 017 Genetic variance and covariance and breed differences for feed intake and average daily gain to improve feed efficiency in growing cattle K. J. Retallick* 1 J. M. Bormann* R. L.

More information

ECONOMICALLY RELEVANT TRAITS AND SELECTION INDICES

ECONOMICALLY RELEVANT TRAITS AND SELECTION INDICES University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Range Beef Cow Symposium Animal Science Department 11-2015 ECONOMICALLY RELEVANT TRAITS AND SELECTION INDICES M. L. Spangler

More information

The Importance of Information Management and Genomics

The Importance of Information Management and Genomics The Importance of Information Management and Genomics AARD Worshop Lakeland College February 11, 2015 Tom Lynch-Staunton Livestock Gentec, University of Alberta Livestock Gentec Formerly the Alberta Bovine

More information

Performance and carcass characteristics of different cattle types A preliminary report

Performance and carcass characteristics of different cattle types A preliminary report Kansas Agricultural Experiment Station Research Reports Volume 0 Issue 1 Cattleman's Day (1993-2014) Article 1404 1972 Performance and carcass characteristics of different cattle types A preliminary report

More information

Relationship of Cow Size, Cow Requirements, and Production Issues

Relationship of Cow Size, Cow Requirements, and Production Issues Relationship of Cow Size, Cow Requirements, and Production Issues Dr. Matt Hersom Extension Beef Cattle Specialist University of Florida - Institute of Food and Agricultural Sciences Department of Animal

More information