B cell Epitopes CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS. Technical University of Denmark - DTU Department of systems biology

Size: px
Start display at page:

Download "B cell Epitopes CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS. Technical University of Denmark - DTU Department of systems biology"

Transcription

1 B cell Epitopes

2 Antibody Effect Virus or Toxin Antibodies

3 Antibody Effect Virus or Toxin Antibodies

4 Antibodies

5 Antibodies

6 Antibody - Antigen interaction Antigen Antibody

7 Antibody - Antigen interaction Antigen Fab Antibody

8 Antibody - Antigen interaction Antigen Epitope Fab Antibody

9 Antibody - Antigen interaction Antigen Paratope Fab Antibody

10 B-Cells Gene rearrangements Stem Cell Precurser B-lymphocytes B-lymphocytes each displaying a unique B-cell receptor

11 Figure 4-2

12 Figure 4-3

13 Figure 4-4

14 Figure 4-5

15 Figure 4-6

16 P-nucleotide introduction

17 N-nucleotide introduction

18 Somatic Hypermutations 2001 by Garland Publishing

19 B-Cell Activation No Affinity Somatic Hypermutations High Affinity Memory B-cells Low Affinity No Affinity Plasma cells

20 B-Cell Activation T Helper Cell TCR B Cell Class II MHC Bound Peptide

21 Cartoon by Eric Reits

22 Monoclonal Abs Hybridomas Phage Display

23 Hybridomas

24 Phage Display

25 Phage Display

26 Structural Epitopes

27 Discontinuous Epitopes

28 Discontinuous Epitopes

29 Discontinuous Paratopes

30 CDR Regions Variable regions Alpha-carbon trace of the structure of the heavy chain and light chain variable regions of a typical antibody. The framework regions of both chains are shown in grey whilst the complementarity determining regions (CDRs) are coloured individually, i.e. Heavy chain CDR 1 = Light blue CDR 2 = Cerise CDR 3 = Yellow Light Chain CDR 1 = Red CDR 2 = Green CDR 3 = Blue CDR = complementarity determining region

31 Identification of germ-line genes Why? As bookkeeping and reporting tool For detection of potentially important residues in binding affinity.

32 Joinsolver

33 Vbase

34 Vquest

35 VDJsolver

36 Questions to be addressed Can multiple D genes be inserted? Violation of 12/23 rule Can D genes be inserted backwards? Is there a D gene preference? Is there a reading frame preference for D genes? If yes, is it part of the gene rearrangement?

37 Data sets 6329 clonally unrelated rearrangements un-mutated functional 3707 mutated functional 274 un-mutated non-functional 380 mutated non-functional

38 P nucleotides Sequences Permutated sequences Distance from heptamer to gene end No. of seq No. with P % with P VH gene No. of seq No. with P % with P p-value < JH gene < end of D gene < end of D gene

39 P nucleotides Sequences Permutated sequences Distance from heptamer to gene end No. of seq No. with P % with P VH gene No. of seq No. with P % with P p-value < JH gene < end of D gene < end of D gene

40 P nucleotides Sequences Permutated sequences Distance from heptamer to gene end No. of seq No. with P % with P VH gene No. of seq No. with P % with P p-value < JH gene < end of D gene < end of D gene

41 How many types of D genes? Conventional D genes Identified in 81% of sequences unmutated sequences, 64% of mutated sequences Inverted D genes Long inverted D genes can not be excluded Two or more D genes

42 D gene usage 27 conventional D genes, 34 known alleles

43 D-gene usage and JH gene JH proximal D genes more often recombined to JH4 than JH6 and JH distal D genes more often to JH6

44 Inverted (palindrom) D genes

45 Inverted (palindrom) D genes Inverted D genes are not used! (or used extremely infrequent)

46 Multiple D genes V-gene Longest-D Shortest-D J-gene 65 sequences with two D genes Average length of shortest D genes: 11.6bp Average length of longest D genes: 18.8bp Average length of D genes in permuted sequences: 11.3bp Average length of D genes in normal sequences: 17.8bp => multiple D genes are not present!!!

47 D gene reading frames Reading Frame Stop Hydrophilic Hydrophobic Gene P NP P NP P NP D2-2*01 RIL**YQLLC (1) GYCSSTSCYA (2) DIVVVPAAM (3) D2-2*02 RIL**YQLLY (1) GYCSSTSCYT (2) DIVVVPAAI (3) D2-2*03 WIL**YQLLC (1) GYCSSTSCYA (2) DIVVVPAAM (3) D2-8*01 RILY*WCMLY (1) GYCTNGVCYT (2) DIVLMVYAI (3) D2-8*02 RILYWWCMLY (1) GYCTGGVCYT (2) DIVLVVYAI (3) D2-15*01 RIL*WW*LLL (1) GYCSGGSCYS (2) DIVVVVAAT (3) D2-21*01 SILWW*LLF (1) AYCGGDCYS (2) HIVVVIAI (3) D2-21*02 SILWW*LLF (1) AYCGGDCYS (2) HIVVVTAI (3) Total The recombination mechanism utilizes each D gene reading frame at same frequency

48 D gene reading frames Reading Frame Stop Hydrophilic Hydrophobic Gene P NP P NP P NP D2-2*01 RIL**YQLLC (1) GYCSSTSCYA (2) DIVVVPAAM (3) D2-2*02 RIL**YQLLY (1) GYCSSTSCYT (2) DIVVVPAAI (3) D2-2*03 WIL**YQLLC (1) GYCSSTSCYA (2) DIVVVPAAM (3) D2-8*01 RILY*WCMLY (1) GYCTNGVCYT (2) DIVLMVYAI (3) D2-8*02 RILYWWCMLY (1) GYCTGGVCYT (2) DIVLVVYAI (3) D2-15*01 RIL*WW*LLL (1) GYCSGGSCYS (2) DIVVVVAAT (3) D2-21*01 SILWW*LLF (1) AYCGGDCYS (2) HIVVVIAI (3) D2-21*02 SILWW*LLF (1) AYCGGDCYS (2) HIVVVTAI (3) Total The recombination mechanism utilizes each D gene reading frame at same frequency

49 VDJsolver performance Unmutated sequences #: p<0.01 : P<0.001 Mutated sequences

50 Results regarding recombination and diversity and open questions DIR, OR15, multiple D genes and VH replacements are not used at a significant rate Inverted D genes are used rarely All D genes not used at same frequency What determines if a D genes is used? D gene usage somewhat dependent on JH gene Does multiple D-J recombination steps take place? All D gene reading frames used at equal rate at the recombination step

51 Results regarding recombination and diversity and open questions (cont.) N addition not random but dependent on end nucleotide Does nucleotide availability or the specificity of TdT determine the N addition? Trimming not random but dependent on gene and sequence What enzyme(s) is responsible for the trimming?

52 Numbering Schemes The Kabat numbering scheme is a widely adopted standard for numbering the residues in an antibody in a consistent manner. However the scheme has problems! The Chothia numbering scheme is identical to the Kabat scheme, but places the insertions in CDR-L1 and CDR-H1 at the structurally correct positions. This means that topologically equivalent residues in these loops do get the same label (unlike the Kabat scheme). The IMGT unique numbering for all IG and TR V-REGIONs of all species relies on the high conservation of the structure of the variable region. This numbering, set up after aligning more than sequences, takes into account and combines the definition of the framework (FR) and complementarity determining regions (CDR), structural data from X-ray diffraction studies, and the characterization of the hypervariable loops.

53 Identification of CDR regions CDR-L1 Start Approx residue 24 Residue before is always C Residue after is always W. Typically WYQ, but also, WLQ, WFQ, WYL Length 10 to 17 residues CDR-L2 Start always 16 residues after the end of CDR-L1 Residues before generally IY, but also, VY, IK, IF Length always 7 residues CDR-L3 Start always 33 residues after end of CDR-L2 Residue before is always C Residues after always FGXG Length 7 to 11 residues CDR-H1 Start Approximately residue 31 (always 9 after a C) (Chothia/AbM defintion starts 5 residues earlier) Residues before always CXXXXXXXX Residues after always W. Typically WV, but also WI, WA Length 5 to 7 residues (Kabat definition); 7 to 9 residues (Chothia definition); 10 to 12 residues (AbM definition) CDR-H2 Start always 15 residues after the end of Kabat/AbM definition of CDR-H1 Residues before typically LEWIG, but a number of variations Residues after K[RL]IVFT[AT]SIA (where residues in square brackets are alternatives at that position) Length Kabat definition 16 to 19 residues (AbM definition and most recent Chothia definition ends 7 residues earlier; earlier Chothia definition starts 2 residues later and ends 9 earlier) CDR-H3 Start always 33 residues after end of CDR-H2 (always 3 after a C) Residues before always CXX (typically CAR)

B cell Epitopes CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS. Technical University of Denmark - DTU Department of systems biology

B cell Epitopes CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS. Technical University of Denmark - DTU Department of systems biology B cell Epitopes Antibody Effect Virus or Toxin Antibodies Antibody Effect Virus or Toxin Antibodies Antibodies Antibodies Antibody - Antigen interaction Antigen Antibody Antibody - Antigen interaction

More information

Antibody Structure, and the Generation of B-cell Diversity. Chapter 4 5/1/17

Antibody Structure, and the Generation of B-cell Diversity. Chapter 4 5/1/17 Antibody Structure, and the Generation of B-cell Diversity B cells recognize their antigen without needing an antigen presenting cell Chapter 4 Structure of Immunoglobulins Structure and function Immunoglobulin

More information

Chapter 5. Genetic Models. Organization and Expression of Immunoglobulin Genes 3. The two-gene model: Models to Explain Antibody Diversity

Chapter 5. Genetic Models. Organization and Expression of Immunoglobulin Genes 3. The two-gene model: Models to Explain Antibody Diversity Chapter 5 Organization and Expression of Immunoglobulin Genes 3 4 5 6 Genetic Models How to account for: ) Vast diversity of antibody specificities ) Presence of Variable regions at the amino end of Heavy

More information

Antibody Structure. Antibodies

Antibody Structure. Antibodies Antibodies Secreted by B lymphocytes Great diversity and specificity: >10 9 different antibodies; can distinguish between very similar molecules Tag particles for clearance/destruction Protect against

More information

Antibody Structure supports Function

Antibody Structure supports Function Antibodies Secreted by B lymphocytes Great diversity and specificity: >10 9 different antibodies; can distinguish between very similar molecules Tag particles for clearance/destruction Protect against

More information

Andrea s SI Session PCB 3233

Andrea s SI Session PCB 3233 Practice Test Test 2 1. A pathogen invades a tissue. Which cell of the immune system is more likely to respond first? a. Neutrophil b. T Cell c. B Cell d. Macrophage 2. The receptor for C3b is? a. CR1

More information

The generation of lymphocyte antigen receptors (Chapter 5):

The generation of lymphocyte antigen receptors (Chapter 5): The generation of lymphocyte antigen receptors (Chapter 5): 1. Ig Gene Rearrangement (somatic recombination). 2. Ig Somatic Hypermutation. 3. Ig Class Switching 4. T cell Receptor Gene Rearragement 1.

More information

T and B cell gene rearrangement October 17, Ram Savan

T and B cell gene rearrangement October 17, Ram Savan T and B cell gene rearrangement October 17, 2016 Ram Savan savanram@uw.edu 441 Lecture #9 Slide 1 of 28 Three lectures on antigen receptors Part 1 (Last Friday): Structural features of the BCR and TCR

More information

Immunoglobulins. Generation of Diversity

Immunoglobulins. Generation of Diversity Immunoglobulins Generation of Diversity Unfortunately, for this theory to be true the number of antibody genes would need to be 100-1000-fold greater than the entire human genome Introduction Immunologist

More information

Antibodies (Recommended reading: Abbas et al., 4th edition, Chapter 3; Chapter 4; Janeway et al., 5th edition, Chapter 3)

Antibodies (Recommended reading: Abbas et al., 4th edition, Chapter 3; Chapter 4; Janeway et al., 5th edition, Chapter 3) HST 175 Antibodies (Recommended reading: Abbas et al., 4th edition, Chapter 3; Chapter 4; Janeway et al., 5th edition, Chapter 3) Antibodies protect us from a vast variety of pathogens. Indeed the antibody

More information

Chapter 4. Antigen Recognition by B-cell and T-cell Receptors

Chapter 4. Antigen Recognition by B-cell and T-cell Receptors Chapter 4 Antigen Recognition by B-cell and T-cell Receptors Antigen recognition by BCR and TCR B cells 2 separate functions of immunoglobulin (Ig) bind pathogen & induce immune responses recruit cells

More information

IMGT Locus on Focus. ABC Fax Marie-Paule Lefranc

IMGT Locus on Focus. ABC Fax Marie-Paule Lefranc Exp Clin Immunogenet 1998;15:1 7 Received: January 7, 1998 Marie-Paule Lefranc Laboratoire d ImmunoGénétique Moléculaire, CNRS, Université Montpellier II, Montpellier, France IMGT Locus on Focus A New

More information

Molecular recognition

Molecular recognition Lecture 9 Molecular recognition Antoine van Oijen BCMP201 Spring 2008 Structural principles of binding 4 fundamental functions of proteins: 1) Binding 2) Catalysis 3) Switching 4) Structural All involve

More information

GENETIC BASIS OF ANTIBODY STRUCTURE AND DIVERSITY. Steven J. Norris, Ph.D

GENETIC BASIS OF ANTIBODY STRUCTURE AND DIVERSITY. Steven J. Norris, Ph.D GENETIC BASIS OF ANTIBODY STRUCTURE AND DIVERSITY Steven J. Norris, Ph.D Topics I. General principles II. The heavy chain Ig locus and VDJ rearrangement III. Light chain rearrangement. IV. Mechanisms of

More information

TEMA 7. LA GENERACIÓN DE LA DIVERSIDAD

TEMA 7. LA GENERACIÓN DE LA DIVERSIDAD TEMA 7. LA GENERACIÓN DE LA DIVERSIDAD Ehrlich's side-chain theory. Ehrlich proposed that the combination of antigen with a preformed B-cell receptor (now known to be antibody) triggered the cell to produce

More information

IMGT-ONTOLOGY and IMGT databases, tools and Web resources for immunoinformatics

IMGT-ONTOLOGY and IMGT databases, tools and Web resources for immunoinformatics IMGT-ONTOLOGY and IMGT databases, tools and Web resources for immunoinformatics Marie-Paule Lefranc Université Montpellier, CNRS First international Immunoinformatics Symposium Yokohama, Japan, 26-27 February

More information

LECTURE: 22 IMMUNOGLOBULIN DIVERSITIES LEARNING OBJECTIVES: The student should be able to:

LECTURE: 22 IMMUNOGLOBULIN DIVERSITIES LEARNING OBJECTIVES: The student should be able to: LECTURE: 22 Title IMMUNOGLOBULIN DIVERSITIES LEARNING OBJECTIVES: The student should be able to: Identify the chromosome that contains the gene segments that encode the surface immunoglobulin heavy chain

More information

1 Name. 1. (3 pts) What is apoptosis and how does it differ from necrosis? Which is more likely to trigger inflammation?

1 Name. 1. (3 pts) What is apoptosis and how does it differ from necrosis? Which is more likely to trigger inflammation? 1 Name MCB 150 Midterm Eam #1 (100 points total) Please write your full name on each page of the eam!! The eam consists of 17 questions (6 pages). Each has a different point count as indicated. Please

More information

T-cell response. Taken from NIAID: s.aspx

T-cell response. Taken from NIAID:   s.aspx T-cell receptor T-cell response 1. Macrophage or dendritic cell digest antigen bacteria, virus 2. Fragments of Ag bind to major histo-compatiblity (MHC) proteins in macrophage. 3. MHC I-Ag fragment expressed

More information

How to Screen a Billion Drug Candidates?

How to Screen a Billion Drug Candidates? How to Screen a Billion Drug Candidates? Single Cell Functional Assays: Ultra-sensitive, Ultra-fast, Ultrahigh-throughput Next-Generation Drug Discovery The advantages of de novo protein engineering for

More information

IMGT, the international ImMunoGeneTics information system.

IMGT, the international ImMunoGeneTics information system. http://www.imgt.org IMGT, the international ImMunoGeneTics information system http://www.imgt.org Marie-Paule Lefranc IMGT Founder and Director, Professor UM2 and the IMGT team November 28, 2012 IMGT in

More information

SPECIFICITY, DIVERSITY, AND IMMUNOGLOBULIN GENES

SPECIFICITY, DIVERSITY, AND IMMUNOGLOBULIN GENES SPECIFICITY, DIVERSITY, AND IMMUNOGLOBULIN GENES ANTIBODY SPECIFICITY. This can be thought of in terms of the goodness of fit (affinity) between an antigenic determinant and a lymphocyte receptor or antibody.

More information

Antibody-Mediated Immunity

Antibody-Mediated Immunity Color code: Important in red Extra in blue Antibody-Mediated Immunity For team error adjustments, click here Objectives To describe B-cells as the mediators of humoral immunity, (antibody-mediated immunity)

More information

بسم هللا الرحمن الرحيم. Today we're going to talk about the generation of diversity of the receptors of the lymphocytes

بسم هللا الرحمن الرحيم. Today we're going to talk about the generation of diversity of the receptors of the lymphocytes بسم هللا الرحمن الرحيم Today we're going to talk about the generation of diversity of the receptors of the lymphocytes The receptors of lymphocytes are : 1. B cells : immunoglobulins ; which are cell bound

More information

Immunoglobulins. Harper s biochemistry Chapter 49

Immunoglobulins. Harper s biochemistry Chapter 49 Immunoglobulins Harper s biochemistry Chapter 49 Immune system Detects and inactivates foreign molecules, viruses, bacteria and microorganisms Two components with 2 strategies B Lymphocytes (humoral immune

More information

Hapten - a small molecule that is antigenic but not (by itself) immunogenic.

Hapten - a small molecule that is antigenic but not (by itself) immunogenic. Chapter 4. Antigens Terminology: Antigen: Substances that can be recognized by the surface antibody (B cells) or by the TCR when associated with MHC molecules Immunogenicity VS Antigenicity: Immunogenicity

More information

Germ-line vs somatic-variation theories

Germ-line vs somatic-variation theories BME 128 Tuesday April 26 (1) Filling in the gaps Antibody diversity, how is it achieved? - by specialised (!) mechanisms Chp6 (Protein Diversity & Sequence Analysis) - more about the main concepts in this

More information

S uf6t<.. f\tj<t1&6t-'l

S uf6t<.. f\tj<t1&6t-'l Immunagens. An immune response is evoked by a foreign agent called antigen or immunogen. The distinction between these two terms is functional, an antigen is a compound that is capable of binding with

More information

Atlas of Genetics and Cytogenetics in Oncology and Haematology. IMMUNOGLOBULIN GENES: CONCEPT OF DNA REARRANGEMENT * Introduction

Atlas of Genetics and Cytogenetics in Oncology and Haematology. IMMUNOGLOBULIN GENES: CONCEPT OF DNA REARRANGEMENT * Introduction Atlas of Genetics and Cytogenetics in Oncology and Haematology IMMUNOGLOBULIN GENES: CONCEPT OF DNA REARRANGEMENT * Introduction I Historical questions II Answers II.1 Light chains (kappa or lambda) II.1.1

More information

Introduction to Antibody Structure/Function. Med Chem 528

Introduction to Antibody Structure/Function. Med Chem 528 Introduction to Antibody Structure/Function Med Chem 528 Origins of antibodies Product of the adaptive immune system B cells (antibody based immunity) T cells (cell based immunity) Pre-exposure protects

More information

Adaptive Immunity: Specific Defenses of the Host

Adaptive Immunity: Specific Defenses of the Host PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 17 Adaptive Immunity: Specific Defenses of the Host The Adaptive Immune System Adaptive immunity:

More information

Immune system IgGs. Carla Cortinas, Eva Espigulé, Guillem Lopez-Grado, Margalida Roig, Valentina Salas. Group 2

Immune system IgGs. Carla Cortinas, Eva Espigulé, Guillem Lopez-Grado, Margalida Roig, Valentina Salas. Group 2 Immune system IgGs Carla Cortinas, Eva Espigulé, Guillem Lopez-Grado, Margalida Roig, Valentina Salas Group 2 Index 1. Introduction 1.1. 1.2. 1.3. 1.4. 2. Immunoglobulins IgG formation IgG subclasses Structural

More information

MOLECULAR RECOGNITION

MOLECULAR RECOGNITION MOLECULAR RECOGNITION Bioanalytical Methods Classification 1. Biassay: molecular recognition, signal generation and detection in solution or on inert solid phase 2. Biosensor: molecular recognition system

More information

Generation of Recombinant Antibodies and Means for Increasing Their Affinity

Generation of Recombinant Antibodies and Means for Increasing Their Affinity ISSN 0006-2979, Biochemistry (Moscow), 2010, Vol. 75, No. 13, pp. 1584-1605. Pleiades Publishing, Ltd., 2010. Original Russian Text E. P. Altshuler, D. V. Serebryanaya, A. G. Katrukha, 2010, published

More information

Antibodies to Challenging Receptor Targets through NGS and Cell-Based Antibody Phage Panning. Mark Tornetta

Antibodies to Challenging Receptor Targets through NGS and Cell-Based Antibody Phage Panning. Mark Tornetta Antibodies to Challenging Receptor Targets through NGS and Cell-Based Antibody Phage Panning Mark Tornetta Points to convey regarding receptor targets Antigen diversity- cells and engineered ECDs Be creative

More information

Topic (7): Antibodies and Antigens

Topic (7): Antibodies and Antigens Topic (7): Antibodies and Antigens INTRODUCTION Antibodies (Abs) are one of the three classes of molecules able to differentiate between antigens [Ags] (the other two are T-cell receptor [TCR] and major

More information

Immunoglobulins. Structure

Immunoglobulins. Structure Immunoglobulins Structure Definitions Immunoglobulin is a generic term that refers to a diverse group of molecules found in the blood and tissue fluids They are soluble globulin molecules and they generally

More information

Immunoglobulins. Light chain ~22-23 KDa whereas the heavy chain ~55-60 KDa

Immunoglobulins. Light chain ~22-23 KDa whereas the heavy chain ~55-60 KDa Immunoglobulins Immunoglobulin (Ig) has a common name which is "Antibody (Ab)", but actually we should say Ig, why? Because the proteins, which are involved, are actually globular proteins "known as globulins"

More information

Immunology 2011 Lecture 9 Immunoglobulin Biosynthesis 3 October

Immunology 2011 Lecture 9 Immunoglobulin Biosynthesis 3 October Immunology 2011 Lecture 9 Immunoglobulin Biosynthesis 3 October APC Antigen processing (dendritic cells, MΦ et al.) Antigen "presentation" Ag/Ab complexes Antigenspecific triggering B T ANTIGEN Proliferation

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Data-processing pipeline.

Nature Immunology: doi: /ni Supplementary Figure 1. Data-processing pipeline. Supplementary Figure 1 Data-processing pipeline. Steps for processing data from multiple sorted B cell populations derived from a single individual at a single time point are shown. Parameters used are

More information

Humoral Immune Response. Dr. Iman Hussein Shehata Professor of Medical Microbiology and Immunology

Humoral Immune Response. Dr. Iman Hussein Shehata Professor of Medical Microbiology and Immunology Humoral Immune Response Dr. Iman Hussein Shehata Professor of Medical Microbiology and Immunology Intended Learning Outcomes By the end of this lesson the student is expected to: 1-Decribe the sequence

More information

Antibody humanization and engineering: what do we learn from IMGT standardization.

Antibody humanization and engineering: what do we learn from IMGT standardization. Antibody humanization and engineering: what do we learn from IMGT standardization Marie-Paule Lefranc IMGT Founder and Director Professor University Montpellier 2, CNRS, Montpellier, France 5th Annual

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1 Supplementary Figure 1 Scheme of isolating broadly neutralizing Abs against influenza viruses from human memory B cell repertoire. Representative fluorescence-labeled

More information

Who pairs with whom? High-throughput sequencing of the human paired heavy and light chain repertoire

Who pairs with whom? High-throughput sequencing of the human paired heavy and light chain repertoire Who pairs with whom? High-throughput sequencing of the human paired heavy and light chain repertoire Technical Journal Club September 15 th Christina Müller Background - antibody repertoire is the sum

More information

Chapter 4 ANTIBODY STRUCTURE AND FUNCTION

Chapter 4 ANTIBODY STRUCTURE AND FUNCTION Chapter 4 ANTIBODY STRUCTURE AND FUNCTION Different way to depict an Ig molecule Y In both the heavy and light chain variable regions there is variability at every position and there are hypervariable

More information

Receptor Revision of Immunoglobulin Heavy Chain Variable Region Genes in Normal Human B Lymphocytes

Receptor Revision of Immunoglobulin Heavy Chain Variable Region Genes in Normal Human B Lymphocytes Receptor Revision of Immunoglobulin Heavy Chain Variable Region Genes in Normal Human B Lymphocytes By Patrick C. Wilson,* Kenneth Wilson,* Yong-Jun Liu, Jacques Banchereau, Virginia Pascual, and J. Donald

More information

Basic principles of IG sequence analysis: Immunogenetic analysis: in vitro

Basic principles of IG sequence analysis: Immunogenetic analysis: in vitro IMMUNOGENETICS IN CLL IN THE NGS ERA Rotterdam, The Netherlands, November 24 th 2017 Basic principles of IG sequence analysis: Immunogenetic analysis: in vitro Lesley Ann Sutton Dept. of IGP, Uppsala University,

More information

Plateforme IMGT Bases de données anticorps.

Plateforme IMGT Bases de données anticorps. Plateforme IMGT Bases de données anticorps Marie-Paule Lefranc IMGT Founder and Director Professor, Montpellier 2 University, CNRS, Montpellier, France Module Anticorps monoclonaux Parcours Immunotechnologies

More information

Antibody Generation: challenges and solutions. Glen Marszalowicz, PHD May 10, AM

Antibody Generation: challenges and solutions. Glen Marszalowicz, PHD May 10, AM Antibody Generation: challenges and solutions Glen Marszalowicz, PHD May 10, 2015 9AM GenScript the most cited biology CRO CRISPR Services Gene Services Peptide Services Protein Services Antibody Services

More information

Supplementary Table 1: Antigenic regions/sites on Ebola-GP identified using GFPDL*

Supplementary Table 1: Antigenic regions/sites on Ebola-GP identified using GFPDL* Supplementary Table 1: Antigenic regions/sites on Ebola-GP identified using GFPDL* Site AA Sequence 3x10 6 3x10 6 20x10 6 20x10 6 100x10 6 100x10 6 Post-1 st Post-2 nd Post-1 st Post-2 nd Post-1 st Post-2

More information

ProCode TM. Life Science, Inc. A Rapid Flexible MAb-Like Discovery Platform for Creating Diagnostic Antibodies.

ProCode TM. Life Science, Inc. A Rapid Flexible MAb-Like Discovery Platform for Creating Diagnostic Antibodies. ProCode TM A Rapid Flexible MAb-Like Discovery Platform for Creating Diagnostic Antibodies Life Science, Inc. www.meridianlifescience.com Custom Monoclonal Development Meridian Life Science, Inc. (MLS)

More information

Nature inspired design of motif specific antibody scaffolds *

Nature inspired design of motif specific antibody scaffolds * Nature inspired design of motif specific antibody scaffolds * Nature Biotechnology, October 2013, Vol. 31, #10 * Scientific information in the following slides is from this article, if not stated otherwise

More information

Immunoglobulins. Even variable chain differ in variability of amino acid sequences:

Immunoglobulins. Even variable chain differ in variability of amino acid sequences: Revision: Immunoglobulin structure 2 light chain 25KDa and 2 heavy chain 50KDa (total=150kda) Heavy chain one quarter variable three quarter constant Even variable chain differ in variability of amino

More information

Immune System. Branden & Tooze, Chapter 15 Protects complex multicellular organisms from pathogens, e.g. virus, bacteria, yeast, parasites, worms, etc

Immune System. Branden & Tooze, Chapter 15 Protects complex multicellular organisms from pathogens, e.g. virus, bacteria, yeast, parasites, worms, etc Immune System Branden & Tooze, Chapter 15 Protects complex multicellular organisms from pathogens, e.g. virus, bacteria, yeast, parasites, worms, etc Innate immunity first line of defense past physical

More information

IMGT Databases and Tools for Immunoglobulin (IG) and T cell receptor (TR) analysis, and for Antibody humanization.

IMGT Databases and Tools for Immunoglobulin (IG) and T cell receptor (TR) analysis, and for Antibody humanization. IMGT Databases and Tools for Immunoglobulin (IG) and T cell receptor (TR) analysis, and for Antibody humanization Marie-Paule Lefranc IMGT Founder and Director Professor University Montpellier 2, CNRS,

More information

Engineering the Medicines of Tomorrow The Path to Platinum: The Evolution of Human Combinatorial Antibody Libraries (HuCAL )

Engineering the Medicines of Tomorrow The Path to Platinum: The Evolution of Human Combinatorial Antibody Libraries (HuCAL ) Engineering the Medicines of Tomorrow The Path to Platinum: The Evolution of Human Combinatorial Antibody Libraries (HuCAL ) Antibody Engineering December 2008, San Diego Dr. Stefanie Urlinger, Associate

More information

OmniAb. Naturally optimized human antibodies

OmniAb. Naturally optimized human antibodies OmniAb Naturally optimized human antibodies Transgenic animals for hmab discovery Only company to offer three platforms Patented technology with freedom to operate V L V H C C H 1 hinge C H 2 C H 3 2 28

More information

Partnered Discovery of High-Quality Antibody Drug Candidates. Company Presentation

Partnered Discovery of High-Quality Antibody Drug Candidates. Company Presentation Partnered Discovery of High-Quality Antibody Drug Candidates Company Presentation AbCheck s Unique Offering A unique source of human antibodies with one of the industry's most versatile technology platforms

More information

ANTIBODY REPERTOIRES AND PATHOGEN RECOGNITION: THE ROLE OF GERMLINE DIVERSITY AND SOMATIC HYPERMUTATION.

ANTIBODY REPERTOIRES AND PATHOGEN RECOGNITION: THE ROLE OF GERMLINE DIVERSITY AND SOMATIC HYPERMUTATION. Mihaela L. Oprea Candidate Department of Computer Science Department This dissertation is approved, and it is acceptable in quality and form for publication on microfilm: Approved by the Dissertation Committee:,

More information

Recombination Lecture, Dr. Aguilera 2/17/2014

Recombination Lecture, Dr. Aguilera 2/17/2014 Lymphocytes and Antigen Receptors Thymus T-Cells Lymph nodes Spleen } T+B-cells Paper Presentation: Bone Marrow Stem cells and B-cells Nat. Rev. Immunol. STEM CELL CLP Committed Lymphocyte Precursor T-cells

More information

Immunoglobulins Harry W Schroeder Jr MD PhD

Immunoglobulins Harry W Schroeder Jr MD PhD Immunoglobulins Harry W Schroeder Jr MD PhD Division of Developmental and Clinical Immunology Departments of Medicine, Microbiology, and Genetics University of Alabama at Birmingham Immunoglobulin Has

More information

IMMUNOLOGY Receptors of T cells are TCR T Cell Receptors which are present on the cell surface of T lymphocytes.

IMMUNOLOGY Receptors of T cells are TCR T Cell Receptors which are present on the cell surface of T lymphocytes. IMMUNOLOGY - 4 - What is an ANTIGEN? It is a molecule that can be recognized by a receptor and combine with it specifically and the receptor here is the one either produced by B cells or T cells: Receptors

More information

Interplay of Cells involved in Therapeutic Agent Immunogenicity. Robert G. Hamilton, Ph.D., D.ABMLI Professor of Medicine and Pathology

Interplay of Cells involved in Therapeutic Agent Immunogenicity. Robert G. Hamilton, Ph.D., D.ABMLI Professor of Medicine and Pathology Interplay of Cells involved in Therapeutic Agent Immunogenicity Robert G. Hamilton, Ph.D., D.ABMLI Professor of Medicine and Pathology Disclosure The author works with Amicus on an immunogenicity project

More information

Protein homology. Antigens & Antibodies I. Administrative issues:

Protein homology. Antigens & Antibodies I. Administrative issues: Administrative issues: Recommended text: Goldsby/Kuby Immunology, 6th edition (Note that Innate Immunity is not adequately covered in the 5th edition.) Text book reading assignments are to supplement the

More information

NGS-Based Clonality Testing Assessing Clonality Status, Somatic Hypermutation and Monitoring Minimum Residual Disease (MRD)

NGS-Based Clonality Testing Assessing Clonality Status, Somatic Hypermutation and Monitoring Minimum Residual Disease (MRD) NGS-Based Clonality Testing Assessing Clonality Status, Somatic Hypermutation and Monitoring Minimum Residual Disease (MRD) Maria Arcila, M.D. Memorial Sloan Kettering Cancer Center Educational Goals Review

More information

Basic Antibody Structure. Multiple myeloma = cancerous plasma cells Monomer = 150,000. Chapter 4. Immunoglobulin Structure and Function

Basic Antibody Structure. Multiple myeloma = cancerous plasma cells Monomer = 150,000. Chapter 4. Immunoglobulin Structure and Function Chapter 4. Immunoglobulin Structure and Function. Functional Regions. Types of chains. Constant & Variable regions 4. Glycoprotein * * * Heavy chain= 446 aa Light chain= 4aa Each heavy and light chain

More information

In vitro cultures of bone marrow stromal cells and progenitor B cells can accurately recapitulate the normal steps of B cell development.

In vitro cultures of bone marrow stromal cells and progenitor B cells can accurately recapitulate the normal steps of B cell development. Regular Office Hours: Tuesdays 11-12 Extra office hours: Wed, Feb 7 12-1pm Thurs, Feb 8 11am-12 Fri, Feb 9 2-4pm I WILL NOT BE HOLDING OFFICE HOURS ON TUESDAY Feb 13!! Dina, Tim, and I encourage all confused

More information

B cell development The stages of B cell development

B cell development The stages of B cell development Regular Office Hours: Tuesdays 11-12 Extra office hours: Wed, Feb 7 12-1pm Thurs, Feb 8 11am-12 Fri, Feb 9 2-4pm I WILL NOT BE HOLDING OFFICE HOURS ON TUESDAY Feb 13!! Dina, Tim, and I encourage all confused

More information

IMMUNOGLOBULIN GENES UNDERGO TWO DNA REARRANGEMENTS

IMMUNOGLOBULIN GENES UNDERGO TWO DNA REARRANGEMENTS A Prototype Ig Gene: Murine Kappa About 10 0 V κ gene segments 4 J Gene Segment s 1 C κ Gene Segmen t Multiple V gene segments, distant from J and C A few J gene segments One C gene segment GERMLINE Ig

More information

Immunoglobulin's generation of diversity

Immunoglobulin's generation of diversity هللا مسب In this sheet, there are just the extra notes mentioned by the doctor, don't forget referring to slides. Immunoglobulin's generation of diversity Note that diversity is applied to T and B lymphocytes

More information

MECHANISTIC AND GENETIC BIASES IN HUMAN IMMUNOGLOBULIN HEAVY CHAIN DEVELOPMENT

MECHANISTIC AND GENETIC BIASES IN HUMAN IMMUNOGLOBULIN HEAVY CHAIN DEVELOPMENT MECHANISTIC AND GENETIC BIASES IN HUMAN IMMUNOGLOBULIN HEAVY CHAIN DEVELOPMENT by Joseph M. Volpe Department of Computational Biology & Bioinformatics Duke University Date: Approved: Thomas B. Kepler,

More information

Antigen Antibody Binding

Antigen Antibody Binding Izumi Kumagai, Tohoku University, Sendai, Japan Kouhei Tsumoto, Tohoku University, Sendai, Japan Antibodies are a family of glycoproteins that bind specifically to foreign molecules (antigens). The binding

More information

A Modified Digestion-Circularization PCR (DC-PCR) Approach to Detect Hypermutation- Associated DNA Double-Strand Breaks

A Modified Digestion-Circularization PCR (DC-PCR) Approach to Detect Hypermutation- Associated DNA Double-Strand Breaks A Modified Digestion-Circularization PCR (DC-PCR) Approach to Detect Hypermutation- Associated DNA Double-Strand Breaks SARAH K. DICKERSON AND F. NINA PAPAVASILIOU Laboratory of Lymphocyte Biology, The

More information

OpenStax-CNX module: m Antibodies * OpenStax. Abstract

OpenStax-CNX module: m Antibodies * OpenStax. Abstract OpenStax-CNX module: m44823 1 Antibodies * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be able to:

More information

Immunology: Antibody Basics

Immunology: Antibody Basics e-learning JABSOM Immunology: Antibody Basics One :: General Structure Identify the Parts of an Antibody Two :: Isotypes Identify Antibody Isotypes Three :: Function Match Antibody Functions With Isotypes

More information

Part 5 Antibody to protein recognition- structural principles in antibody design.

Part 5 Antibody to protein recognition- structural principles in antibody design. Monday, January 14, 2013 Biophysics 204 Lecture Notes Robert Fletterick January 14, 2013 Part 5 Antibody to protein recognition- structural principles in antibody design. This section is about the structure,

More information

Metodi e tecniche di ottimizzazione innovative per applicazioni elettromagnetiche

Metodi e tecniche di ottimizzazione innovative per applicazioni elettromagnetiche Metodi e tecniche di ottimizzazione innovative per applicazioni elettromagnetiche Algoritmi stocastici Parte 3 Artificial Immune Systems M. Repetto Dipartimento Ingegneria Elettrica Industriale - Politecnico

More information

Lecture 3. Used anti B cell marker antibodies to deplete in mice

Lecture 3. Used anti B cell marker antibodies to deplete in mice Lecture 3 V-Gene Rearrangement and Expression Used anti B cell marker antibodies to deplete in mice Rat anti mouse CD19, anti mouse B220, and anti mouse CD22. Mice were then injected with a secondary antibody

More information

Naturally optimized human antibodies. Roland Buelow, Ph.D.

Naturally optimized human antibodies. Roland Buelow, Ph.D. Naturally optimized human antibodies Roland Buelow, Ph.D. 1 Three Species One License An industry-leading patented, validated human antibody rat Added species yields additional antibodies and increased

More information

Detection of T-cell clonality in patients with B-cell chronic lymphocytic leukemia

Detection of T-cell clonality in patients with B-cell chronic lymphocytic leukemia Detection of T-cell clonality in patients with B-cell chronic lymphocytic leukemia Dijana Djureinovic Degree project in biology, Master of science (1 year), 2008 Examensarbete i biologi 30 hp till magisterexamen,

More information

Harnessing evolution to make medicines

Harnessing evolution to make medicines Harnessing evolution to make medicines Peter Jones Hendricus Hoogenboom Greg Winter Rosaria Orlandi Detlef Gussow Ian Tomlnso n Sam Williams Sally Ward Gerald Walter Andrew Griffiths Robert Hawkins John

More information

Artificial Immune Systems

Artificial Immune Systems Artificial Immune Systems Dr. Mario Pavone Department of Mathematics & Computer Science University of Catania mpavone@dmi.unict.it http://www.dmi.unict.it/mpavone/ Biological Immune System (1/4) Immunology

More information

IEDB Overview. Bjoern Peters, Ph.D. Associate Professor IEDB Co-Principal Investigator

IEDB Overview. Bjoern Peters, Ph.D. Associate Professor IEDB Co-Principal Investigator IEDB Overview Bjoern Peters, Ph.D. Associate Professor IEDB Co-Principal Investigator 1 The Immune Epitope Database Free online resource of experimentally-derived epitope information T T B Allergens APC

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06147 SUPPLEMENTARY INFORMATION Figure S1 The genomic and domain structure of Dscam. The Dscam gene comprises 24 exons, encoding a signal peptide (SP), 10 IgSF domains, 6 fibronectin

More information

MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam will have 40 multiple choice questions.

MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam will have 40 multiple choice questions. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam 1 2018 will have 40 multiple choice questions. READ ALL THE CHOICES AND SELECT THE BEST 1. Which of the following

More information

a. Hypoxanthine was present in the media. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No.

a. Hypoxanthine was present in the media. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam 1 2018 will have 40 multiple choice questions. READ ALL THE CHOICES AND SELECT THE BEST 1. Which of the following

More information

' A nucleotide sequence according to claim 1, wherein the polypeptide domain is an antibody domain.

' A nucleotide sequence according to claim 1, wherein the polypeptide domain is an antibody domain. CLAIMS' '101 1. A nucleotide sequence encoding one or more Arc DNA binding domains, one or more Arc DNA binding sites and at least one polypeptide domain or a fragment thereof. 2. A nucleotide sequence

More information

CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION

CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION The specificity of humoral immune responses relies on the huge DIVERSITY of antigen combining sites present in antibodies, diversity which

More information

Chapter 3. Clonal selection

Chapter 3. Clonal selection Chapter 3. Clonal selection I have called this principle, by which each slight variation, if useful, is preserved, by the term of Natural Selection -Charles Darwin, On the Origin of Species, 1859 4 The

More information

ProteoGenix. Life Sciences Services and Products. From gene to biotherapeutics Target Validation to Lead optimisation

ProteoGenix. Life Sciences Services and Products. From gene to biotherapeutics Target Validation to Lead optimisation ProteoGenix Life Sciences Services and Products From gene to biotherapeutics Target Validation to Lead optimisation ProteoGenix Philippe FUNFROCK, founder and CEO French company located in Strasbourg,

More information

T he human immune system efficiently protects us against

T he human immune system efficiently protects us against 249 ORIGINAL ARTICLE Receptor revision of immunoglobulin heavy chain genes in human MALT lymphomas D Lenze, A Greiner, C Knörr, I Anagnostopoulos, H Stein, M Hummel... See end of article for authors affiliations...

More information

5/15/13. Agenda. Agenda. Introduction practical assignment: Identification of VHH against ErbB1/ EGFR. Structure of heavy chain antibodies

5/15/13. Agenda. Agenda. Introduction practical assignment: Identification of VHH against ErbB1/ EGFR. Structure of heavy chain antibodies Introduction practical assignment: Identification of VHH against ErbB1/ EGFR Erik Hofman, Alex Klarenbeek, Rachid El Khoulathi 15-05-2013 Structure of heavy chain antibodies C H 1 C L V H V L V HH C H

More information

Introduction practical assignment: Identification of VHH/nanobodies against ErbB1/EGFR

Introduction practical assignment: Identification of VHH/nanobodies against ErbB1/EGFR Introduction practical assignment: Identification of VHH/nanobodies against ErbB1/EGFR Sofia Doulkeridou, Rachid El Khoulati, Paul van Bergen en Henegouwen 12-05-2014 Agenda Introduction to Nanobodies

More information

Antibody Structure and Function

Antibody Structure and Function Antibody Structure and Function Keri C. Smith, Ph.D. January 22, 2008 (or) Anatomy and Physiology of Antibodies Overview Physical properties of antibodies Structural and molecular features Differences

More information

Antibody-Antigen recognition. Structural Biology Weekend Seminar Annegret Kramer

Antibody-Antigen recognition. Structural Biology Weekend Seminar Annegret Kramer Antibody-Antigen recognition Structural Biology Weekend Seminar 10.07.2005 Annegret Kramer Contents Function and structure of antibodies Features of antibody-antigen interfaces Examples of antibody-antigen

More information

Course Agenda. Day One

Course Agenda. Day One Course Agenda BioImmersion: Biotech for the Non-Scientist A three-day, in-depth course that provides the background required for understanding today s fast-paced biotech marketplace. Beginning with an

More information

Custom Antibody Services. Antibodies Designed Just for You. HuCAL Recombinant Monoclonal Antibody Generation Service

Custom Antibody Services. Antibodies Designed Just for You. HuCAL Recombinant Monoclonal Antibody Generation Service Custom Antibody Services Antibodies Designed Just for You HuCAL Recombinant Monoclonal Antibody Generation Service Antibodies Designed Just for You What if there was a technology that would allow you to

More information

TCR Repertoire Diversity Background information

TCR Repertoire Diversity Background information TCR Repertoire Diversity Background information Contents Introduction to TCR Repertoire Sequencing...1 Glossary...2 Note on TCR Gene Nomenclature...2 V(D)J Recombination...3 Decombinator and Aho-Corasick

More information

Biosimilars China Guideline. Dr Dr Michel Mikhail

Biosimilars China Guideline. Dr Dr Michel Mikhail Biosimilars China Guideline Dr Dr Michel Mikhail 1 Contents Regulatory context of biologicals in China Decree 28 issued by SFDA October 2007 Proposed biosimilars guideline 10/29/14 Reference drugs to use

More information

IDIOTOPE-SPECIFIC LAMPREY ANTIBODY. using a 5 primer containing a XmaI site, CLL655_VH_FR1_XmaI_Fwd

IDIOTOPE-SPECIFIC LAMPREY ANTIBODY. using a 5 primer containing a XmaI site, CLL655_VH_FR1_XmaI_Fwd NAKAHARA et al IDIOTOPE-SPECIFIC LAMPREY ANTIBODY Supplementary Materials and Methods 6 7 8 9 6 7 8 9 Cloning of CLL donor BCR as scfv. Briefly, for the first round of PCR, the VH region was amplified

More information