TRANSGENIC TECHNOLOGIES: Gene-targeting

Size: px
Start display at page:

Download "TRANSGENIC TECHNOLOGIES: Gene-targeting"

Transcription

1 TRANSGENIC TECHNOLOGIES: Gene-targeting

2 Reverse Genetics Wild-type Bmp7 -/-

3 Forward Genetics Phenotype Gene or Mutations First Molecular Analysis Second Reverse Genetics Gene Phenotype or Molecular Analysis First Mutations Second

4 "Model" Organisms in Biology What allows us to use them? 1. All organisms share similar cellular machinery 2. All animals use this machinery in similar ways to direct embryonic development How about behaviors? -Species-specificity -Phonotypical homologues -Pharmacological homologues -Reverse genetic homologues

5 Mouse model of drowning?

6 Transgenic mice Transgenic mice Knockout mice Knockdown Gene-trap

7 Transgenic mice

8 Gene-knockout mice Early 1980, Mrio Capecchi: Homologous recombination in fibroblasts Martin Evans: Isolation of ES cells 1987, Mario Capecchi and Kirk Thomas First gene-targeting in ES cells 1989, Rudolf Jaenisch in MIT Generation of knockout mice, beta-2 microglobulin In Korea, 1993, H3 ES cell line 1995, IP3K, PLCb1 KO mice born

9 neo neo Transfection of targeting vector ES Cells into Blastocysts Chimera ES Cell F1 Germ-line F2 Embryo Transfer to Uterus Foster Germ-line Strain with recessive coat color

10 Introduce targeting vector into ES cells Timeline for the generation of ES cell-derived mice Identify homologous recombinants by DNA analysis Identify mouse Chimeras with high ES cell contribution Germline transmission Begin analysis Drug selection Colony growth and expansion Inject clones into blastocysts Sexual maturation of chimeras Identify male and female heterozygotes Sexual maturation of heterozygotes Identify homozygotes

11 EMBRYONIC STEM CELLS ADVANTAGE: -Totipotency -Manipulation in Culture (screening rare events) e.g. Lotto, 1/8 x 10 6 vs. homologous recombination10 6~8 USE: -Generation of Transgenic Mice -Gene Targeting-specific Gene Manipulation -Gene Trap-Random Gene Mutation

12 Early mouse development From Sedivy & Joyner Gene Targeting 1992

13 Derivation of Embryonic Stem Cells From ICM 1. Isolation of PND 3.5 blastocysts 2. Culture on embryonic fibroblasts (EF) 3. Isolation of hatched ICM 4. Trypsinization of ICM and culture on EF 5. Isolation of ES colonies 6. Karyotyping (40XY) 7. Characterization of germ-line competence From old ES cells 1. Plating of ~100 ES cells per 10cm dish 2. Cuture for 7-10 days with LIF 3. Isolation of single cell-derived colonies 4. Karyotyping (40XY) 5. Characterization of germ-line competence

14 ES or Embryonic stem cells: Blastocyst-stage cells that have been coaxed and coddled into growing in culture

15 Normal C57BL/6 Blastocyst (black) ICM ES cells 129/SvJae (Blackagouti) agouti black

16 Making chimera with Morula

17 A mouse with 3 parents

18 The first chimera and germ-line transmission in Korea!! FvB chimera Chimeras from foster mother Backcross with female having recessive coat color

19 Genes unable to be KO Multi-copy genes in the mouse genome Genes unexpressed in mouse Serotonin-N-acetyltransferase bp A1 a1g

20 Generation of targeting vector: Overall Procedure Isolation of cdna RT-PCR Isolation of genomic clones Phage library Bacterial Artificial Chromosome (BAC) Genomic PCR Restriction mapping of genomic clones Axon mapping Vector construction Insertion of neo cassette into the target exon Attachment of negative selection marker

21 Gene Targeting By Homologous Recombination X X Wild-type locus Targeting Vector X probe Neo TK Plasmid X sequence Targeted locus Neo probe 1. Homologous arm x 2 2. Neo marker 3. TK marker

22 Generation of targeting vector : Which exon should be targeted to make null mutation? Preferred Avoided - First coding exon - Functionally important exon - Exon can be skipped by alternative splicing - Number of nucleotides with a multiple of 3

23 Exon mapping Splice donor acceptor CCACATTgtn agCAGAA...CCACATTCAGAA......ProHisSerGlu...

24 Exon mapping CCACATTgtn agcagAA...CCA CAT TAA......Pro His STOP

25 Start Stop Start Stop Start Start Stop

26 neo Start Stop neo Start Stop neo Start Start Stop

27 Positive selection: ES cells that have the targeting vector: neo resistant Negative selection: Select against ES cells with random vector integration sensitive to anti-herpes drugs, FIAU, gancyclovir random Selected out 1 neo 3 HSVtk 1 neo 3 recombinant alive

28 Probe 1 Molecular screen: Eliminates random integrants without HSVtk Use flanking sequences 1 neo 3 Probe 2 targeted allele endogenous allele Probe 1 Probe 2 +/+ +/- random +/+ +/- random

29 Gene-targeting of a1g T-type channels in Mice 8.6kb Wild type locus B S E B EHH B S H H H B F1 B1 Targeting Vector B S E B E H Neo 12.6kb T K Disrupted locus B S E B EH Neo PGK B1 S H H H B (kb) /+ +/- -/- (kda) +/+ -/

30 Factors influencing targeting efficiency isogenic DNA (perfect homology) fold van Deursen J, Wieringa B. Targeting of the creatine kinase M gene in embryonic stem cells using isogenic and nonisogenic vectors. Nucleic Acids Res. 20: , size of region of homology exponential relationship Capecchi MR. Altering the genome by homologous recombination. Science. 244:1288-9, 1989 robust screen! Positive controls Run Repeat masker intrinsic features of the locus -Recombination hot spots

31 Modified KO technologies Knock-in Gene-trap Conditional KO -Region-specific -Time-specific

32 Knock-in technology for analysis of gene isotype function e.g. PLCbeta1 locus Start Stop C-DNA pa neo PLCbeta4 cdna

33 Gene traps Exon trap : Insertion into endogenous exon -Neo-pA Intron trap : Splice acceptor-ires-neo-pa Poly-A trap : Promotor-Neo-Splice donor

34 Gene traps are alternatives to knockouts promoter exons lacz pa Promoter neo R pa Splice acceptor Trapped gene (~random) Electroporate ES cells Select for neo R transcripts splicing identify trapped gene by 5 RACE, sequencing Select genes from gene trap library for blastocyst injection

35 You don t need to make gene-trap! International Gene Trap Consortium (gateway to all other databases) Manitoba Gene Trap Database Geoff Hicks Soriano Gene Trap Lines Omnibank (Lexicon) knockout clones - library genetics.com/omnibank/omnibank_ebiology.htm CMHD: Centre for modeling human disease, Mt. Sinai Hospital, Toronto, Canada Bay area resource of Mouse Mutations in Secreted and Membrane Proteins German Mouse Gene Trap Database

36 Conditional Ko by CRE-lox system GFAP promotor CRE glia Neuron e.g. Astrocyte specific KO

37 Conditional Ko by tet system CRE How to knockout a gene in adult stage by using tet-off (tetr) system?

38 Conditional Ko by CRE-lox system

39 Other Reverse Genetic Approaches Site-directed mutagenesis RNAi (sirna or shrna) Chemicals (Chemical Genetics)

40 Site-directed mutagenesis Point mutations, domain replacement

41 Gene Replacement

42 RNA Interference Method 1 Method 2 Method 3

43 Mechanism of RNAi

44 Forward and Reverse "Chemical Genetics"

TRANSGENIC ANIMALS. transient. stable. - Two methods to produce transgenic animals:

TRANSGENIC ANIMALS. transient. stable. - Two methods to produce transgenic animals: Only for teaching purposes - not for reproduction or sale CELL TRANSFECTION transient stable TRANSGENIC ANIMALS - Two methods to produce transgenic animals: 1- DNA microinjection 2- embryonic stem cell-mediated

More information

species- Mus musculus Engineering the mouse genome David Ornitz

species- Mus musculus Engineering the mouse genome David Ornitz species- Mus musculus Engineering the mouse genome David Ornitz How do we analyze gene function in mice? Gene addition (transgenic approach) Permits GOF, DN and knockdown experiments Ectopic (spatial or

More information

Mouse Engineering Technology. Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology

Mouse Engineering Technology. Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology Mouse Engineering Technology Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology Core service and new technologies Mouse ES core Discussions

More information

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome.

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome. Key Terms Chapter 32: Genetic Engineering Cloning describes propagation of a DNA sequence by incorporating it into a hybrid construct that can be replicated in a host cell. A cloning vector is a plasmid

More information

Analysis of gene function

Analysis of gene function Genome 371, 22 February 2010, Lecture 12 Analysis of gene function Gene knockouts PHASE TWO: INTERPRETATION I THINK I FOUND A CORNER PIECE. 3 BILLION PIECES Analysis of a disease gene Gene knockout or

More information

Experimental genetics - 2 Partha Roy

Experimental genetics - 2 Partha Roy Partha Roy Experimental genetics - 2 Making genetically altered animal 1) Gene knock-out k from: a) the entire animal b) selected cell-type/ tissue c) selected cell-type/tissue at certain time 2) Transgenic

More information

Theoretical cloning project

Theoretical cloning project Theoretical cloning project Needed to get credits Make it up yourself, don't copy Possible to do in groups of 2-4 students If you need help or an idea, ask! If you have no idea what to clone, I can give

More information

Student Learning Outcomes (SLOS) - Advanced Cell Biology

Student Learning Outcomes (SLOS) - Advanced Cell Biology Course objectives The main objective is to develop the ability to critically analyse and interpret the results of the scientific literature and to be able to apply this knowledge to afford new scientific

More information

A) (5 points) As the starting step isolate genomic DNA from

A) (5 points) As the starting step isolate genomic DNA from GS Final Exam Spring 00 NAME. bub ts is a recessive temperature sensitive mutation in yeast. At º C bub ts cells grow normally, but at º C they die. Use the information below to clone the wild-type BUB

More information

TRANSGENIC ANIMALS. -transient transfection of cells -stable transfection of cells. - Two methods to produce transgenic animals:

TRANSGENIC ANIMALS. -transient transfection of cells -stable transfection of cells. - Two methods to produce transgenic animals: TRANSGENIC ANIMALS -transient transfection of cells -stable transfection of cells - Two methods to produce transgenic animals: 1- DNA microinjection - random insertion 2- embryonic stem cell-mediated gene

More information

Human Molecular Genetics Assignment 3 (Week 3)

Human Molecular Genetics Assignment 3 (Week 3) Human Molecular Genetics Assignment 3 (Week 3) Q1. Which one of the following is an effect of a genetic mutation? a. Prevent the synthesis of a normal protein. b. Alters the function of the resulting protein

More information

(i) A trp1 mutant cell took up a plasmid containing the wild type TRP1 gene, which allowed that cell to multiply and form a colony

(i) A trp1 mutant cell took up a plasmid containing the wild type TRP1 gene, which allowed that cell to multiply and form a colony 1. S. pombe is a distant relative of baker s yeast (which you used in quiz section). Wild type S. pombe can grow on plates lacking tryptophan (-trp plates). A mutant has been isolated that cannot grow

More information

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms No. 1 of 10 1. The mouse gene knockout is based on. (A) Homologous recombination (B) Site-specific recombination

More information

Lecture 8: Transgenic Model Systems and RNAi

Lecture 8: Transgenic Model Systems and RNAi Lecture 8: Transgenic Model Systems and RNAi I. Model systems 1. Caenorhabditis elegans Caenorhabditis elegans is a microscopic (~1 mm) nematode (roundworm) that normally lives in soil. It has become one

More information

A Survey of Genetic Methods

A Survey of Genetic Methods IBS 8102 Cell, Molecular, and Developmental Biology A Survey of Genetic Methods January 24, 2008 DNA RNA Hybridization ** * radioactive probe reverse transcriptase polymerase chain reaction RT PCR DNA

More information

GENOME 371, Problem Set 6

GENOME 371, Problem Set 6 GENOME 371, Problem Set 6 1. S. pombe is a distant relative of baker s yeast (which you used in quiz section). Wild type S. pombe can grow on plates lacking tryptophan (-trp plates). A mutant has been

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10163 Supplementary Table 1 Efficiency of vector construction. Process wells recovered efficiency (%) Recombineering* 480 461 96 Intermediate plasmids 461 381 83 Recombineering efficiency

More information

CRISPR Applications: Mouse

CRISPR Applications: Mouse CRISPR Applications: Mouse Lin He UC-Berkeley Advantages of mouse as a model organism similar to human Can be genetically manipulated Isogenic and congenic genetic background An accelerated lifespan. Well-characterized

More information

MOD1 DNA ENGINEERING. Day 6. Why you owe Your Life to Homologous Recombina9on. Engelward, Fall Rad51 / Normal

MOD1 DNA ENGINEERING. Day 6. Why you owe Your Life to Homologous Recombina9on. Engelward, Fall Rad51 / Normal MOD1 DNA ENGINEERING Engelward, Fall 2009 Lecture 1: Intro to importance of HR Polymerases & PCR Lecture 2: How HR works Overview of experiments & discussion of controls (single digests) Lecture 3: Why

More information

Bart Williams, PhD Van Andel Research Center

Bart Williams, PhD Van Andel Research Center A History of Genome Editing in the Laboratory Implications for Translational Applications Bart Williams, PhD Van Andel Research Center Introduction by Matthew Denenberg, MD DeVos Childrens Hospital Disclosures:

More information

John Gurdon was testing the hypothesis of genomic equivalence or that when cells divide they retain a full genomic compliment.

John Gurdon was testing the hypothesis of genomic equivalence or that when cells divide they retain a full genomic compliment. 1. (15 pts) John Gurdon won the 2012 Nobel Prize in Physiology or Medicine for work he did in the 1960 s. What was the major developmental hypothesis he set out to test? What techniques did he development

More information

Chapter 5 Genetic Analysis in Cell Biology. (textbook: Molecular Cell Biology 6 ed, Lodish section: )

Chapter 5 Genetic Analysis in Cell Biology. (textbook: Molecular Cell Biology 6 ed, Lodish section: ) Chapter 5 Genetic Analysis in Cell Biology (textbook: Molecular Cell Biology 6 ed, Lodish section: 5.1+5.4-5.5) Understanding gene function: relating function, location, and structure of gene products

More information

Supplementary Information

Supplementary Information Supplementary Information MicroRNA-212/132 family is required for epithelial stromal interactions necessary for mouse mammary gland development Ahmet Ucar, Vida Vafaizadeh, Hubertus Jarry, Jan Fiedler,

More information

Concepts and Methods in Developmental Biology

Concepts and Methods in Developmental Biology Biology 4361 Developmental Biology Concepts and Methods in Developmental Biology June 16, 2009 Conceptual and Methodological Tools Concepts Genomic equivalence Differential gene expression Differentiation/de-differentiation

More information

Biology 4361 Developmental Biology Lecture 4. The Genetic Core of Development

Biology 4361 Developmental Biology Lecture 4. The Genetic Core of Development Biology 4361 Developmental Biology Lecture 4. The Genetic Core of Development The only way to get from genotype to phenotype is through developmental processes. - Remember the analogy that the zygote contains

More information

Genome manipulation by homologous recombination in Drosophila Xiaolin Bi and Yikang S. Rong Date received (in revised form): 9th May 2003

Genome manipulation by homologous recombination in Drosophila Xiaolin Bi and Yikang S. Rong Date received (in revised form): 9th May 2003 Xiaolin Bi is a post doctoral research fellow at the Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. Yikang S. Rong is the principal

More information

Melton, D.W. (1994) Gene targeting in the mouse. Bioessays 16:633-8

Melton, D.W. (1994) Gene targeting in the mouse. Bioessays 16:633-8 Reverse genetics - Knockouts Paper to read for this section : Melton, D.W. (1994) Gene targeting in the mouse. Bioessays 16:633-8 Up until now, we ve concentrated on ways to get a cloned gene. We ve seen

More information

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc.

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc. Chapter 20 Recombinant DNA Technology Copyright 2009 Pearson Education, Inc. 20.1 Recombinant DNA Technology Began with Two Key Tools: Restriction Enzymes and DNA Cloning Vectors Recombinant DNA refers

More information

SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURES

SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURES SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURES Supplementary Figure 1. Generation of inducible BICD2 knock-out mice. A) The mouse BICD2 locus and gene targeting constructs. To generate an inducible Bicd2

More information

The Use of Genetically-Modified Mouse Models to Study the Actin Cytoskeleton

The Use of Genetically-Modified Mouse Models to Study the Actin Cytoskeleton The Use of Genetically-Modified Mouse Models to Study the Actin Cytoskeleton Anthony Kee (PhD) Cellular and Genetic Medicine Unit School of Medical Sciences (a.kee@unsw.edu.au) 2017 Structure of the Prac

More information

The RRPA knock-in allele was generated by homologous recombination in TC1 ES cells.

The RRPA knock-in allele was generated by homologous recombination in TC1 ES cells. Supplemental Materials Materials & Methods Generation of RRPA and RAPA Knock-in Mice The RRPA knock-in allele was generated by homologous recombination in TC1 ES cells. Targeted ES clones in which the

More information

Schematic representation of the endogenous PALB2 locus and gene-disruption constructs

Schematic representation of the endogenous PALB2 locus and gene-disruption constructs Supplementary Figures Supplementary Figure 1. Generation of PALB2 -/- and BRCA2 -/- /PALB2 -/- DT40 cells. (A) Schematic representation of the endogenous PALB2 locus and gene-disruption constructs carrying

More information

Easi CRISPR for conditional and insertional alleles

Easi CRISPR for conditional and insertional alleles Easi CRISPR for conditional and insertional alleles C.B Gurumurthy, University Of Nebraska Medical Center Omaha, NE cgurumurthy@unmc.edu Types of Genome edits Gene disruption/inactivation Types of Genome

More information

TRANSGENIC ANIMALS. -transient transfection of cells -stable transfection of cells. - Two methods to produce transgenic animals:

TRANSGENIC ANIMALS. -transient transfection of cells -stable transfection of cells. - Two methods to produce transgenic animals: Giovanna Gambarotta- Only for teaching purposes. TRANSGENIC ANIMALS -transient transfection of cells -stable transfection of cells - Two methods to produce transgenic animals: 1- DNA microinjection - random

More information

7.03 Final Exam Review 12/19/2006

7.03 Final Exam Review 12/19/2006 7.03 Final Exam Review 12/19/2006 1. You have been studying eye color mutations in Drosophila, which normally have red eyes. White eyes is a recessive mutant trait that is caused by w, a mutant allele

More information

Genetics Faculty of Agriculture and Veterinary Medicine. Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology

Genetics Faculty of Agriculture and Veterinary Medicine. Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology Genetics 10201232 Faculty of Agriculture and Veterinary Medicine Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology 1 Biotechnology is defined as the technology that involves the use of living organisms

More information

Enzyme that uses RNA as a template to synthesize a complementary DNA

Enzyme that uses RNA as a template to synthesize a complementary DNA Biology 105: Introduction to Genetics PRACTICE FINAL EXAM 2006 Part I: Definitions Homology: Comparison of two or more protein or DNA sequence to ascertain similarities in sequences. If two genes have

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 20 Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

CRISPR/Cas9 Mouse Production

CRISPR/Cas9 Mouse Production CRISPR/Cas9 Mouse Production Emory Transgenic and Gene Targeting Core http://cores.emory.edu/tmc Tamara Caspary, Ph.D. Scientific Director Teresa Quackenbush --- Lab Operations and Communications Coordinator

More information

TITLE: Mammary Specific Expression of Cre Recombinase Under the Control of an Endogenous MMTV LTR: A Conditional Knock-out System

TITLE: Mammary Specific Expression of Cre Recombinase Under the Control of an Endogenous MMTV LTR: A Conditional Knock-out System AD Award Number: DAMD17-98-1-8233 TITLE: Mammary Specific Expression of Cre Recombinase Under the Control of an Endogenous MMTV LTR: A Conditional Knock-out System PRINCIPAL INVESTIGATOR: Rama Kudaravalli,

More information

Chapter 20 Biotechnology

Chapter 20 Biotechnology Chapter 20 Biotechnology Manipulation of DNA In 2007, the first entire human genome had been sequenced. The ability to sequence an organisms genomes were made possible by advances in biotechnology, (the

More information

Genome 371, 12 February 2010, Lecture 10. Analyzing mutants. Drosophila transposon mutagenesis. Genetics of cancer. Cloning genes

Genome 371, 12 February 2010, Lecture 10. Analyzing mutants. Drosophila transposon mutagenesis. Genetics of cancer. Cloning genes Genome 371, 12 February 2010, Lecture 10 Analyzing mutants Drosophila transposon mutagenesis Genetics of cancer Cloning genes Suppose you are setting up a transposon mutagenesis screen in fruit flies starting

More information

Biology 105: Introduction to Genetics PRACTICE FINAL EXAM Part I: Definitions. Homology: Reverse transcriptase. Allostery: cdna library

Biology 105: Introduction to Genetics PRACTICE FINAL EXAM Part I: Definitions. Homology: Reverse transcriptase. Allostery: cdna library Biology 105: Introduction to Genetics PRACTICE FINAL EXAM 2006 Part I: Definitions Homology: Reverse transcriptase Allostery: cdna library Transformation Part II Short Answer 1. Describe the reasons for

More information

7.03, 2005, Lecture 25 Transgenes and Gene Targeting in Mice II

7.03, 2005, Lecture 25 Transgenes and Gene Targeting in Mice II 7.03, 2005, Lecture 25 Transgenes and Gene Targeting in Mice II In the last lecture we discussed sickle cell disease (SCD) in humans, and I told you the first part of a rather long, but interesting, story

More information

Agouti C57BL/6N embryonic stem cells for mouse genetic resources

Agouti C57BL/6N embryonic stem cells for mouse genetic resources nature methods Agouti N embryonic stem cells for mouse genetic resources Stephen J Pettitt, Qi Liang, Xin Y Rairdan, Jennifer L Moran, Haydn M Prosser, David R Beier, Kent Lloyd, Allan Bradley & William

More information

TEPZZ A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2014/41

TEPZZ A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2014/41 (19) TEPZZ 78667A T (11) EP 2 786 67 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 08..14 Bulletin 14/41 (1) Int Cl.: A01K 67/027 (06.01) C07K 16/00 (06.01) (21) Application number: 14172437.7

More information

The Use of Genetically-Modified Mouse Models to Study the Cytoskeleton

The Use of Genetically-Modified Mouse Models to Study the Cytoskeleton The Use of Genetically-Modified Mouse Models to Study the Cytoskeleton Anthony Kee (PhD) Neuromuscular and Regenerative Medicine Unit School of Medical Sciences (a.kee@unsw.edu.au) 2014 Structure of the

More information

Test Bank for Molecular Cell Biology 7th Edition by Lodish

Test Bank for Molecular Cell Biology 7th Edition by Lodish Test Bank for Molecular Cell Biology 7th Edition by Lodish Link download full: http://testbankair.com/download/test-bank-formolecular-cell-biology-7th-edition-by-lodish/ Chapter 5 Molecular Genetic Techniques

More information

B6 Albino A ++ Mutant Mice as Embryo Donors for Efficient Germline Transmission of B6 ES Cells. Taconic Webinar Prof. Dr.

B6 Albino A ++ Mutant Mice as Embryo Donors for Efficient Germline Transmission of B6 ES Cells. Taconic Webinar Prof. Dr. B6 Albino A ++ Mutant Mice as Embryo Donors for Efficient Germline Transmission of B6 ES Cells Taconic Webinar 2014-05-14 Prof. Dr. Branko Zevnik A decade of gene targeting in B6 ES cells at TaconicArtemis

More information

Use of Gene Editing Technologies in Rodents. Carlisle P. Landel, Ph.D.

Use of Gene Editing Technologies in Rodents. Carlisle P. Landel, Ph.D. Use of Gene Editing Technologies in Rodents Carlisle P. Landel, Ph.D. The Mouse as A Model Mammal Small, easy to maintain, fecund Well understood genetics Similarity to humans >90% Availability of inbred

More information

Lecture 17. Transgenics. Definition Overview Goals Production p , ,

Lecture 17. Transgenics. Definition Overview Goals Production p , , Lecture 17 Reading Lecture 17: p. 251-256, 260-261 & 264-266 Lecture 18: p. 258-264, 508-524 Transgenics Definition Overview Goals Production p.251-256, 260-261, 264-266 315 Definition A transgenic animal

More information

Chapter 8: Recombinant DNA. Ways this technology touches us. Overview. Genetic Engineering

Chapter 8: Recombinant DNA. Ways this technology touches us. Overview. Genetic Engineering Chapter 8 Recombinant DNA and Genetic Engineering Genetic manipulation Ways this technology touches us Criminal justice The Justice Project, started by law students to advocate for DNA testing of Death

More information

Lecture 12-2/14/2001 Transcription factors I

Lecture 12-2/14/2001 Transcription factors I Lecture 12-2/14/2001 Transcription factors I Topics we will cover today transgenic technology (contd from last time) Gene targeting conditional gene targeting gene trapping regulated expression of introduced

More information

Percent survival. Supplementary fig. S3 A.

Percent survival. Supplementary fig. S3 A. Supplementary fig. S3 A. B. 100 Percent survival 80 60 40 20 Ml 0 0 100 C. Fig. S3 Comparison of leukaemia incidence rate in the triple targeted chimaeric mice and germline-transmission translocator mice

More information

A Low salt diet. C Low salt diet + mf4-31c1 3. D High salt diet + mf4-31c1 3. B High salt diet

A Low salt diet. C Low salt diet + mf4-31c1 3. D High salt diet + mf4-31c1 3. B High salt diet A Low salt diet GV [AU]:. [mmhg]: 0..... 09 9 7 B High salt diet GV [AU]:. [mmhg]: 7 8...0. 7.8 8.. 0 8 7 C Low salt diet + mf-c GV [AU]:. [mmhg]:.0.9 8.7.7. 7 8 0 D High salt diet + mf-c E Lymph capillary

More information

Chapter 20: Biotechnology

Chapter 20: Biotechnology Name Period The AP Biology exam has reached into this chapter for essay questions on a regular basis over the past 15 years. Student responses show that biotechnology is a difficult topic. This chapter

More information

Chapter 9 Genetic Engineering

Chapter 9 Genetic Engineering Chapter 9 Genetic Engineering Biotechnology: use of microbes to make a protein product Recombinant DNA Technology: Insertion or modification of genes to produce desired proteins Genetic engineering: manipulation

More information

The Use of Genetically-Modified Mouse Models to Study the Cytoskeleton

The Use of Genetically-Modified Mouse Models to Study the Cytoskeleton The Use of Genetically-Modified Mouse Models to Study the Cytoskeleton Anthony Kee (PhD) Neuromuscular and Regenerative Medicine Unit School of Medical Sciences (a.kee@unsw.edu.au) 2012 Why Study Gene

More information

Module 3: IKMC Resource Overview

Module 3: IKMC Resource Overview Overview Aims Understanding knockout design strategies Introduction to the IKMC web portal Introduction Several large-scale gene targeting and gene trapping projects are participating in the International

More information

Lecture 15: Functional Genomics II

Lecture 15: Functional Genomics II Lecture 15: Functional Genomics II High-throughput RNAi screens High-throughput insertional/chemical screens Homologous recombination (yeast and mouse) - Other methods in discerning gene function Activation

More information

Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest

Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest C A. site-directed mutagenesis A C A T A DNA B. in vitro mutagenesis by PCR T A 1. anneal primer 1 C A 1. fill in

More information

Transgenesis. Stable integration of foreign DNA into host genome Foreign DNA is passed to progeny germline transmission

Transgenesis. Stable integration of foreign DNA into host genome Foreign DNA is passed to progeny germline transmission Transgenic Mice Transgenesis Stable integration of foreign DNA into host genome Foreign DNA is passed to progeny germline transmission integrates into all cells including sperm or egg Knockin mice DNA

More information

Nature Biotechnology: doi: /nbt.4166

Nature Biotechnology: doi: /nbt.4166 Supplementary Figure 1 Validation of correct targeting at targeted locus. (a) by immunofluorescence staining of 2C-HR-CRISPR microinjected embryos cultured to the blastocyst stage. Embryos were stained

More information

Supplemental Figure 1

Supplemental Figure 1 Supplemental Figure 1 Supplemental figure 1. Generation of gene targeted mice expressing an anti-id BCR. (A,B) Generation of the VDJ aid H KI mouse. (A) Targeting Construct. Top: Targeting construct for

More information

Name AP Biology Mrs. Laux Take home test #11 on Chapters 14, 15, and 17 DUE: MONDAY, DECEMBER 21, 2009

Name AP Biology Mrs. Laux Take home test #11 on Chapters 14, 15, and 17 DUE: MONDAY, DECEMBER 21, 2009 MULTIPLE CHOICE QUESTIONS 1. Inducible genes are usually actively transcribed when: A. the molecule degraded by the enzyme(s) is present in the cell. B. repressor molecules bind to the promoter. C. lactose

More information

LS4 final exam. Problem based, similar in style and length to the midterm. Articles: just the information covered in class

LS4 final exam. Problem based, similar in style and length to the midterm. Articles: just the information covered in class LS4 final exam Problem based, similar in style and length to the midterm Articles: just the information covered in class Complementation and recombination rii and others Neurospora haploid spores, heterokaryon,

More information

(a) Scheme depicting the strategy used to generate the ko and conditional alleles. (b) RT-PCR for

(a) Scheme depicting the strategy used to generate the ko and conditional alleles. (b) RT-PCR for Supplementary Figure 1 Generation of Diaph3 ko mice. (a) Scheme depicting the strategy used to generate the ko and conditional alleles. (b) RT-PCR for different regions of Diaph3 mrna from WT, heterozygote

More information

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory 13 Biotechnology Concept 13.1 Recombinant DNA Can Be Made in the Laboratory It is possible to modify organisms with genes from other, distantly related organisms. Recombinant DNA is a DNA molecule made

More information

Mouse Genetics 3/8/17. Outline. History of Mouse Genetics. History of the laboratory mouse. Mouse strains. Gene8c mapping How do we find genes?

Mouse Genetics 3/8/17. Outline. History of Mouse Genetics. History of the laboratory mouse. Mouse strains. Gene8c mapping How do we find genes? 3/8/17 Mouse Genetics Heather A Lawson Department of Gene8cs Spring 2017 Outline History of the laboratory mouse Mouse strains Gene8c mapping How do we find genes? Gene8c Engineering How do we analyze gene

More information

7.03, 2005, Lecture 20 EUKARYOTIC GENES AND GENOMES I

7.03, 2005, Lecture 20 EUKARYOTIC GENES AND GENOMES I 7.03, 2005, Lecture 20 EUKARYOTIC GENES AND GENOMES I For the last several lectures we have been looking at how one can manipulate prokaryotic genomes and how prokaryotic genes are regulated. In the next

More information

Genome annotation & EST

Genome annotation & EST Genome annotation & EST What is genome annotation? The process of taking the raw DNA sequence produced by the genome sequence projects and adding the layers of analysis and interpretation necessary

More information

Bi 8 Lecture 4. Ellen Rothenberg 14 January Reading: from Alberts Ch. 8

Bi 8 Lecture 4. Ellen Rothenberg 14 January Reading: from Alberts Ch. 8 Bi 8 Lecture 4 DNA approaches: How we know what we know Ellen Rothenberg 14 January 2016 Reading: from Alberts Ch. 8 Central concept: DNA or RNA polymer length as an identifying feature RNA has intrinsically

More information

BIO 202 Midterm Exam Winter 2007

BIO 202 Midterm Exam Winter 2007 BIO 202 Midterm Exam Winter 2007 Mario Chevrette Lectures 10-14 : Question 1 (1 point) Which of the following statements is incorrect. a) In contrast to prokaryotic DNA, eukaryotic DNA contains many repetitive

More information

Biotech Applications Nucleic acid therapeutics, Antibiotics, Transgenics. BIT 220 End of Chapter 22 (Snustad/Simmons)

Biotech Applications Nucleic acid therapeutics, Antibiotics, Transgenics. BIT 220 End of Chapter 22 (Snustad/Simmons) Biotech Applications Nucleic acid therapeutics, Antibiotics, Transgenics BIT 220 End of Chapter 22 (Snustad/Simmons) Nucleic Acids as Therapeutic Agents Many diseases (cancer, inflammatory diseases) from

More information

Bi 8 Lecture 5. Ellen Rothenberg 19 January 2016

Bi 8 Lecture 5. Ellen Rothenberg 19 January 2016 Bi 8 Lecture 5 MORE ON HOW WE KNOW WHAT WE KNOW and intro to the protein code Ellen Rothenberg 19 January 2016 SIZE AND PURIFICATION BY SYNTHESIS: BASIS OF EARLY SEQUENCING complex mixture of aborted DNA

More information

Why do we care about homologous recombination?

Why do we care about homologous recombination? Why do we care about homologous recombination? Universal biological mechanism Bacteria can pick up new genes Biotechnology Gene knockouts in mice via homologous recombination 1 DNA of interest in mouse

More information

Map-Based Cloning of Qualitative Plant Genes

Map-Based Cloning of Qualitative Plant Genes Map-Based Cloning of Qualitative Plant Genes Map-based cloning using the genetic relationship between a gene and a marker as the basis for beginning a search for a gene Chromosome walking moving toward

More information

Chapter 20 DNA Technology & Genomics. If we can, should we?

Chapter 20 DNA Technology & Genomics. If we can, should we? Chapter 20 DNA Technology & Genomics If we can, should we? Biotechnology Genetic manipulation of organisms or their components to make useful products Humans have been doing this for 1,000s of years plant

More information

CFTR-null wt CFTR-null 1.0. Probe: Neo R. Figure S1

CFTR-null wt CFTR-null 1.0. Probe: Neo R. Figure S1 A. B. 4.0 3.0 2.0 1.0 4.0 3.0 2.0 1.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Probe: Neo R CFTR-null wt CFTR-null Figure S1 A. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 10kb 8kb CFTR-null wt B. Probe: CFTR

More information

Historical Perspective

Historical Perspective Genetic transformation of E.Coli and selection, DNA recombination without ligase: topoisomerase, cre-lox recombination, Gate way method etc. DNA library: genomic library, cdna library, expression library,

More information

Generation and Application of Genetically Modified Mouse Models of Human Disease.

Generation and Application of Genetically Modified Mouse Models of Human Disease. Generation and Application of Genetically Modified Mouse Models of Human Disease. Nina Balthasar RCUK and BHF Research Fellow Department of Physiology and Pharmacology University of Bristol The Plan Techniques

More information

Chapter 11. How Genes Are Controlled. Lectures by Edward J. Zalisko

Chapter 11. How Genes Are Controlled. Lectures by Edward J. Zalisko Chapter 11 How Genes Are Controlled PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and

More information

Genome research in eukaryotes

Genome research in eukaryotes Functional Genomics Genome and EST sequencing can tell us how many POTENTIAL genes are present in the genome Proteomics can tell us about proteins and their interactions The goal of functional genomics

More information

Bacterial DNA replication

Bacterial DNA replication Bacterial DNA replication Summary: What problems do these proteins solve? Tyr OH attacks PO4 and forms a covalent intermediate Structural changes in the protein open the gap by 20 Å! 1 Summary: What problems

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

7.012 Problem Set 5. Question 1

7.012 Problem Set 5. Question 1 Name Section 7.012 Problem Set 5 Question 1 While studying the problem of infertility, you attempt to isolate a hypothetical rabbit gene that accounts for the prolific reproduction of rabbits. After much

More information

Experimental genetics - I

Experimental genetics - I Experimental genetics - I Examples of diseases with genetic-links Hemophilia (complete loss or altered form of factor VIII): bleeding disorder Duchenne muscular dystrophy (altered form of dystrophin) muscle

More information

Learning Objectives :

Learning Objectives : Learning Objectives : Understand the basic differences between genomic and cdna libraries Understand how genomic libraries are constructed Understand the purpose for having overlapping DNA fragments in

More information

Recombinant DNA Technology

Recombinant DNA Technology Recombinant DNA Technology Common General Cloning Strategy Target DNA from donor organism extracted, cut with restriction endonuclease and ligated into a cloning vector cut with compatible restriction

More information

CHAPTER 21 GENOMES AND THEIR EVOLUTION

CHAPTER 21 GENOMES AND THEIR EVOLUTION GENETICS DATE CHAPTER 21 GENOMES AND THEIR EVOLUTION COURSE 213 AP BIOLOGY 1 Comparisons of genomes provide information about the evolutionary history of genes and taxonomic groups Genomics - study of

More information

It s All in the Hands Genetic Engineering

It s All in the Hands Genetic Engineering It s All in the Hands Genetic Engineering Genetic Engineering Genetic Engineering is the technique of modifying the genome of an organism by using recombinant DNA technology. Recombinant DNA (rdna) technology

More information

Genome editing. Knock-ins

Genome editing. Knock-ins Genome editing Knock-ins Experiment design? Should we even do it? In mouse or rat, the HR-mediated knock-in of homologous fragments derived from a donor vector functions well. However, HR-dependent knock-in

More information

Research techniques in genetics. Medical genetics, 2017.

Research techniques in genetics. Medical genetics, 2017. Research techniques in genetics Medical genetics, 2017. Techniques in Genetics Cloning (genetic recombination or engineering ) Genome editing tools: - Production of Knock-out and transgenic mice - CRISPR

More information

Supplementary Figure 1 Activities of ABEs using extended sgrnas in HEK293T cells.

Supplementary Figure 1 Activities of ABEs using extended sgrnas in HEK293T cells. Supplementary Figure 1 Activities of ABEs using extended sgrnas in HEK293T cells. Base editing efficiencies of ABEs with extended sgrnas at Site 18 (a), Site 19 (b), the HBB-E2 site (c), and the HBB-E3

More information

The analysis of mutant organisms and cell lines has

The analysis of mutant organisms and cell lines has 646 Double Knockouts Production of Mutant Cell Lines in Cardiovascular Research Richard M. Mortensen Double knockouts by homologous recombination is a method Tor producing cell lines with an inactivating

More information

7.03 Problem Set 1 Due before 5 PM on Wednesday, September 19 Hand in answers in recitation section or in the box outside of

7.03 Problem Set 1 Due before 5 PM on Wednesday, September 19 Hand in answers in recitation section or in the box outside of 7.03 Problem Set 1 Due before 5 PM on Wednesday, September 19 Hand in answers in recitation section or in the box outside of 68-120 1. You have isolated a collection of yeast mutants that form small colonies

More information

[Presented by: Andrew Howlett, Cruise Slater, Mahmud Hasan, Greg Dale]

[Presented by: Andrew Howlett, Cruise Slater, Mahmud Hasan, Greg Dale] Mutational Dissection [Presented by: Andrew Howlett, Cruise Slater, Mahmud Hasan, Greg Dale] Introduction What is the point of Mutational Dissection? It allows understanding of normal biological functions

More information

Supporting Information

Supporting Information Supporting Information Park et al. 10.1073/pnas.1410555111 5 -TCAAGTCCATCTACATGGCC-3 5 -CAGCTGCCCGGCTACTACTA-3 5 -TGCAGCTGCCCGGCTACTAC-3 5 -AAGCTGGACATCACCTCCCA-3 5 -TGACAGGAACACCTACAAGT-3 5 -AAGGCACCTTTCTGTCTCCA-3

More information

Transgenic Mice. Introduction. Generation of Transgenic Mice. Transgenic Mice: A Unique Tool for the Study of Mammalian Biology.

Transgenic Mice. Introduction. Generation of Transgenic Mice. Transgenic Mice: A Unique Tool for the Study of Mammalian Biology. Transgenic Mice Charles Babinet, Institut Pasteur, Paris, France Transgenic mice carry exogenous genetic material introduced by the experimenter. Homologous recombination is used to introduce programmed

More information

Chapter 1. from genomics to proteomics Ⅱ

Chapter 1. from genomics to proteomics Ⅱ Proteomics Chapter 1. from genomics to proteomics Ⅱ 1 Functional genomics Functional genomics: study of relations of genomics to biological functions at systems level However, it cannot explain any more

More information