This lab also contributes to the attainment of the following elements of the 00UK objective:

Save this PDF as:

Size: px
Start display at page:

Download "This lab also contributes to the attainment of the following elements of the 00UK objective:"

Transcription

1 General Biology I The Unity of Life Laboratory Genetic Transformation of Bacteria with pglo 10% of lab mark (2% of final course mark) modified from: BioRad Biotechnology Explorer pglo Bacterial Transformation Kit. This lab activity is intended to provide an opportunity for students to: become acquainted with some contemporary biotechnology procedures; apply links between technology and the theories of genetics; gain experience analyzing data and drawing simple conclusions from those data. Students will work in teams of three. Objectives: This lab aims to contribute to the development of the following components of the Cégep Champlain St. Lawrence Science Program Graduate Profile: I. Apply The Experimental Method II. Take A Systematic Approach To Problem Solving III. Use The Appropriate Information Technologies IV. Reason Logically V. Communicate Effectively VI. Learn In An Autonomous Manner VII. Work As Members Of A Team VIII. Make Connections Between Science, Technology and Social Progress X. Become Familiar With the Context in Which Scientific Concepts are Discovered and Developed XI. Develop Attitudes Appropriate For Scientific Work XII. Apply What They Have Learned To New Situations This lab also contributes to the attainment of the following elements of the 00UK objective: 1. To recognize the relationships between the structures and functions of certain levels of organization of living beings. 2. To analyze the mechanisms that are responsible for the genetic variation of living beings. This lab also contributes to the development of the following performance criteria of the 00UK objective: Proper use of concepts and terminology Clear description of the principal steps of a biological process. Accurate description of structures and their functions. Description of the correlations between structures and functions. Appropriate use of the laws of genetics and the chromosome theory of heredity. Observance of the experimental method and, where applicable, the experimental procedure. Adherence to safety and environmental protection regulations. Appropriate use of techniques of observation and experimentation. Pre-lab Assignment Due October 7, 2008 Each student is required to answer the following questions concerning the lab protocol: 1. On which plate(s) do you expect non-transformed bacteria will form colonies? Justify your prediction. (2 points) 2. On which plate(s) do you expect genetically-transformed bacteria will form colonies? Justify your prediction. (2 points) 3. Identify the positive and negative control plate(s). Explain the function of each. 4. The pglo plasmid contains many genes. What is the role of the following genes? a. ori gene b. GFP gene c. bla gene d. arabinose promoter. 1

2 Background Information: Genetic transformation occurs when a cell takes up (takes inside) and expresses a new piece of genetic material DNA. This new genetic information often provides the organism with a new trait which is identifiable after transformation. Genetic transformation literally means change caused by genes and involves the insertion of one or more gene(s) into an organism in order to change the organism s traits. Genetic transformation is used in many areas of biotechnology. In agriculture, genes coding for traits such as frost, pest, or drought resistance can be genetically transformed into plants. In bioremediation, bacteria can be genetically transformed with genes enabling them to digest oil spills. In medicine, diseases caused by defective genes are beginning to be treated by gene therapy; that is, by genetically transforming a sick person s cells with healthy copies of the defective gene that causes their disease. Genes can be cut out of human, animal, or plant DNA and placed inside bacteria. For example, a healthy human gene for the hormone insulin can be put into bacteria. Under the right conditions, these bacteria can make authentic human insulin. This insulin can then be used to treat patients with the genetic disease, diabetes, because their insulin genes do not function normally. The pglo System You will use a simple procedure to transform bacteria with a gene that codes for Green Fluorescent Protein (GFP). The real-life source of this gene is the bioluminescent jellyfish Aequorea victoria, and GFP causes the jellyfish to fluoresce and glow in the dark. Following the transformation procedure, the bacteria express their newly acquired jellyfish gene and produce the fluorescent protein which causes them to glow a brilliant green color under ultraviolet light. In this activity, you will learn about the process of moving genes from one organism to another with the aid of a plasmid. In addition to one large chromosome, bacteria naturally contain one or more small circular pieces of DNA called plasmids. Plasmid DNA usually contains genes for one or more traits that may be beneficial to bacterial survival. In nature, bacteria can transfer plasmids back and forth, allowing them to share these beneficial genes. This natural mechanism allows bacteria to adapt to new environments. The recent occurrence of bacterial resistance to antibiotics is due to the transmission of plasmids. The pglo plasmid contains the gene for GFP and a gene for resistance to the antibiotic ampicillin. pglo also incorporates a special gene regulation system that can be used to control expression of the fluorescent protein in transformed cells. The gene for GFP can be switched on in transformed cells simply by adding the sugar arabinose to the cell s nutrient medium. Selection for cells that have been transformed with pglo DNA is accomplished by growth on antibiotic plates. Transformed cells will appear white (wild-type phenotype) on plates not containing arabinose, and fluorescent green when arabinose is included in the nutrient agar. You will be provided with the tools and a protocol for performing genetic transformation. Your task will be: 1. To do the genetic transformation. 2. To determine the degree of success in your efforts to genetically alter an organism. 2

3 Microbial Transformation with pglo October 7 and 21 Required Materials E. coli starter plate 4 agar plates (1 LB, 2 LB/amp, 1 LB/amp/ara) transformation solution (CaCl2) LB nutrient broth inoculation loop sterile, transfer pipets microtube holder container full of crushed ice 2 microtubes Rehydrated pglo plasmid 42 C water bath 37 C incubator P-200 micropipet and tips biological waste bags glass hockey stick EtOH in watch glass Procedure: Transformation October 7 1. Use a waterproof marker to label 2 microtubes with your team s name and the lab time. Mark one microtube + and the other microtube with a. Place labeled tubes in the microtube rack. 2. Open the tubes and, using a sterile transfer pipet, transfer 250 μl of transformation solution (CaCl2) into each microtube. Place on ice. Discard pipet. 3. Use a sterile inoculation loop to pick up a SINGLE colony of bacteria from your starter plate. Immerse the bacteria into the liquid within the tube marked Spin the loop between your index finger and thumb until the entire colony is dispersed in the transformation solution (with no floating chunks). Replace the tube in the rack in the ice. Sterilize the loop before you set it back down. 5. Examine the bacterial colonies on the E. coli starter plate. Record size and color of the colonies in the Microbial Transformation Data Sheet. 6. Using a sterile inoculation loop, add a single bacterial colony to the solution in the tube marked. Spin to disperse the colony as in step 4. Sterilize the loop. 7. Examine the solution within the tube marked + with the UV lamp. Note your observations. Note: 8. Immerse a sterilized inoculation loop into the pglo plasmid DNA stock tube. Withdraw a loopful. There should be a film of plasmid solution across the ring. This is similar to seeing a soapy film across a ring for blowing soap bubbles. Mix the loopful into the cell suspension of the + tube. Close the tube and return it to the rack on ice. Sterilize the loop before you set it back down. 9. Close the tube marked. Add nothing to this tube. 10. Incubate both microtubes on ice for 10 minutes. Make sure the tubes are in contact with the ice. 11. Label four LB agar plates on the bottom (not the lid) with the date, your team s initials, the lab time and: Label one LB/amp plate: + DNA Label the LB/amp/ara plate: + DNA Label the other LB/amp plate: DNA Label the LB plate: DNA 3

4 12. After the 10 minute incubation on ice has ended, heat shock the cells. Remove the rack containing the microtubes from the ice and place it in a 42 C water bath for EXACTLY 50 seconds. Make sure the tubes are in contact with the water. Note: For the best transformation results, the transfer from the ice (0 C) to 42 C and then back to the ice must be rapid. It is best to bring the ice bucket over to the water bath to minimize the amount of time the solutions are exposed to room temperature. 13. Incubate tubes on ice for 2 minutes. 14. Remove the rack containing the microtubes from the ice and place on the bench top. 15. Use a sterile transfer pipet to add 250 μl of LB nutrient broth to the tube marked +. Discard the pipet in the biological waste bag. 16. Use a new sterile transfer pipet to add 250 ul of LB to the other tube. Discard the pipet in the biological waste bag. 17. Close the lids of both tubes and incubate the tubes for 10 minutes at room temperature. 18. Tap the closed tubes with your finger to mix. 19. Use a P-200 micropipet (with sterile tip) to aseptically transfer 100 µl of + solution to each of the 2 agar plates labeled +DNA. Discard the contaminated pipette tip into a biological waste bag. 20. Use a P-200 micropipet (with sterile tip) to aseptically transfer 100 µl of solution to each of the 2 agar plates labeled DNA. Discard the contaminated pipette tip into a biological waste bag. 21. Use a sterilized hockey stick to evenly spread the liquid bacterial culture over the surface of the agar. Sterilize the hockey stick between agar plates. Dip a bent glass rod into ethanol in a watch glass and pass the rod through the flame. The ethanol will quickly burn off and the glass rod will be sterilized. After the sterilized glass rod has cooled, use it to evenly spread the liquid bacterial culture over the surface of the agar. Re-sterilize and cool the glass rod before putting it down. 22. Stack up your plates and tape them together. Place the stack of plates upside down in the 37 C incubator for 24 hours. Procedure: Data Collection October Observe the results you obtained from the transformation lab under normal room lighting. Record your observations on the Microbial Transformation Data Sheet. 2. Turn out the lights and hold the UV lamp over the plates. Carefully observe and draw what you see on each of the four plates on the Microbial Transformation Data Sheet 3. For each plate, record, relative bacterial growth number of bacterial colonies color of bacterial colonies colony size 4. Determine the number of green fluorescent colonies growing on the LB/amp/ara plate. Record this number in the class data sheet. 4

5 Procedure: Calculate transformation efficiency Determine the transformation efficiency for your group and the average efficiency for all groups. group transformation efficiency = total number of cells growing on the LB/amp/ara plate amount of DNA (0.16 μg) spread on the agar plate average transformation efficiency = average number of cells growing on the LB/amp/ara plate amount of DNA (0.16 μg) spread on the agar plate Assignment one per team Due: November 4 1. Submit a completed Microbial Transformation Data Sheet. 2. Calculate the transformation efficiency for your data as well as the overall transformation efficiency using the class data. Answer the following questions: 3. Which traits seem to be the same in the transformed E. coli and the non-transformed E. coli? 4. Which traits of the bacteria have changed in the transformed bacteria? Compare the traits of E. coli that were not transformed with the E. coli that were transformed. 5. Based on the results obtained, how could you prove that the changes that occurred were due to the procedure that you performed? 6. Very often an organism s traits are caused by the interaction of its genes and its environment. For the pglo experiment, what two factors must be present in the bacteria s environment for you to observe the green color trait? This is an example of what type of gene regulation? Explain. 7. What advantage would there be for an organism to able to turn on or off particular genes in response to certain conditions? 8. Why is it necessary to incubate the transformed cells for 10 minutes at room temperature before spreading them on the plates containing antibiotic? Consider how the bacterial cells in the pglo procedure are able to resist the ampicillin as well as the steps of gene expression. 5

Student Manual. pglo Transformation

Student Manual. pglo Transformation Student Manual pglo Transformation Lesson 1 Introduction to Transformation In this lab you will perform a procedure known as genetic transformation. Remember that a gene is a piece of DNA which provides

More information

Student Manual. pglo Transformation

Student Manual. pglo Transformation Student Manual pglo Transformation STUDENT MANUAL LESSON 1 Lesson 1 Introduction to Transformation In this lab you will perform a procedure known as genetic transformation. Remember that a gene is a piece

More information

Transforming E. Coli with pglo Plasmids

Transforming E. Coli with pglo Plasmids Name: Transforming E. Coli with pglo Plasmids AP Biology Transformation Background: Transformation is a process of transferring genetic information from one organism to another. In bacteria, a small circular

More information

Bacterial Transformation and Protein Purification

Bacterial Transformation and Protein Purification Bacterial Transformation and Protein Purification Group 4 Natalie Beale Gregory A. Pate Justin Rousseau Dohee Won Introduction The purpose of this experiment is to perform a genetic transformation and

More information

In order to do transformation, the gene to be transferred is placed into a plasmid. This is done with the help of restriction enzymes, 7

In order to do transformation, the gene to be transferred is placed into a plasmid. This is done with the help of restriction enzymes, 7 Fluorescent Protein Transformation Student Background Genetic transformation occurs when a cell takes up (i.e. takes inside) and expresses a new piece of genetic material DNA. Genetic transformation literally

More information

Bacterial genetic exchange : Bacterial Transformation

Bacterial genetic exchange : Bacterial Transformation Experiment 11 Laboratory to Biology III: Diversity of Microorganisms 1 Experiment 11 Bacterial genetic exchange : Bacterial Transformation Advisor Munti Yuhana myuhana@botinst.unizh.ch Textbook Chapters

More information

ONTARIO SCIENCE CENTRE. Teacher Guide. Way to Glow Program

ONTARIO SCIENCE CENTRE. Teacher Guide. Way to Glow Program ONTARIO SCIENCE CENTRE Teacher Guide Way to Glow Program Table of Contents Bacterial transformation background information 3 Experimental procedure 5 Expected results 7 Post-program activity sheet 8 Post-program

More information

Biotechnology Explorer

Biotechnology Explorer arac ori pglo bla GFP Biotechnology Explorer pglo Bacterial Transformation Kit Catalog #166-0003EDU explorer.bio-rad.com See individual components for storage temperature. Duplication of any part of this

More information

Biology Lab Activity 4-5 DNA Transformation

Biology Lab Activity 4-5 DNA Transformation Biology Lab Activity 4-5 DNA Transformation Scientists can insert genes into bacteria. The genes inserted in the Indo-Blu process (this lab) are on a circular piece of DNA called a plasmid. (The plasmid

More information

Amgen Protocol: Introduction and a few comments:

Amgen Protocol: Introduction and a few comments: Amgen Protocol: Introduction and a few comments: The following is a shortened version of the Amgen Lab. This series of labs involves the creation of a recombinant plasmid, subsequent transformation of

More information

Lab 1 Flow Chart : Learning basic laboratory skills

Lab 1 Flow Chart : Learning basic laboratory skills Lab Flow Chart : Learning basic laboratory skills RD Red dye solution S Dye S2 Dye 2 S3 Dye 3 H 2 O Water X TAE X Lab.: Basic pipetting and serial dilution 2 Plunger button Tip ejector Display window Barrel

More information

Genetic Engineering: Transforming Bacteria

Genetic Engineering: Transforming Bacteria Genetic Engineering: Transforming Bacteria Introduction Activity Introduction In this laboratory experiment, students will transform the phenotype of bacteria through the use of genetic engineering. A

More information

ASEPTIC TRANSFER & PURE CULTURE TECHNIQUES

ASEPTIC TRANSFER & PURE CULTURE TECHNIQUES ASEPTIC TRANSFER & PURE CULTURE TECHNIQUES GENERAL GUIDELINES & REMINDERS: SAFETY: NO EATING OR DRINKING IN THE LAB! Wash your hands with soap both BEFORE and AFTER lab, and, in addition, when you have

More information

Aseptic Techniques. A. Objectives. B. Before coming to lab

Aseptic Techniques. A. Objectives. B. Before coming to lab Aseptic Techniques A. Objectives Become familiar with 1. The ubiquity of microorganisms (see Note 1) 2. Aseptic techniques (see Note 2) 3. Standard methods for growing/observing microorganisms (see Note

More information

MOLECULAR GENETICS: TRANSFORMATION AND CLONING adapted by Dr. D. L. Vogelien

MOLECULAR GENETICS: TRANSFORMATION AND CLONING adapted by Dr. D. L. Vogelien Introduction MOLECULAR GENETICS: TRANSFORMATION AND CLONING adapted by Dr. D. L. Vogelien The field of molecular genetics has resulted in a number of practical applications that have been of tremendous

More information

Dolan DNA Learning Center Glowing Genes

Dolan DNA Learning Center Glowing Genes Dolan DNA Learning Center Glowing Genes Background History A chromosome is a continuous DNA molecule that can be thousands or millions of base pairs long. The vast length of chromosomes posed a problem

More information

HiPer Transformation Teaching Kit

HiPer Transformation Teaching Kit HiPer Transformation Teaching Kit Product Code: HTBM017 Number of experiments that can be performed: 10 Duration of Experiment: 4 days Day 1- Preparation of media and revival of E. coli Host Day 2- Inoculation

More information

TRANSFER OF BACTERIA USING ASEPTIC TECHNIQUE

TRANSFER OF BACTERIA USING ASEPTIC TECHNIQUE TRANSFER OF BACTERIA USING ASEPTIC TECHNIQUE GENERAL GUIDELINES: Safety Wear a lab coat and have your goggles on! ALWAYS disinfect the tables BEFORE and AFTER lab. Wash your hands with soap both BEFORE

More information

HiPer Plasmid DNA Cloning Teaching Kit

HiPer Plasmid DNA Cloning Teaching Kit HiPer Plasmid DNA Cloning Teaching Kit Product Code: HTBM022 Number of experiments that can be performed: 5 Duration of Experiment: 4 days Day 1- Preparation of media and revival of E. coli Host Day2-

More information

PURE CULTURE TECHNIQUES

PURE CULTURE TECHNIQUES PURE CULTURE TECHNIQUES Most specimens (from animal tissue, plant tissue, or environmental samples) will be mixed, with a variety of bacteria (or other microorganisms). A single gram of feces, for example,

More information

GeNei TM Transformation Teaching Kit Manual

GeNei TM Transformation Teaching Kit Manual Teaching Kit Manual Cat No. New Cat No. KT07 107385 KT07A 106220 Revision No.: 00060505 CONTENTS Page No. Objective 3 Principle 3 Kit Description 6 Materials Provided 7 Procedure 9 Observation & Interpretation

More information

Lab Exercise #4 Microbial Control Lab Exercise #4 Control of Microorganisms: Physical, Chemical and Chemotherapeutic

Lab Exercise #4 Microbial Control Lab Exercise #4 Control of Microorganisms: Physical, Chemical and Chemotherapeutic Lab Exercise #4 Control of Microorganisms: Physical, Chemical and Chemotherapeutic I. OBJECTIVES: Investigate the effectiveness various agents of control. Assess the effectiveness of heat in killing vegetative

More information

Green Fluorescent Protein (GFP) Purification. Hydrophobic Interaction Chromatography

Green Fluorescent Protein (GFP) Purification. Hydrophobic Interaction Chromatography Green Fluorescent Protein (GFP) Purification Hydrophobic Interaction Chromatography What is the GFP gene? GFP is a green fluorescent protein that is normally found in jellyfish. It has been engineered

More information

VDL100.2 CLONING TRANSGENE INTO padenox

VDL100.2 CLONING TRANSGENE INTO padenox 1. Purpose 1.1. The purpose of this protocol is to transfer a transgene from the pshuttlex plasmid to padenox. 1.2. The starting material is 10 μg plasmid DNA. 1.3. This procedure is routinely performed

More information

Transformation with Green Fluorescent Protein (GFP)

Transformation with Green Fluorescent Protein (GFP) REVISED & UPDATED Edvo-Kit #223/AP08 Transformation with Green Fluorescent Protein (GFP) Experiment Objective: Students explore the biological process of bacterial transformation using E.coli and plasmid

More information

Purification of mfp. from an Overnight Culture. Laboratory 17

Purification of mfp. from an Overnight Culture. Laboratory 17 Purification of mfp from an Overnight Culture When scientists at a therapeutics company, like Amgen, have successfully identified a promising therapeutic protein, two objectives would be to locate and

More information

Transformation of DNA in competent E. coil

Transformation of DNA in competent E. coil Transformation of DNA in competent E. coil Reagents: SOC medium (1L) (a) 20g tryptone, 5g yeast extract, 0.5g NaCl in 950ml dh 2 O. (b) 250mM KCl: 1.86 KCl in 100ml dh 2 O. Add 10ml of solution (b) to

More information

How Do You Clone a Gene?

How Do You Clone a Gene? S-20 Edvo-Kit #S-20 How Do You Clone a Gene? Experiment Objective: The objective of this experiment is to gain an understanding of the structure of DNA, a genetically engineered clone, and how genes are

More information

The Biotechnology Education Company. Transformation with Green and Blue Fluorescent Proteins. Storage: See Page 3 for specific storage instructions

The Biotechnology Education Company. Transformation with Green and Blue Fluorescent Proteins. Storage: See Page 3 for specific storage instructions The Biotechnology Education Company REVISED & UPDATED Transformation with Green and Blue Fluorescent Proteins Storage: See Page 3 for specific storage instructions EXPERIMENT OBJECTIVE: EDVO-Kit # 222

More information

UltraClean Midi Plasmid Prep Kit

UltraClean Midi Plasmid Prep Kit UltraClean Midi Plasmid Prep Kit Catalog No. Quantity 12700-20 20 Preps Instruction Manual Please recycle Version: 05232014 1 Table of Contents Introduction... 3 Protocol Overview... 3 Flow Chart... 4

More information

Before You Begin. Calibration Protocols

Before You Begin. Calibration Protocols Before You Begin Read through this entire protocol sheet carefully before you start your experiment and prepare any materials you may need. Calibration Protocols 1. OD 600 Reference point You will use

More information

Genetic Engineering. Cells. Cells. Cells 7/13/2012. What we are doing today and tomorrow? Deoxyribonucleic Acid aka DNA

Genetic Engineering. Cells. Cells. Cells 7/13/2012. What we are doing today and tomorrow? Deoxyribonucleic Acid aka DNA What we are doing today and tomorrow? Genetic Engineering Washington University in St. Louis igem What is DNA? What is Genetic Engineering? How is Genetic Engineering being used today? What is our group

More information

AP Biology. Chapter 20. Biotechnology: DNA Technology & Genomics. Biotechnology. The BIG Questions. Evolution & breeding of food plants

AP Biology. Chapter 20. Biotechnology: DNA Technology & Genomics. Biotechnology. The BIG Questions. Evolution & breeding of food plants What do you notice about these phrases? radar racecar Madam I m Adam Able was I ere I saw Elba a man, a plan, a canal, Panama Was it a bar or a bat I saw? Chapter 20. Biotechnology: DNA Technology & enomics

More information

21.4 Recombinant DNA technology Calculation worksheet. AQA Biology. Calculating the efficiency of DNA transfer during genetic engineering

21.4 Recombinant DNA technology Calculation worksheet. AQA Biology. Calculating the efficiency of DNA transfer during genetic engineering Calculating the efficiency of DNA transfer during genetic engineering Specification references 3.8.4.1 MS 0.1, MS 0.3 Learning outcomes After completing this worksheet you should be able to: manipulate

More information

EQUIPMENTS & MATERIALS COMMONLY USED IN A LABORATORY

EQUIPMENTS & MATERIALS COMMONLY USED IN A LABORATORY EQUIPMENTS & MATERIALS COMMONLY USED IN A LABORATORY a) Autoclave: An autoclave is a device used to sterilize equipment and supplies by subjecting them to high pressure saturated steam at 121 C for around

More information

EXPERIMENT GENOMIC DNA ANALYSIS

EXPERIMENT GENOMIC DNA ANALYSIS EXPERIMENT GENOMIC DNA ANALYSIS Population diversity Studies We have 5 species of planarians (3 purchased from Carolina Biologicals, 2 obtained from the Levin lab) andmight have additional species found

More information

SCHEDULE. Friday: Pet Investigations: Plate counts - how to know how many clones of your pet you have (pg. 9-10)

SCHEDULE. Friday: Pet Investigations: Plate counts - how to know how many clones of your pet you have (pg. 9-10) SCHEDULE Wednesday: Pet Investigations: Phenol Red Broth with Durham tubes (pg. 3-4) Oxidation/Fermentation Agar (pg. 5-6) Anaerobic Growth (pg. 7) Growth in Liquid Culture (pg. 8-9) Friday: Pet Investigations:

More information

BCH 462 Competent Cells Formation and Transformation of Competent Cells with plasmid DNA.

BCH 462 Competent Cells Formation and Transformation of Competent Cells with plasmid DNA. Lab#2 BCH 462 Competent Cells Formation and Transformation of Competent Cells with plasmid DNA. Outlines: 1-Insertion of foreign gene to the plasmid. 2-Competent cell. 3-Transformation of bacterial cell.

More information

Project 7: Wound Cultures and Identification

Project 7: Wound Cultures and Identification Project 7: Wound Cultures and Identification Readings: https://labtestsonline.org/understanding/analytes/wound-culture/tab/test Identification of Gram-Positive & Gram-Negative Bacteria Guide to laboratory

More information

BACTERIAL CONJUGATION. To demonstrate the technical procedure to monitor the conjugational transfer of genetic material from one cell to another.

BACTERIAL CONJUGATION. To demonstrate the technical procedure to monitor the conjugational transfer of genetic material from one cell to another. BACTERIAL CONJUGATION I. OBJECTIVES To demonstrate the technical procedure to monitor the conjugational transfer of genetic material from one cell to another. To learn about the various genetic elements

More information

Purification and Characterization of a DNA Plasmid Part A CHEM 4581: Biochemistry Laboratory I Version: January 18, 2008

Purification and Characterization of a DNA Plasmid Part A CHEM 4581: Biochemistry Laboratory I Version: January 18, 2008 Purification and Characterization of a DNA Plasmid Part A CHEM 4581: Biochemistry Laboratory I Version: January 18, 2008 INTRODUCTION DNA Plasmids. A plasmid is a small double-stranded, circular DNA molecule

More information

Genetic Engineering: Way to Grow

Genetic Engineering: Way to Grow STO-134 Genetic Engineering: Way to Grow Part 1: Jose s Story Jose is a healthy and active six-year old. The doctor at the health clinic determined that Jose is 35 inches tall. She showed Jose s parents

More information

How Can Pieces of DNA Solve a Puzzle?

How Can Pieces of DNA Solve a Puzzle? Introduction How Can Pieces of DNA Solve a Puzzle? One of the basic tools of modern biotechnology is DNA splicing: cutting DNA and linking it to other DNA molecules. The basic concept behind DNA splicing

More information

Entry Level Assessment Blueprint Biotechnology

Entry Level Assessment Blueprint Biotechnology Entry Level Assessment Blueprint Biotechnology Test Code: 4075 / Version: 01 Specific Competencies and Skills Tested in this Assessment: Work Habits Demonstrate professional work habits Demonstrate the

More information

Confirming the Phenotypes of E. coli Strains

Confirming the Phenotypes of E. coli Strains Confirming the Phenotypes of E. coli Strains INTRODUCTION Before undertaking any experiments, we need to confirm that the phenotypes of the E. coli strains we intend to use in the planned experiments correspond

More information

Chapter 3. Bacterial Gene Transfer

Chapter 3. Bacterial Gene Transfer Chapter 3 Bacterial Gene Transfer John C. Mordacq and Roberta W. Ellington Department of Biological Sciences, Northwestern University, Evanston, Illinois 60208 John received his B.S. in 1984 from the University

More information

Cat # Box1 Box2. DH5a Competent E. coli cells CCK-20 (20 rxns) 40 µl 40 µl 50 µl x 20 tubes. Choo-Choo Cloning TM Enzyme Mix

Cat # Box1 Box2. DH5a Competent E. coli cells CCK-20 (20 rxns) 40 µl 40 µl 50 µl x 20 tubes. Choo-Choo Cloning TM Enzyme Mix Molecular Cloning Laboratories User Manual Version 3.3 Product name: Choo-Choo Cloning Kits Cat #: CCK-10, CCK-20, CCK-096, CCK-384 Description: Choo-Choo Cloning is a highly efficient directional PCR

More information

Large Volume Serial Dilutions:

Large Volume Serial Dilutions: Serial Dilutions All three bacterial plate count methods described in lab require you to serially dilute your samples until you have 30-300 colony forming units (CFU) on the plate. Plates with more than

More information

Molecular Scissors: Lambda Digest Student Materials

Molecular Scissors: Lambda Digest Student Materials Molecular Scissors: Lambda Digest Student Materials Introduction 2 Pre-Lab Questions. 5 Lab Protocol 6 Data Collection Worksheet. 9 Post-Lab Questions and Analysis.. 10 Plasmid Maps. 13 Last updated: August

More information

QIAfilter Plasmid Midi Kit (Cat #: 12243)

QIAfilter Plasmid Midi Kit (Cat #: 12243) QIAfilter Plasmid Midi Kit (Cat #: 12243) Things to do before starting Add the provided RNase A solution to Buffer P1 before use. Use one vial of RNase A (centrifuge briefly before use) per bottle of Buffer

More information

BIOLOGY 163 LABORATORY. RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017)

BIOLOGY 163 LABORATORY. RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017) BIOLOGY 163 LABORATORY RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017) Physical mapping of genomes is an important part of modern molecular genetics. As it's name implies, physical mapping seeks

More information

BIOLOGY 163 LABORATORY. THE EFFECT OF ANTIBIOTICS ON THE GROWTH OF Escherichia coli B (Revised Fall 2014)

BIOLOGY 163 LABORATORY. THE EFFECT OF ANTIBIOTICS ON THE GROWTH OF Escherichia coli B (Revised Fall 2014) BIOLOGY 163 LABORATORY THE EFFECT OF ANTIBIOTICS ON THE GROWTH OF Escherichia coli B (Revised Fall 2014) Bacteria are single-celled prokaryotic organisms. As bacterial cells take in nutrients from their

More information

Plasmid Midiprep Plus Purification Kit. Cat. # : DP01MD-P10/ DP01MD-P50 Size : 10/50 Reactions Store at RT For research use only

Plasmid Midiprep Plus Purification Kit. Cat. # : DP01MD-P10/ DP01MD-P50 Size : 10/50 Reactions Store at RT For research use only Plasmid Midiprep Plus Purification Kit Cat. # : DP01MD-P10/ DP01MD-P50 Size : 10/50 Reactions Store at RT For research use only 1 Description: The Plasmid Midiprep Plus Purification Kit provides simple

More information

Experiment 3: Microbial Techniques

Experiment 3: Microbial Techniques Experiment 3: Microbial Techniques Objectives: By the end of this lab, you will be able to: 1. Understand and practice aseptic techniques in handling microorganisms. 2. Learn simple media preparation procedures

More information

SAMPLE LITERATURE. Please refer to included weblink for correct version. Colony PCR. Edvo-Kit #323. GFP Transformation Extension:

SAMPLE LITERATURE. Please refer to included weblink for correct version. Colony PCR. Edvo-Kit #323. GFP Transformation Extension: NOTE: This experiment is designed to work with EDVOTEK Kits 222, 223, or 303. Please refer to page 19 for specifics. Edvo-Kit #323 GFP Transformation Extension: Colony PCR Experiment Objective: In this

More information

Worms and their environment

Worms and their environment s and their environment Objectives: The student will observe the growth of in different environments. The student will become familiar with biotechnology techniques. Specifically, how to manipulate organisms

More information

CopyCutter EPI400 Electrocompetent E. coli. CopyCutter EPI400 Chemically Competent E. coli

CopyCutter EPI400 Electrocompetent E. coli. CopyCutter EPI400 Chemically Competent E. coli Cat. Nos. C400EL10, C400CH10, and CIS40025 CopyCutter EPI400 Electrocompetent and Chemically Competent E. coli* cells were developed to significantly lower the copy number of a wide variety of common vectors

More information

MCDB 1041 Class 27. Making recombinant DNA and using it

MCDB 1041 Class 27. Making recombinant DNA and using it MCDB 1041 Class 27 Making recombinant DNA and using it Learning Goals Explain why and how bacteria can be easily used to make copies of human DNA. Compare the two methods for making lots of copies of DNA:

More information

FemINDICAtor qpcr Plant Gender Detection Kit on the Agilent AriaMX Real-Time PCR Detection System Page 1 of 10

FemINDICAtor qpcr Plant Gender Detection Kit on the Agilent AriaMX Real-Time PCR Detection System Page 1 of 10 Page 1 of 10 Please refer to http://www.medicinalgenomics.com/product-literature/ for updated protocols and Material Safety Data Sheets (MSDS). Consult MSDS before using any new product. FEMINDICATOR is

More information

Automated Protocol for GenElute HP 96 Well Plasmid Miniprep Kit Using the Biomek FX Workstation (Beckman Coulter)

Automated Protocol for GenElute HP 96 Well Plasmid Miniprep Kit Using the Biomek FX Workstation (Beckman Coulter) Automated Protocol for GenElute HP 96 Well Plasmid Miniprep Kit Using the Biomek FX Workstation (Beckman Coulter) Catalog Number NA9604 Automation Guide 2 I. Description 2 II. Product Components 2 III.

More information

TransforMax EPI300 Electrocompetent E. coli TransforMax EPI300 Chemically Competent E. coli

TransforMax EPI300 Electrocompetent E. coli TransforMax EPI300 Chemically Competent E. coli TransforMax EPI300 Electrocompetent E. coli TransforMax EPI300 Chemically Competent E. coli Cat. Nos. EC300102, EC300110, EC300150, and C300C105 Available exclusively thru Lucigen. lucigen.com/epibio www.lucigen.com

More information

CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS

CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS Specific control measures can be used to kill or inhibit the growth of microorganisms. A procedure which leads to the death of cells is broadly

More information

minipcr TM Genes in Space Food Safety Lab: Mars Colony at Risk!

minipcr TM Genes in Space Food Safety Lab: Mars Colony at Risk! minipcr TM Genes in Space Food Safety Lab: Mars Colony at Risk! An E. coli outbreak affects astronaut food aboard the International Space Station. DNA samples from two food racks are analyzed to determine

More information

Job Ready Assessment Blueprint. Biotechnology. Test Code: 4075 / Version: 01. Copyright 2014 NOCTI. All Rights Reserved.

Job Ready Assessment Blueprint. Biotechnology. Test Code: 4075 / Version: 01. Copyright 2014 NOCTI. All Rights Reserved. Job Ready Assessment Blueprint Biotechnology Test Code: 4075 / Version: 01 Copyright 2014 NOCTI. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information Written

More information

PROTOCOL 1: EXTRACTION OF DNA FROM BACTERIA

PROTOCOL 1: EXTRACTION OF DNA FROM BACTERIA PROTOCOL 1: EXTRACTION OF DNA FROM BACTERIA The basic standard procedures for isolation of bacterial DNA are based on lysozyme digestion of the cell wall, detergent lysis, disruption of protein-nucleic

More information

RFLP ANALYSIS OF DNA LABORATORY

RFLP ANALYSIS OF DNA LABORATORY RFLP ANALYSIS OF DNA LABORATORY BIG PICTURE You will be working with an essential research method widely used in genetics, conservation biology, and forensics. The lab is divided into three sections. Part

More information

FosmidMAX DNA Purification Kit

FosmidMAX DNA Purification Kit Cat. No. FMAX046 Connect with Epicentre on our blog (epicentral.blogspot.com), Facebook (facebook.com/epicentrebio), and Twitter (@EpicentreBio). www.epicentre.com Lit. # 204 10/2012 1 EPILIT204 Rev. A

More information

WHY DO THEY PUT MINT IN TOOTHPASTE? WOULD GARLIC BE BETTER?

WHY DO THEY PUT MINT IN TOOTHPASTE? WOULD GARLIC BE BETTER? Activity 4.22 Student Sheet WHY DO THEY PUT MINT IN TOOTHPASTE? WOULD GARLIC BE BETTER? Purpose To investigate the antibacterial properties of plants. To develop practical skills. YOU NEED Agar plate seeded

More information

Agarose Gel Electrophoresis Lab

Agarose Gel Electrophoresis Lab Agarose Gel Electrophoresis ACTIVITY AT A GLANCE Goal: This lab will determine the presence or absence of PCR products and uantify the size (length of the DNA molecule) of the products. Learning Objectives:

More information

Lab Exercise: Examining Water Quality: Most Probable Number & Colilert Test Kit Lab

Lab Exercise: Examining Water Quality: Most Probable Number & Colilert Test Kit Lab Lab Exercise: Examining Water Quality: Most Probable Number & Colilert Test Kit Lab OBJECTIVES 1. Understand the use of MPN to determine likely fecal water contamination. 2. Understand the use of MUG,

More information

TRANSFORMATIONS: A TEACHER S MANUAL

TRANSFORMATIONS: A TEACHER S MANUAL TRANSFORMATIONS: A TEACHER S MANUAL Contents Background..................................................................................................................................................................................................................

More information

Bi 1x Spring 2014: E. coli Growth Curves

Bi 1x Spring 2014: E. coli Growth Curves Bi 1x Spring 2014: E. coli Growth Curves 1 Overview In this lab, you will investigate growth of the bacterium E. coli, watching the growth in two ways. First, you will determine growth rate in a solution

More information

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) Vocabulary Genetic Engineering Gene Recombinant DNA Transgenic Restriction Enzymes Vectors Plasmids Cloning Key Concepts What is genetic engineering?

More information

TransforMax EPI300 Electrocompetent E. coli TransforMax EPI300 Chemically Competent E. coli

TransforMax EPI300 Electrocompetent E. coli TransforMax EPI300 Chemically Competent E. coli TransforMax EPI300 Electrocompetent E. coli TransforMax EPI300 Chemically Competent E. coli Cat. Nos. EC300105, EC300110, EC300150, and C300C105 Connect with Epicentre on our blog (epicentral.blogspot.com),

More information

Genetic Background Page 1 PHAGE P22

Genetic Background Page 1 PHAGE P22 Genetic Background Page 1 PHAGE P22 Growth of P22. P22 is a temperate phage that infects Salmonella by binding to the O-antigen, part of the lipopolysaccharide on the outer membrane. After infection, P22

More information

IDENTIFICATON OF A TRANSFORMING PLASMID

IDENTIFICATON OF A TRANSFORMING PLASMID IDENTIFICATON OF A TRANSFORMING PLASMID Introduction The field of molecular genetics has resulted in a number of practical applications that have been of tremendous benefit to us. One such benefit is the

More information

PathogINDICAtor qpcr Microbial Detection Assay on the AriaMX Real-Time PCR System Optional Decontamination Step Page 1 of 12.

PathogINDICAtor qpcr Microbial Detection Assay on the AriaMX Real-Time PCR System Optional Decontamination Step Page 1 of 12. Page 1 of 12 Please refer to http://www.medicinalgenomics.com/product-literature/ for updated protocols and Material Safety Data Sheets (MSDS). Consult MSDS before using any new product. PATHOGINDICATOR

More information

Alkaline Lysis Large Scale Plasmid Preparation

Alkaline Lysis Large Scale Plasmid Preparation Alkaline Lysis Large Scale Plasmid Preparation 1. Set up 10 ml overnight culture. 2. Add overnight to 500 mls of sterile LB with appropriate selective agent (e.g amp, tet...) 3. Incubate at 37 C with shaking

More information

Section A: Prokaryotes Types and Structure 1. What is microbiology?

Section A: Prokaryotes Types and Structure 1. What is microbiology? Section A: Prokaryotes Types and Structure 1. What is microbiology? 2. Compare and contrast characteristics of each bacterial type: Eubacteria and Archaebacteria. Eubacteria Both Archaebacteria 3. Label

More information

LAB 6: Agarose Gel Electrophoresis of Restriction Digested Plasmid DNA

LAB 6: Agarose Gel Electrophoresis of Restriction Digested Plasmid DNA LAB 6: Agarose Gel Electrophoresis of Restriction Digested Plasmid DNA I. Objectives The purpose of today s lab is to learn how to set up and run an agarose gel, separate DNA fragments on the gel, and

More information

BACMAX DNA Purification Kit

BACMAX DNA Purification Kit Cat. No. BMAX044 Connect with Epicentre on our blog (epicentral.blogspot.com), Facebook (facebook.com/epicentrebio), and Twitter (@EpicentreBio). www.epicentre.com Lit. # 212 10/2012 1 EPILIT212 Rev. A

More information

Genlantis A division of Gene Therapy Systems, Inc Telesis Court San Diego, CA USA Telephone: or (US toll free)

Genlantis A division of Gene Therapy Systems, Inc Telesis Court San Diego, CA USA Telephone: or (US toll free) TurboCells BL21(DE3) TurboCells BL21(DE3)pLysS Chemically Competent E. coli Instruction Manual Catalog Numbers C302020 C303020 A division of Gene Therapy Systems, Inc. 10190 Telesis Court San Diego, CA

More information

Geneaid DNA Isolation Kit (Yeast)

Geneaid DNA Isolation Kit (Yeast) Geneaid DNA Isolation Kit (Yeast) GEY100, GEY300 Advantages Sample: up to 2 10 8 yeast and other fungus species Yield: high yield, high quality DNA (A260/A280 = 1.8-2.0) Format: scalable DNA precipitation

More information

qpcr Kit, DNA-free Product components 100 rxn 250 rxn Product description

qpcr Kit, DNA-free Product components 100 rxn 250 rxn Product description qpcr Kit, DNA-free For the PCR detection and identification of bacterial and fungal DNA using custom primers Product code A8514 Product components 100 rxn 250 rxn A 2.5x mastermix (3 mm MgCl 2 final concentration)

More information

StrataPrep Plasmid Miniprep Kit

StrataPrep Plasmid Miniprep Kit StrataPrep Plasmid Miniprep Kit INSTRUCTION MANUAL Catalog #400761 and #400763 Revision A For In Vitro Use Only 400761-12 LIMITED PRODUCT WARRANTY This warranty limits our liability to replacement of this

More information

HiPer Random Amplification of Polymorphic DNA (RAPD) Teaching Kit

HiPer Random Amplification of Polymorphic DNA (RAPD) Teaching Kit HiPer Random Amplification of Polymorphic DNA (RAPD) Teaching Kit Product Code: HTBM031 Number of experiments that can be performed: 5 Duration of Experiment: Protocol: 3.5 hours Agarose Gel Electrophoresis:

More information

CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS

CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS Specific control measures can be used to kill or inhibit the growth of microorganisms. A procedure which leads to the death of cells is broadly

More information

CopyCutter EPI400 Electrocompetent E. coli CopyCutter EPI400 Chemically Competent E. coli CopyCutter Induction Solution

CopyCutter EPI400 Electrocompetent E. coli CopyCutter EPI400 Chemically Competent E. coli CopyCutter Induction Solution CopyCutter EPI400 Electrocompetent E. coli CopyCutter EPI400 Chemically Competent E. coli CopyCutter Induction Solution Cat. Nos. C400EL10, C400CH10, and CIS40025 Available exclusively thru Lucigen. lucigen.com/epibio

More information

Synthetic Biology for

Synthetic Biology for Synthetic Biology for Plasmids and DNA Digestion Plasmids Plasmids are small DNA molecules that are separate from chromosomal DNA They are most commonly found as double stranded, circular DNA Typical plasmids

More information

Activity 5.1.4: Gram Staining

Activity 5.1.4: Gram Staining Activity 5.1.4: Gram Staining Introduction In the last activity, you isolated the bacteria that was responsible for Anna s illness and performed a gross examination of the resultant colonies. While gross

More information

Mycoplasma bovis Staphylococcus aureus Streptococcus agalactiae Prototheca

Mycoplasma bovis Staphylococcus aureus Streptococcus agalactiae Prototheca Mycoplasma bovis Staphylococcus aureus Streptococcus agalactiae Prototheca Cat. No.: M4E USER MANUAL TABLE OF CONTENTS Revision 2016.12.15 TABLE OF CONTENTS 1. PRINCIPLE OF THE TEST... 3 2. KIT COMPONENTS

More information

Why are we determining the frequency of antibiotic-resistant mutants rather than some other type of mutant?

Why are we determining the frequency of antibiotic-resistant mutants rather than some other type of mutant? Lab 2. Serial Dilution and Plating of a Bacterial Culture "Nature in her errors reveals herself unbidden." -Francis Bacon, circa 1620 1. Background In this exercise you will apply the ability to perform

More information

Dolan DNA Learning Center DNA Extraction

Dolan DNA Learning Center DNA Extraction DNA Extraction Background DNA is found within a nuclear membrane in eukaryotic cells. Almost all living things are composed of eukaryotic cells. Bacteria and cyanobacteria lack a nuclear membrane. In these

More information

ANG 111 Summer EXPERIMENT 1: CLONING June 23 July 14

ANG 111 Summer EXPERIMENT 1: CLONING June 23 July 14 ANG 111 Summer 2009 EXPERIMENT 1: CLONING June 23 July 14 Lab report for this experiment is due JULY 17, 2009 BY 5:00 pm. Late write-ups will be severely penalized. NOTE: IT IS IMPORTANT TO READ THESE

More information

Site-directed mutagenesis of proteins

Site-directed mutagenesis of proteins IFM/Kemi Linköpings Universitet August 2013/LGM Labmanual Site-directed mutagenesis of proteins Figur 1: Flow-chart of the site-directed mutagenesis lab exercise 2 Site-specific mutagenesis Introduction

More information

Session 3 Cloning Overview & Polymerase Chain Reaction

Session 3 Cloning Overview & Polymerase Chain Reaction Session 3 Cloning Overview & Polymerase Chain Reaction Learning Objective: In this lab exercise, you will become familiar with the steps of a polymerase chain reaction, the required reagents for a successful

More information

WiCell Feeder Independent Pluripotent Stem Cell Protocols. mtesr 1 Medium

WiCell Feeder Independent Pluripotent Stem Cell Protocols. mtesr 1 Medium WiCell Feeder Independent Pluripotent Stem Cell Protocols mtesr 1 Medium Preface This booklet of protocols is intended to serve as a primer for culturing pluripotent stem cells in a in a Feeder-Independent

More information

Aurum Plasmid Mini Kit. Instruction Manual. Bio-Rad Laboratories, Inc Alfred Nobel Dr. Hercules, CA USA (510)

Aurum Plasmid Mini Kit. Instruction Manual. Bio-Rad Laboratories, Inc Alfred Nobel Dr. Hercules, CA USA (510) Bio-Rad Laboratories, Inc. 2000 Alfred Nobel Dr. Hercules, CA 94547 USA (510) 741-1000 1-800-424-6723 Aurum Plasmid Mini Kit Instruction Manual For technical service, call your local Bio-Rad office, or

More information

PLP 6404 Epidemiology of Plant Diseases Spring 2015 LAB 2 PHASES IN THE DISEASE CYCLE: GREENHOUSE AND LAB EXERCISE

PLP 6404 Epidemiology of Plant Diseases Spring 2015 LAB 2 PHASES IN THE DISEASE CYCLE: GREENHOUSE AND LAB EXERCISE PLP 6404 Epidemiology of Plant Diseases Spring 2015 LAB 2 PHASES IN THE DISEASE CYCLE: GREENHOUSE AND LAB EXERCISE "Variation in Host-Pathogen Interactions and its Effect on Epidemic Development" Purpose:

More information

Designing and creating your gene knockout Background The rada gene was identified as a gene, that when mutated, caused cells to become hypersensitive

Designing and creating your gene knockout Background The rada gene was identified as a gene, that when mutated, caused cells to become hypersensitive Designing and creating your gene knockout Background The rada gene was identified as a gene, that when mutated, caused cells to become hypersensitive to ionizing radiation. However, why these mutants are

More information