EXERCISE 1. Testing Hardy-Weinberg Equilibrium. 1a. Fill in Table 1. Calculate the initial genotype and allele frequencies.

Size: px
Start display at page:

Download "EXERCISE 1. Testing Hardy-Weinberg Equilibrium. 1a. Fill in Table 1. Calculate the initial genotype and allele frequencies."

Transcription

1 Biology 152/153 Hardy-Weinberg Mating Game EXERCISE 1 Testing Hardy-Weinberg Equilibrium Hypothesis: The Hardy-Weinberg Theorem says that allele frequencies will not change over generations under the following conditions 1. The population is very large (no genetic drift) 2. There is no differential survival and reproduction among individuals in the population (no natural selection) 3. No mutations 4. No immigration or emigration of individuals into or out of the population (no gene flow) 5. Mating is random (no sexual selection) Prediction: If no evolutionary mechanisms are working on a population (all the assumptions of Hardy-Weinberg are met), then no evolution will occur (there will be no change in allele frequencies over time). 1a. Fill in Table 1. Calculate the initial genotype and allele frequencies. Table 1. INITIAL genotype and allele frequencies for Exercise 1 - NO MECHANISMS population size (# of individuals) = # of individuals in class total # of alleles within the population = 2 x population size = 2 X # of individuals in class Initial genotype frequencies for Exercise 1 - NO MECHANISMS frequency AA = # individuals AA / pop. size = 0.25 frequency Aa = # individuals Aa / pop. size = 0.50 frequency aa = # individuals aa / pop. size = 0.25 * check: frequency AA _0.25_ + frequency Aa _0.50_ + frequency aa _0.25_ = 1.0 Initial allele frequencies for Exercise 1 - NO MECHANISMS frequency A = # A / total # alleles in the gene pool = 0.50 frequency a = # a / total # alleles in the gene pool = 0.50 * check: frequency A frequency a 0.50 = 1.0 1

2 1b. How could you apply the more general terminology of p s and q s to the above? In other words, in the equation p 2 + 2pq + q 2 = 1.0, which terms refer to the frequencies of AA, Aa, and aa? term p2 refers to frequency of AA term 2pq refers to frequency of Aa term q2 refers to frequency of aa Thus, p refers to what? How about q? term p refers to term q refers to the allele frequency of A the allele frequency of a 1c. Answers will vary. 1d. Answers will vary. The should be a relatively small change between initial and final allele frequencies. 1e. Were your results consistent with the hypothesis and prediction? Hopefully yes -- the allele frequencies will have changed little. 1f. Is this population evolving? Briefly explain why or why not. No - the allele frequencies did not change much, thus no evolution is occurring according to a the definition used by popultion genetics. EXERCISE 2 Simulation of Natural Selection Hypothesis: Natural selection alone can cause evolutionary change in a population. Prediction: If natural selection is acting on a gene pool, then the allele frequencies will change over generations (i.e., then evolution will occur). 2a. Fill in Table 4. Record the initial genotype frequencies and allele frequencies for this simulation (i.e. copy the calculations from Table 1 on page 145). Table 4. INITIAL genotype and allele frequencies for Exercise 2 - NATURAL SELECTION 2

3 initial genotype frequencies: AA 0.25, Aa 0.50, aa 0.25 initial allele frequencies: A 0.50, a b. Answers will vary. 2c. Answers will vary. The should be a relatively small change between initial and final allele frequencies. 2d. Were your results consistent with the hypothesis and predictions? Hopefully yes -- the allele frequencies will have changed. 2e. Is this population evolving? Briefly explain why or why not. Yes - the allele frequencies did change over generations. 2f. During this simulation, the parental generation included living individuals with the genotype aa. In the F1 generation, all aa individuals died. Speculate how this scenario might occur in nature. The environment may have changed after the P generation had offspring, such that the genotype aa was being selected against under the new environment, whereas aa did fine before the environmental change. EXERCISE 3 Simulation of Mutation Hypothesis: Mutation alone can cause evolutionary change in a population. Prediction: If mutation is acting on a gene pool, then the allele frequencies will change over generations (i.e., then evolution will occur). 3a. Fill in Table 7. Record the initial genotype frequencies and allele frequencies for this simulation (i.e., copy the calculations from Table 1 on page 145). Table 7. INITIAL genotype and allele frequencies for Exercise 3 - MUTATION 3

4 initial genotype frequencies: AA 0.25, Aa 0.50, aa 0.25 initial allele frequencies: A 0.50, a b. Answers will vary. 3c. Answers will vary. The should be a some change between initial and final allele frequencies. 3d. Were your results consistent with the hypothesis and predictions? Hopefully yes -- the allele frequencies will have changed some. 3e. Is this population evolving? Briefly explain why or why not. Yes - the allele frequencies did change over generations. EXERCISE 4 Simulation of Genetic Drift 4a. Propose a hypothesis that addresses genetic drift. Depending on your hypothesis, predict future allele frequencies of the gene pool (population) based on the effects of gene flow (if/then). Your Hypothesis: Your Prediction(s): Answers will vary. Answers will vary. 4b. Answers will vary. 4c. Answers will vary. 4d. Answers will vary. There may be a change between initial and final allele frequencies. In addition this change will vary among groups. Some may go to fixation at one or the other allele, others may show a smaller change. 4

5 4e. Answers will vary. There may be a change between initial and final allele frequencies. In addition this change will vary among groups. Some may go to fixation at one or the other allele, others may show a smaller change. 4f. Were your results consistent with the hypothesis and prediction? Maybe -- the allele frequencies will have changed a lot in some groups and little in others. 4g. Is your small population evolving? How about other groups? Briefly explain why or why not. Yes - if the allele frequencies changed over generations. No - if they did not. 4h. Genetic fixation occurs when one allele or the other goes to a frequency of 1.0 (100%). Genetic drift tends towards fixation. Were any of the populations in your class fixed? If so, for which allele? Why might some populations fix at one allele, other populations fix at the other allele, and some not go to fixation at all? Explain your reasoning. Genetic drift tends too cause fixation in small populations. Which allele the population fixes at is random. However, if a population starts fixing in one direction (p =.7 & q =.3), the population will probably fix in that direction given enough time because it has a head start in one direction. In this simulation, fixation is possible at either allele, and some populations may not yet have fixated. It is all due to chance. 4i. Did the final allele frequencies show more or less variation (mix of A and a ) than the initial allele frequencies? Based on the class results, would you say genetic drift increases or decreases variation within a population? Would you say genetic drift increases or decreases variation among populations? Explain your reasoning. Genetic drift tends to decrease variation within a population (extreme case - fixation). Genetic drift tends to increase variation among populations (the populations are independent of one another -- which allele goes to fixation in one population is independent of which allele goes to fixation in another population). Also, the amount of time it takes a population to fix will vary further increasing the amount of variation among populations. 5

6 Example Outcome: pop 1 pop 2 pop 3 pop 4 pop 5 initial A initial a final A final a variation within a population has decreased variation among populations has increased EXERCISE 5 Gene Flow Gene flow is the migration of individuals into or out of a population. In other words, a population may gain new alleles into its gene pool due to immigration and may lose old alleles due to emigration. Natural selection and genetic drift tend to decrease variation within a population and increase differences among populations because they work toward the predominance of one allele in a population. Gene flow tends to increase variation within a population and decrease differences among populations as alleles mix due to migration of individuals. Imagine if the class ran another mating simulation similar to Exercise 4 (genetic drift). Instead gene flow would be simulated, and the initial allele frequencies were as follows: pop 1 pop 2 pop 3 pop 4 pop 5 pop 6 initial allele freq A initial allele freq a a. How would the final allele frequencies change compared to the initial if gene flow was at work? Explain your reasoning. Final frequencies would have tended towards 50/50. 5b. How would the results of gene flow compare to the results from the genetic drift exercise? In other words, explain how the mechanisms differ. Gene flow tends to increase variation within a population -- in this exercise the populations started with varying frequencies depending on the different outcomes in small groups from Exercise 3. For example, if 6

7 a small population started with frequencies of p =.2 & q =.8, gene flow would change these frequencies towards.5 both. Gene flow tends to decrease variation among populations -- gene flow has a homogenizing effect among populations -- all the populations start to look similar over time. Example Outcome: pop 1 pop 2 pop 3 pop 4 pop 5 initial A initial a final A final a variation within a population has increased variation among populations has decreased (all the pops are closer to p=.5 and q=.5 than initially) EXERCISE 6 Small Group Inquiry 6a. Explain the difference between evolution and natural selection. Can evolution occur without natural selection? Explain your reasoning. Evolution is the result of natural selection (i.e., natural selection can cause evolutionary change). Evolution can occur without natural selection via one or more of the other mechanisms. 6b. Natural selection requires that variation exists within a population. Why? If only one homozygous genotype exists in a population (the population is fixed at one allele), then natural selection cannot occur. The survival and reproduction will be the same among all the genotypes -- either they all live and reproduce equally or they all die. For example, imagine three different final population that resulted in Exercise 3: 7

8 pop 1. all AA (p=1.0) pop 2. all aa (q=1.0) pop 3. mix (p =.4 and q =.6) In population 1, there are no aa s to select against and never will be unless mutation or gene flow occurs. In population 2, all the individuals would die (no differential survival... none survive). In population 3, variation exists, thus natural selection can occur -- some individuals will survive and reproduce better than others EXERCISE 7 Review Questions 7a. Match the terms on the left with the descriptions on the right. Use the descriptions on the right ONLY once. Hardy-Weinberg equilibrium C evolution D genetic drift E gene flow B mutation F natural selection A A. differential survival and reproduction B. migration into or out of a population C. describes a population NOT evolving D. change in allele frequencies in a gene pool over many generations E. chance events F. change in the DNA of an individual 7b. Which evolutionary mechanism or mechanisms tend to decrease variation within a population and increase differences among populations? genetic drift and natural selection 7c. Which evolutionary mechanism or mechanisms tend to increase variation within a population and decrease differences among populations? gene flow and mutation 7d. What is the ultimate source of variation in a population? mutation 8

16.2 Evolution as Genetic Change

16.2 Evolution as Genetic Change 16.2 Evolution as Genetic Change 1 of 40 16-2 Evolution as Genetic Change 16-2 Evolution as Genetic Change If an individual dies without reproducing, it does not contribute to the gene pool. If an individual

More information

Chapter 25 Population Genetics

Chapter 25 Population Genetics Chapter 25 Population Genetics Population Genetics -- the discipline within evolutionary biology that studies changes in allele frequencies. Population -- a group of individuals from the same species that

More information

UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations

UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Evolutionary Mechanisms

Evolutionary Mechanisms Evolutionary Mechanisms Tidbits One misconception is that organisms evolve, in the Darwinian sense, during their lifetimes Natural selection acts on individuals, but only populations evolve Genetic variations

More information

AP BIOLOGY Population Genetics and Evolution Lab

AP BIOLOGY Population Genetics and Evolution Lab AP BIOLOGY Population Genetics and Evolution Lab In 1908 G.H. Hardy and W. Weinberg independently suggested a scheme whereby evolution could be viewed as changes in the frequency of alleles in a population

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017 OVERVIEW In this lab you will: 1. learn about the Hardy-Weinberg law of genetic equilibrium, and 2. study the relationship between evolution and changes in allele frequency by using your class to represent

More information

LABORATORY 8. POPULATION GENETICS AND EVOLUTION

LABORATORY 8. POPULATION GENETICS AND EVOLUTION STUDENT GUIDE LABORATORY 8. POPULATION GENETICS AND EVOLUTION Objectives In this activity, you will learn about the Hardy-Weinberg law of genetic equilibrium study the relationship between evolution and

More information

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population Genetic variation in a population increases the chance that some individuals

More information

Population genetics. Population genetics provides a foundation for studying evolution How/Why?

Population genetics. Population genetics provides a foundation for studying evolution How/Why? Population genetics 1.Definition of microevolution 2.Conditions for Hardy-Weinberg equilibrium 3.Hardy-Weinberg equation where it comes from and what it means 4.The five conditions for equilibrium in more

More information

Section KEY CONCEPT A population shares a common gene pool.

Section KEY CONCEPT A population shares a common gene pool. Section 11.1 KEY CONCEPT A population shares a common gene pool. Genetic variation in a population increases the chance that some individuals will survive. Why it s beneficial: Genetic variation leads

More information

AP Biology Laboratory 8 Population Genetics Virtual Student Guide

AP Biology Laboratory 8 Population Genetics Virtual Student Guide AP Biology Laboratory 8 Population Genetics Virtual Student Guide http://www.phschool.com/science/biology_place/labbench/index.html Introduction The Hardy-Weinberg law of genetic equilibrium provides a

More information

The Hardy-Weinberg Principle. Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h)

The Hardy-Weinberg Principle. Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h) The Hardy-Weinberg Principle Essential Learning Objectives 1.A.1 (g) and 1.A.1 (h) Evolution of Populations Individuals do not evolve, but rather, populations evolve Scientists use mathematical models

More information

Lab 2: Mathematical Modeling: Hardy-Weinberg 1. Overview. In this lab you will:

Lab 2: Mathematical Modeling: Hardy-Weinberg 1. Overview. In this lab you will: AP Biology Name Lab 2: Mathematical Modeling: Hardy-Weinberg 1 Overview In this lab you will: 1. learn about the Hardy-Weinberg law of genetic equilibrium, and 2. study the relationship between evolution

More information

Population- group of individuals of the SAME species that live in the same area Species- a group of similar organisms that can breed and produce

Population- group of individuals of the SAME species that live in the same area Species- a group of similar organisms that can breed and produce Dr. Bertolotti Essential Question: Population- group of individuals of the SAME species that live in the same area Species- a group of similar organisms that can breed and produce FERTILE offspring Allele-

More information

LABORATORY 8: POPULATION GENETICS AND EVOLUTION

LABORATORY 8: POPULATION GENETICS AND EVOLUTION LABORATORY 8: POPULATION GENETICS AND EVOLUTION OVERVIEW In this activity you will learn about the Hardy-Weinberg law of genetic equilibrium and study the relationship between evolution and changes in

More information

Evolution of Populations (Ch. 17)

Evolution of Populations (Ch. 17) Evolution of Populations (Ch. 17) Doonesbury - Sunday February 8, 2004 Beak depth of Beak depth Where does Variation come from? Mutation Wet year random changes to DNA errors in gamete production Dry year

More information

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations Topics How to track evolution allele frequencies Hardy Weinberg principle applications Requirements for genetic equilibrium Types of natural selection Population genetic polymorphism in populations, pp.

More information

Genetic Equilibrium: Human Diversity Student Version

Genetic Equilibrium: Human Diversity Student Version Genetic Equilibrium: Human Diversity Student Version Key Concepts: A population is a group of organisms of the same species that live and breed in the same area. Alleles are alternate forms of genes. In

More information

Average % If you want to complete quiz corrections for extra credit you must come after school Starting new topic today. Grab your clickers.

Average % If you want to complete quiz corrections for extra credit you must come after school Starting new topic today. Grab your clickers. Average 50.83% If you want to complete quiz corrections for extra credit you must come after school Starting new topic today. Grab your clickers. Evolution AP BIO Pacing Evolution Today Mutations Gene

More information

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population! Genetic variation in a population increases the chance that some individuals

More information

BIOLOGY 3201 UNIT 4 EVOLUTION CH MECHANISMS OF EVOLUTION

BIOLOGY 3201 UNIT 4 EVOLUTION CH MECHANISMS OF EVOLUTION BIOLOGY 3201 UNIT 4 EVOLUTION CH. 20 - MECHANISMS OF EVOLUTION POPULATION GENETICS AND HARDY WEINBERG PRINCIPLE Population genetics: this is a study of the genes in a population and how they may or may

More information

Hardy-Weinberg problem set

Hardy-Weinberg problem set Hardy-Weinberg problem set Hardy-Weinberg Theorem states that if a population is NOT evolving then the frequencies of the alleles in the population will remain stable across generations - it is in equilibrium.

More information

Chapter 23: The Evolution of Populations

Chapter 23: The Evolution of Populations AP Biology Reading Guide Name Chapter 23: The Evolution of Populations This chapter begins with the idea that we focused on as we closed the last chapter: Individuals do not evolve! Populations evolve.

More information

Measuring Evolution of Populations. SLIDE SHOW MODIFIED FROM KIM

Measuring Evolution of Populations. SLIDE SHOW MODIFIED FROM KIM Measuring Evolution of Populations SLIDE SHOW MODIFIED FROM KIM FOGLIA@explorebiology.com 5 Agents of evolutionary change Mutation Gene Flow Non-random mating Genetic Drift Selection Populations & gene

More information

EVOLUTION/HERDEDITY UNIT Unit 1 Part 8A Chapter 23 Activity Lab #11 A POPULATION GENETICS AND EVOLUTION

EVOLUTION/HERDEDITY UNIT Unit 1 Part 8A Chapter 23 Activity Lab #11 A POPULATION GENETICS AND EVOLUTION AP BIOLOGY EVOLUTION/HERDEDITY UNIT Unit Part 8A Chapter Activity Lab # A NAME DATE PERIOD POPULATION GENETICS AND EVOLUTION In 908 G. H. Hardy and W. Weinberg independently suggest a scheme whereby evolution

More information

-Is change in the allele frequencies of a population over generations -This is evolution on its smallest scale

-Is change in the allele frequencies of a population over generations -This is evolution on its smallest scale Remember: -Evolution is a change in species over time -Heritable variations exist within a population -These variations can result in differential reproductive success -Over generations this can result

More information

POPULATION GENETICS AND EVOLUTION

POPULATION GENETICS AND EVOLUTION AP BIOLOGY EVOLUTION ACTIVITY # NAME DATE HOUR POPULATION GENETICS AND EVOLUTION INTRODUCTION In 908 G. H. Hardy and W. Weinberg independently suggest a scheme whereby evolution could be viewed as changes

More information

Measuring Evolution of Populations

Measuring Evolution of Populations Measuring Evolution of Populations 5 Agents of evolutionary change Mutation Gene Flow Non-random mating Genetic Drift Selection Populations & gene pools Concepts u a population is a localized group of

More information

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools Chapter 23: The Evolution of Populations 1. Populations and Gene Pools 2. Hardy-Weinberg Equilibrium 3. A Closer Look at Natural Selection 1. Populations & Gene Pools Chapter Reading pp. 481-484, 488-491

More information

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium.

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. Period Date LAB. POPULATION GENETICS PRE-LAB 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. 2. List and briefly explain the 5 conditions that need to be met to maintain a

More information

Virtual Lab 2 Hardy-Weinberg

Virtual Lab 2 Hardy-Weinberg Name Period Assignment # Virtual Lab 2 Hardy-Weinberg http://www.phschool.com/science/biology_place/labbench/lab8/intro.html Read the introduction Click Next 1) Define allele 2) Define Hardy-Weinberg equilibrium

More information

Population Genetics. Chapter 16

Population Genetics. Chapter 16 Population Genetics Chapter 16 Populations and Gene Pools Evolution is the change of genetic composition of populations over time. Microevolution is change within species which can occur over dozens of

More information

Population Genetics. Lab Exercise 14. Introduction. Contents. Objectives

Population Genetics. Lab Exercise 14. Introduction. Contents. Objectives Lab Exercise Population Genetics Contents Objectives 1 Introduction 1 Activity.1 Calculating Frequencies 2 Activity.2 More Hardy-Weinberg 3 Resutls Section 4 Introduction Unlike Mendelian genetics which

More information

Exercise 8C: Selection

Exercise 8C: Selection STUDENT GUIDE Exercise 8C: Selection 4. Look back at the five conditions that must be met for allele frequencies to remain constant. Which, if any, of these conditions might not have been met in this simulation?

More information

The Theory of Evolution

The Theory of Evolution The Theory of Evolution Mechanisms of Evolution Notes Pt. 4 Population Genetics & Evolution IMPORTANT TO REMEMBER: Populations, not individuals, evolve. Population = a group of individuals of the same

More information

Population and Community Dynamics. The Hardy-Weinberg Principle

Population and Community Dynamics. The Hardy-Weinberg Principle Population and Community Dynamics The Hardy-Weinberg Principle Key Terms Population: same species, same place, same time Gene: unit of heredity. Controls the expression of a trait. Can be passed to offspring.

More information

COMPUTER SIMULATIONS AND PROBLEMS

COMPUTER SIMULATIONS AND PROBLEMS Exercise 1: Exploring Evolutionary Mechanisms with Theoretical Computer Simulations, and Calculation of Allele and Genotype Frequencies & Hardy-Weinberg Equilibrium Theory INTRODUCTION Evolution is defined

More information

Zoology Evolution and Gene Frequencies

Zoology Evolution and Gene Frequencies Zoology Evolution and Gene Frequencies I. any change in the frequency of alleles (and resulting phenotypes) in a population. A. Individuals show genetic variation, but express the genes they have inherited.

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 8: Origins of Genetic Variation Notes Meiosis is reduction division. The main role of meiosis is production of haploid gametes as cells produced by meiosis have half the

More information

Population Genetics Modern Synthesis Theory The Hardy-Weinberg Theorem Assumptions of the H-W Theorem

Population Genetics Modern Synthesis Theory The Hardy-Weinberg Theorem Assumptions of the H-W Theorem Population Genetics A Population is: a group of same species organisms living in an area An allele is: one of a number of alternative forms of the same gene that may occur at a given site on a chromosome.

More information

Population Genetics (Learning Objectives)

Population Genetics (Learning Objectives) Population Genetics (Learning Objectives) Recognize the quantitative nature of the study of population genetics and its connection to the study of genetics and its applications. Define the terms population,

More information

Population Genetics (Learning Objectives)

Population Genetics (Learning Objectives) Population Genetics (Learning Objectives) Recognize the quantitative nature of the study of population genetics and its connection to the study of genetics and its applications. Define the terms population,

More information

CHAPTER 12 MECHANISMS OF EVOLUTION

CHAPTER 12 MECHANISMS OF EVOLUTION CHAPTER 12 MECHANISMS OF EVOLUTION 12.1 Genetic Variation DNA biological code for inheritable traits GENES units of DNA molecule in a chromosome LOCI location of specific gene on DNA molecules DIPLOID

More information

Introduction Chapter 23 - EVOLUTION of

Introduction Chapter 23 - EVOLUTION of Introduction Chapter 23 - EVOLUTION of POPULATIONS The blue-footed booby has adaptations that make it suited to its environment. These include webbed feet, streamlined shape that minimizes friction when

More information

Study Guide A. Answer Key. The Evolution of Populations

Study Guide A. Answer Key. The Evolution of Populations The Evolution of Populations Answer Key SECTION 1. GENETIC VARIATION WITHIN POPULATIONS 1. b 2. d 3. gene pool 4. combinations of alleles 5. allele frequencies 6. ratio or percentage 7. mutation 8. recombination

More information

5/2/ Genes and Variation. How Common Is Genetic Variation? Variation and Gene Pools

5/2/ Genes and Variation. How Common Is Genetic Variation? Variation and Gene Pools 16-1 Genes 16-1 and Variation Genes and Variation 1 of 24 How Common Is Genetic Variation? How Common Is Genetic Variation? Many genes have at least two forms, or alleles. All organisms have genetic variation

More information

The Evolution of Populations

The Evolution of Populations The Evolution of Populations Population genetics Population: a localized group of individuals belonging to the same species Species: a group of populations whose individuals have the potential to interbreed

More information

Examining the Parameters of the Hardy-Weinberg Equation using an Excel Spreadsheet Part 1

Examining the Parameters of the Hardy-Weinberg Equation using an Excel Spreadsheet Part 1 Examining the Parameters of the Hardy-Weinberg Equation using an Excel Spreadsheet Part 1 Part A - Essential Knowledge Background Information 1 Key Vocabulary Hardy-Weinberg Equation Hardy-Weinberg Equilibrium

More information

The Evolution of Populations

The Evolution of Populations The Evolution of Populations What you need to know How and reproduction each produce genetic. The conditions for equilibrium. How to use the Hardy-Weinberg equation to calculate allelic and to test whether

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

The Evolution of Populations

The Evolution of Populations Microevolution The Evolution of Populations C H A P T E R 2 3 Change in allele frequencies over generations Three mechanisms cause allele frequency change: Natural selection (leads to adaptation) Genetic

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans POPULATION GENETICS, SELECTION, AND EVOLUTION INTRODUCTION A common misconception is that individuals evolve. While individuals may have favorable and heritable traits that are advantageous for survival

More information

LAB 12 Natural Selection INTRODUCTION

LAB 12 Natural Selection INTRODUCTION LAB 12 Natural Selection Objectives 1. Model evolution by natural selection. 2. Determine allele frequencies within a population. 3. Use the Hardy-Weinberg equation to calculate probability of each genotype

More information

Population Genetics and Evolution

Population Genetics and Evolution Population Genetics and Evolution Forces of Evolution DETERMINISTIC: direction of change predictable Mutation Migration Natural Selection STOCHASTIC: direction of change unknowable (none exp.) Genetic

More information

Genetic Drift Lecture outline. 1. Founder effect 2. Genetic drift consequences 3. Population bottlenecks 4. Effective Population size

Genetic Drift Lecture outline. 1. Founder effect 2. Genetic drift consequences 3. Population bottlenecks 4. Effective Population size Genetic Drift Lecture outline. Founder effect 2. Genetic drift consequences 3. Population bottlenecks 4. Effective Population size Odd populations Deer at Seneca Army Depot Cheetah Silvereyes (Zosterops

More information

Bio 6 Natural Selection Lab

Bio 6 Natural Selection Lab Bio 6 Natural Selection Lab Overview In this laboratory you will demonstrate the process of evolution by natural selection by carrying out a predator/prey simulation. Through this exercise you will observe

More information

Population Dynamics. Population: all the individuals of a species that live together in an area

Population Dynamics. Population: all the individuals of a species that live together in an area Population Dynamics Population Dynamics Population: all the individuals of a species that live together in an area Demography: the statistical study of populations, make predictions about how a population

More information

*No in-class activities can be made up for unexcused absences. See syllabus.

*No in-class activities can be made up for unexcused absences. See syllabus. ICA 13 Key *No in-class activities can be made up for unexcused absences. See syllabus. Bluegill Q1. A large population of bluegill (a freshwater fish) was observed over ten consecutive summers. When traits

More information

HWE Tutorial (October 2007) Mary Jo Zurbey PharmD Candidate 2008

HWE Tutorial (October 2007) Mary Jo Zurbey PharmD Candidate 2008 HWE Tutorial (October 2007) Mary Jo Zurbey PharmD Candidate 2008 Definition: The Hardy-Weinberg equation, which relates genotype and allele frequencies for a population, is as follows, where p = the frequency

More information

AP Biology: Allele A1 Lab

AP Biology: Allele A1 Lab AP Biology: Allele A1 Lab Allele A1 Download: http://tinyurl.com/8henahs In today s lab we will use a computer program called AlleleA 1 to study the effects of the different evolutionary forces mutation,

More information

MECHANISMS FOR EVOLUTION CHAPTER 20

MECHANISMS FOR EVOLUTION CHAPTER 20 MECHANISMS FOR EVOLUTION CHAPTER 20 Objectives State the Hardy-Weinburg theorem Write the Hardy-Weinburg equation and be able to use it to calculate allele and genotype frequencies List the conditions

More information

GENETIC DRIFT INTRODUCTION. Objectives

GENETIC DRIFT INTRODUCTION. Objectives 2 GENETIC DRIFT Objectives Set up a spreadsheet model of genetic drift. Determine the likelihood of allele fixation in a population of 0 individuals. Evaluate how initial allele frequencies in a population

More information

How Populations Evolve. Chapter 15

How Populations Evolve. Chapter 15 How Populations Evolve Chapter 15 Populations Evolve Biological evolution does not change individuals It changes a population Traits in a population vary among individuals Evolution is change in frequency

More information

EVOLUTION OF POPULATIONS Genes and Variation

EVOLUTION OF POPULATIONS Genes and Variation Section Outline Section 16-1 EVOLUTION OF POPULATIONS Genes and Variation When Darwin developed his theory of evolution, he didn t know how HEREDITY worked. http://www.answers.com/topic/gregor-mendel Mendel

More information

B. Incorrect! 64% is all non-mm types, including both MN and NN. C. Incorrect! 84% is all non-nn types, including MN and MM types.

B. Incorrect! 64% is all non-mm types, including both MN and NN. C. Incorrect! 84% is all non-nn types, including MN and MM types. Genetics Problem Drill 23: Population Genetics No. 1 of 10 1. For Polynesians of Easter Island, the population has MN blood group; Type M and type N are homozygotes and type MN is the heterozygous allele.

More information

GENETICS - CLUTCH CH.21 POPULATION GENETICS.

GENETICS - CLUTCH CH.21 POPULATION GENETICS. !! www.clutchprep.com CONCEPT: HARDY-WEINBERG Hardy-Weinberg is a formula used to measure the frequencies of and genotypes in a population Allelic frequencies are the frequency of alleles in a population

More information

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium)

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) 7-1 Biology 1001 Lab 7: POPULATION GENETICS PREPARTION Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) OBECTIVES At the end of

More information

4) How many alleles does each individual carry? 5) How many total alleles do we need to create this population?

4) How many alleles does each individual carry? 5) How many total alleles do we need to create this population? SC135 Introductory Biology Hardy-Weinberg and Natural Selection with M & M s Lab Objectives: Understand the concepts of allele frequency, genotype frequency and phenotype frequency in a population. Understand

More information

Biology Day 82. Announcements& Upcoming& Science&teachers&out&Thurs.&4/16& Collab&schedule&Mon.&4/20& ReCtake&your&test&!& & Planner: Study Guide 11.

Biology Day 82. Announcements& Upcoming& Science&teachers&out&Thurs.&4/16& Collab&schedule&Mon.&4/20& ReCtake&your&test&!& & Planner: Study Guide 11. Biology Day 82 Monday, April 13 Tuesday, April 14, 2015 Types'of'Selec-on '& 1. Write'today s'flt'' 2. Divide'your'paper'into'3'sec-ons:'(1)' Direc-onal'selec-on'(2)'Stabilizing'and' (3)'Disrup-ve' 3.

More information

EXTINCTION AND SURVIVAL OF MUCK SWAMP FROGS

EXTINCTION AND SURVIVAL OF MUCK SWAMP FROGS EXTINCTION AND SURVIVAL OF MUCK SWAMP FROGS Somewhere near Xenia, Ohio lives the world's last population of Muck Swamp Frogs (nicknamed "Mucks"). Mucks come in two types, pictured below. Herpetologists

More information

Biol Lecture Notes

Biol Lecture Notes Biol 303 1 Evolutionary Forces: Generation X Simulation To launch the GenX software: 1. Right-click My Computer. 2. Click Map Network Drive 3. Don t worry about what drive letter is assigned in the upper

More information

AP BIOLOGY. Investigation #2 Mathematical Modeling: Hardy-Weinberg. Slide 1 / 35. Slide 2 / 35. Slide 3 / 35. Investigation #2: Mathematical Modeling

AP BIOLOGY. Investigation #2 Mathematical Modeling: Hardy-Weinberg. Slide 1 / 35. Slide 2 / 35. Slide 3 / 35. Investigation #2: Mathematical Modeling New Jersey Center for Teaching and Learning Slide 1 / 35 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below.

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below. SECTION 11.1 GENETIC VARIATION WITHIN POPULATIONS Study Guide KEY CONCEPT A population shares a common gene pool. VOCABULARY gene pool allele frequency MAIN IDEA: Genetic variation in a population increases

More information

Questions we are addressing. Hardy-Weinberg Theorem

Questions we are addressing. Hardy-Weinberg Theorem Factors causing genotype frequency changes or evolutionary principles Selection = variation in fitness; heritable Mutation = change in DNA of genes Migration = movement of genes across populations Vectors

More information

Lecture #3 1/23/02 Dr. Kopeny Model of polygenic inheritance based on three genes

Lecture #3 1/23/02 Dr. Kopeny Model of polygenic inheritance based on three genes Lecture #3 1/23/02 Dr. Kopeny Model of polygenic inheritance based on three genes Reference; page 230 in textbook 13 Genotype; The genetic constitution governing a heritable trait of an organism Phenotype:

More information

Lecture 10: Introduction to Genetic Drift. September 28, 2012

Lecture 10: Introduction to Genetic Drift. September 28, 2012 Lecture 10: Introduction to Genetic Drift September 28, 2012 Announcements Exam to be returned Monday Mid-term course evaluation Class participation Office hours Last Time Transposable Elements Dominance

More information

Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium Hardy-Weinberg Equilibrium Hardy-Weinberg Equilibrium, also referred to as the Hardy-Weinberg principle, is used to compare allele frequencies in a given population over a period of time. A population

More information

Module 20: Population Genetics, Student Learning Guide

Module 20: Population Genetics, Student Learning Guide Name: Period: Date: Module 20: Population Genetics, Student Learning Guide Instructions: 1. Work in pairs (share a computer). 2. Make sure that you log in for the first quiz so that you get credit. 3.

More information

All the, including all the different alleles, that are present in a

All the, including all the different alleles, that are present in a Evolution as Genetic Change: chapter 16 Date name A group of individuals of the same species that interbreed. All the, including all the different alleles, that are present in a Relative Allele frequency

More information

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section A: Population Genetics

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section A: Population Genetics CHAPTER 23 THE EVOLUTIONS OF POPULATIONS Section A: Population Genetics 1. The modern evolutionary synthesis integrated Darwinian selection and Mendelian inheritance 2. A population s gene pool is defined

More information

Population Genetics. Ben Hecht CRITFC Genetics Training December 11, 2013

Population Genetics.   Ben Hecht CRITFC Genetics Training December 11, 2013 Population Genetics http://darwin.eeb.uconn.edu/simulations/drift.html Ben Hecht CRITFC Genetics Training December 11, 2013 1 Population Genetics The study of how populations change genetically over time

More information

Chapter 16: How Populations Evolve

Chapter 16: How Populations Evolve Chapter 16: How Populations Evolve AP Curriculum Alignment Evolution is a change in the genetic makeup of a population over time, with natural selection its major driving mechanism. This is a major component

More information

Distinguishing Among Sources of Phenotypic Variation in Populations

Distinguishing Among Sources of Phenotypic Variation in Populations Population Genetics Distinguishing Among Sources of Phenotypic Variation in Populations Discrete vs. continuous Genotype or environment (nature vs. nurture) Phenotypic variation - Discrete vs. Continuous

More information

Introduction. Let s try this again. Do you change during your lifetime? Do you evolve??

Introduction. Let s try this again. Do you change during your lifetime? Do you evolve?? Introduction Let s try this again Do you change during your lifetime? Do you evolve?? What questions couldn t Darwin answer? What if he could have called Mendel as a lifeline? Population genetics was born

More information

Evolution in a Genetic Context

Evolution in a Genetic Context Evolution in a Genetic Context What is evolution? Evolution is the process of change over time. In terms of genetics and evolution, our knowledge of DNA and phenotypic expression allow us to understand

More information

Introduction. Let s try this again. Do you change during your lifetime? Do you evolve??

Introduction. Let s try this again. Do you change during your lifetime? Do you evolve?? Introduction Let s try this again Do you change during your lifetime? Do you evolve?? What questions couldn t Darwin answer? What if he could have called Mendel as a lifeline? Population genetics was born

More information

The Modern Synthesis. Terms and Concepts. Evolutionary Processes. I. Introduction: Where do we go from here? What do these things have in common?

The Modern Synthesis. Terms and Concepts. Evolutionary Processes. I. Introduction: Where do we go from here? What do these things have in common? Evolutionary Processes I. Introduction - The modern synthesis Reading: Chap. 25 II. No evolution: Hardy-Weinberg equilibrium A. Population genetics B. Assumptions of H-W III. Causes of microevolution (forces

More information

POPULATION GENETICS. Evolution Lectures 4

POPULATION GENETICS. Evolution Lectures 4 POPULATION GENETICS Evolution Lectures 4 POPULATION GENETICS The study of the rules governing the maintenance and transmission of genetic variation in natural populations. Population: A freely interbreeding

More information

PopGen1: Introduction to population genetics

PopGen1: Introduction to population genetics PopGen1: Introduction to population genetics Introduction MICROEVOLUTION is the term used to describe the dynamics of evolutionary change in populations and species over time. The discipline devoted to

More information

Lab 8: Population Genetics and Evolution. This may leave a bad taste in your mouth

Lab 8: Population Genetics and Evolution. This may leave a bad taste in your mouth Lab 8: Population Genetics and Evolution This may leave a bad taste in your mouth Pre-Lab Orientation Recall that the Hardy-Weinberg Equation helps us identify allele frequencies throughout a population.

More information

i. allelic frequency c. reproductive isolation j. sexual selection d. allopatric speciation k. founder effect e. sympatric speciation

i. allelic frequency c. reproductive isolation j. sexual selection d. allopatric speciation k. founder effect e. sympatric speciation Name Hardy-Weinberg and Evolution The Hardy-Weinberg equation is used to determine whether there is any change in the distribution of given alleles over time. You will work through several examples of

More information

Mutation and sexual reproduction produce the genetic variation that makes evolution possible. [2]

Mutation and sexual reproduction produce the genetic variation that makes evolution possible. [2] GUIDED READING - Ch. 23 POPULATION EVOLUTION NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted.

More information

Genetic drift. 1. The Nature of Genetic Drift

Genetic drift. 1. The Nature of Genetic Drift Genetic drift. The Nature of Genetic Drift To date, we have assumed that populations are infinite in size. This assumption enabled us to easily calculate the expected frequencies of alleles and genotypes

More information

V SEMESTER ZOOLOGY HARDY-WEINBERG S LAW

V SEMESTER ZOOLOGY HARDY-WEINBERG S LAW V SEMESTER ZOOLOGY HARDY-WEINBERG S LAW The most fundamental idea in a population genetics was proposed by English-man G.H. Hardy and German W. Weinberg simultaneously in the year 1908. At that time it

More information

THE EVOLUTION OF DARWIN S THEORY PT 1. Chapter 16-17

THE EVOLUTION OF DARWIN S THEORY PT 1. Chapter 16-17 THE EVOLUTION OF DARWIN S THEORY PT 1 Chapter 16-17 From Darwin to Today Darwin provided compelling evidence that species and populations change. What he didn t know (and neither did anyone else at the

More information

Module 20: Population Genetics, Student Learning Guide

Module 20: Population Genetics, Student Learning Guide Name: Period: Date: Module 20: Population Genetics, Student Learning Guide Instructions: 1. Work in pairs (share a computer). 2. Make sure that you log in for the first quiz so that you get credit. 3.

More information

Chapter 8. An Introduction to Population Genetics

Chapter 8. An Introduction to Population Genetics Chapter 8 An Introduction to Population Genetics Matthew E. Andersen Department of Biological Sciences University of Nevada, Las Vegas Las Vegas, Nevada 89154-4004 Matthew Andersen received his B.A. in

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans OVERVIEW POPULATION GENETICS, SELECTION, AND EVOLUTION This hands-on activity, used in conjunction with the short film The Making of the Fittest: (http://www.hhmi.org/biointeractive/making-fittest-natural-selection-humans),

More information

Part II: Mechanisms of Evolutionary Change Case Studies in Evolution

Part II: Mechanisms of Evolutionary Change Case Studies in Evolution SELECTION AND MUTATION AS MECHANISMS OF EVOLUTION by Jon C. Herron, University of Washington Introduction Part II: Mechanisms of Evolutionary Change Case Studies in Evolution The purpose of this case study

More information