ISMI Predictive Preventive Maintenance (PPM) Data Requirements

Size: px
Start display at page:

Download "ISMI Predictive Preventive Maintenance (PPM) Data Requirements"

Transcription

1 Predictive Preventive Maintenance (PPM) Data Requirements International SEMATECH Manufacturing Initiative

2 Advanced Materials Research Center, AMRC, International SEMATECH Manufacturing Initiative, and are servicemarks of SEMATECH, Inc. SEMATECH and the SEMATECH logo are registered servicemarks of SEMATECH, Inc. All other servicemarks and trademarks are the property of their respective owners International SEMATECH Manufacturing Initiative, Inc.

3 Predictive Preventive Maintenance (PPM) Data Requirements International SEMATECH Manufacturing Initiative October 25, 2010 Abstract: This document from the MFGM032M project provides guidance for semiconductor equipment suppliers, device makers, and other implementers of Prognostics and Health Management (PHM) systems. The requirements for the integration of predictive and non-predictive condition-based maintenance (CBM), scheduled preventive maintenance (PM), and maintenance optimizer applications are discussed. The document introduces common language to describe the data requirements and functionalities of the equipment and factory systems and uses examples to justify extending existing PM factory systems to create an optimized maintenance system. Note on Terminology: Predictive preventive maintenance (PPM) as a term is an invention of. has defined PPM as the integration of predictive maintenance (PdM), CBM, and scheduled maintenance to optimize factory performance. The broader industry-accepted term is PHM, defined as the discipline that links studies of failure mechanisms to system lifecycle management. The broader industry-accepted terms for PdM and CBM, as used by, are predictive CBM and non-predictive CBM. In the interest of using broadly accepted terminology, PHM, predictive CBM, and non-predictive CBM will be used throughout this document. Keywords: Authors: David Stark Approvals: David Stark, Author Sue Gnat, Technology Transfer Team Leader

4

5 iii Table of Contents 1 EXECUTIVE SUMMARY INTENDED AUDIENCE BACKGROUND INTEGRATION NOTE SUBSYSTEMS OF A COMPLETE PHM SYSTEM Scheduled PM Basic Scheduled PM System Inputs and Outputs Scheduled Maintenance Data Quality Non-Predictive CBM Non-Predictive CBM Data Quality Predictive CBM Predictive CBM Data Quality Decision Making Application Decision Application Data Quality PHM SYSTEM FACTORY ARCHITECTURE SUMMARY REFERENCES Documents Programs/Project Material...19

6 iv List of Figures Figure 1 High Level View of PHM System...3 Figure 2 Scheduled Maintenance System Example...4 Figure 3 Example of Health Indicator Visualization Output...9 Figure 4 Manual Visualization Job Build and Execution Example...9 Figure 5 Non-Predictive CBM System Functions and Libraries...10 Figure 6 Predictive CBM System Functions and Libraries...14 Figure 7 Predictive CBM User Set-Up and Manual Visualization Job Build and Execution Example...14 Figure 8 Decision Application Functions and Libraries...16 Figure 9 Integrated PHM System Data Flow...18 Figure 10 PHM System Integrated to Fab Information...18 List of Tables Table 1 Data Quality for Input and Output for Scheduled PM Module...5 Table 2 Data Quality for Input and Output for Non-Predictive CBM Module...11 Table 3 Data Quality for Input and Output for Predictive CBM Module...15 Table 4 Data Quality for Input and Output for Decision Application...17

7 v Acronyms and Abbreviations AEC ALID AMHS APC CBM CD CEID CIM CMP CVD DCP DOE DQ EDA EI EPI FDC FICS IDM JIT MES MTTF NGF OCAP OEE OEM PCA PCR PdM PHM PLS PM RUL SEMI SECS-II SPC SVID TBM UBM WOM YMS UBM Advanced Equipment Control Alarm Event Identifier Automated Material Handling System Advanced Process Control Condition Based Maintenance Critical Dimension Collection Event Identifier Computer Integrated Manufacturing Chemical Mechanical Polish Chemical Vapor Deposition Data Collection Plan Design of Experiments Data Quality Equipment Data Acquisition Equipment Integration Equipment Performance Index Fault Detection & Classification Fab Information & Control System Integrated Device Manufacturer International SEMATECH Manufacturing Initiative Just-In-Time Manufacturing Execution System Mean Time to Failure Next Generation Factory Out of Control Action Plan Overall Equipment Efficiency Original Equipment Manufacturer Principal Component Analysis Principal Component Regression Predictive Maintenance Prognostics & Health Management Partial Least Squares Preventive Maintenance Remaining Useful Life Semiconductor Equipment and Materials International Semiconductor Equipment Communications Standards Statistical Process Control Status Variable Identifier Time-based Maintenance Usage-based Maintenance Wafer Oriented Manufacturing Yield Management System Usage-based Maintenance

8 vi Definitions Advanced Process Control (APC) Techniques covering both feed-forward and feedback control and automated fault detection, applied by both the equipment (in situ) and by the factory (ex situ). Degradation Rate Rate at which the operational quality of an equipment system, subsystem, or component decreases over time. Equipment Data Acquisition (EDA) The suite of SEMI Diagnostic Data Acquisition (DDA) standards; at this writing, the suite includes SEMI E120, E125, E132, and E134. Also referenced by Interface A are SEMI E128 and E138. Equipment Performance Index (EPI) Indicators composed of equipment hardware and/or factory data. They can be used to calculate system/sub-system/component health metrics. Fault Detection & Classification (FDC) A methodology of monitoring statistical variations in processing tool data and detecting anomalies. Just-in-Time (JIT) Inventory A strategy to improve the return on investment by reducing inprocess inventory and its associated carrying costs. Maintenance Event Any activity (e.g., tests, measurements, replacements, adjustments and repairs) intended to retain or restore a functional unit in or to a specified state in which the unit can perform its required functions. Mean Time to Failure (MTTF) The average time between failures with the modeling assumption that the failed system is run until it fails without preventive maintenance. Out of Control Action Plan (OCAP) A controlled document detailing the procedure to disposition product/processes or equipment repairs or maintenance activities in response to an equipment fault indication. Parameter Set A set of related information that would likely be passed together as input parameters to an operation request or output parameters in a corresponding response. Specific examples include a process data set, a context data set, configuration data set, etc. It is not intended to specify any aspect of the data s persistent storage. Prognostics & Health Management (PHM) Information The discipline that links studies of failure mechanisms to system lifecycle management. PHM uses information to allow early detection of impending or incipient faults, remaining useful life calculations, and logistical decision-making based on predictions. Raw Data Unprocessed data. Remaining Useful Life (RUL) A forecast of time or operating cycles remaining until a failure occurs. Run-To-Failure Methodology A method whereby an equipment system, subsystem, and component is fixed or replaced only after it fails. Sensor A component that responds to changes in the physical environment and provides an analog or digital output value. Subsystem An intelligent aggregate that behaves as a unit. A subsystem is made up of sensors and/or actuators and may contain mechanical assemblies. Multiple modules may share subsystems.

9 1 EXECUTIVE SUMMARY This document provides guidance for semiconductor equipment suppliers, device makers, and other implementers of prognostics and health management (PHM) systems. It introduces the PHM system data requirements and functionalities to enable integration of the building blocks of an intelligent maintenance system; predictive CBM, non-predictive CBM, scheduled preventive maintenance (PM), and the maintenance decision making applications. Functionalities include gathering equipment and factory data, assessing equipment health, assessing conditional states, forecasting performance degradation, assessing scheduled PM calendars, optimized decisionmaking, messaging, and visualization. This document complements the 2008 Predictive Preventive Maintenance (PPM) Equipment Implementation Guideline [1], the 2009 PPM Research White Paper [2], and the 2009 PPM Implementation Guide [3]. 1 2 INTENDED AUDIENCE An integrated intelligent maintenance system is complex. It is comprised of multiple interconnected building blocks, each of which may be developed by an equipment supplier, the integrated device manufacturer (IDM), or third-party application suppliers. The audience for this document consists of the building block developers, computer integrated manufacturing (CIM) system integrators, equipment engineers, and factory management. 3 BACKGROUND The objective of PHM is to maximize equipment return on investment. A PHM system will optimize scheduled maintenance, predictive condition based maintenance, and non-predictive condition based maintenance. Scheduled maintenance is performed on a fixed, calendar-based schedule. Non-predictive condition-based maintenance is accomplished by instantaneous monitoring of equipment and by performing maintenance when an equipment health indicator reaches a predetermined threshold. Predictive condition based maintenance is accomplished through acquiring relevant equipment and factory data and applying an equipment degradation model to predict the equipment s remaining useful life (RUL). A PHM system will combine scheduled maintenance, condition-based maintenance, and predictive maintenance to enable effective cost vs. performance decisions. This document assumes a modular architecture to identify as many potential system interfaces (and hence, data sources and destinations) as possible. The document scope will not address other applications outside of the PHM building blocks, like FDC or APC, as either sources of or destinations for PHM data. has defined PPM as the integration of predictive condition-based maintenance (CBM), non-predictive CBM, and scheduled maintenance to optimize factory performance. The broader industry-accepted term is Prognostics and Health Management (PHM), defined as the discipline that links studies of failure mechanisms to system lifecycle management. In the interest of using broadly accepted terminology, PHM will be used throughout this document.

10 2 4 INTEGRATION NOTE The optimum configuration for integration of the PHM system into a factory will depend on the particular factory s existing infrastructure. Even within the PHM system, the individual subsystems may stand alone or be combined. It is likely that the decision application and the scheduled maintenance system can be easily merged, since these two subsystems reside in the factory and consume similar data. It is also likely that the non-predictive and predictive CBM systems can be merged, since these two subsystems consume vast amounts of overlapping data from equipment and factory and may reside closer to the equipment in the factory architecture. This document will treat each subsystem of the PHM system as independent modules in the interest of maximizing flexibility in integration. A large portion of this document will discuss the modules of the complete system, their functions and libraries, and their place in the factory. This discussion of each module will be followed by a list of the data entering and exiting the module (i.e., the data flow). This data flow discussion will include a discussion of the data content and data quality for each data flow. 5 SUBSYSTEMS OF A COMPLETE PHM SYSTEM There are four subsystems of the complete PHM system: 1) preventive maintenance, 2) nonpredictive condition-based maintenance, 3) predictive condition-based maintenance, and 4) the decision application. Each subsystem of the complete PHM system will be discussed. The data input and output requirements for each subsystem will be described. Figure 1 shows a high level view of the PHM system. 5.1 Scheduled PM The scheduled PM system maintains a calendar of all scheduled PMs. Scheduled PMs are those maintenance events that are scheduled on the basis of elapsed calendar time. In the semiconductor factory, some of these scheduled PM events are monthly PM, quarterly PM, semi-annual PM, and annual PM. The content and timing of these events are typically specified by the OEM, and maintaining tools in accordance with the OEM specification is often a condition of a warranty. Every predictive CBM and non-predictive CBM related maintenance event will have a record in the database to which the CBM modules will write updated information as those modules generate the associated signals.

11 3 Decision Application A Rules Engine that calculates recommended maintenance actions based on WIP scheduling scenarios and maintenance needs. Considers scheduled maintenance, predictive CBM RULs, and non-predictive CBM signals. Contains: Rules Optimization scenarios Visualizations Messaging User Input GUI User Output GUI Scheduled PM Application A Calendaring Application that maps maintenance schedules with various visualization types output. The outputs highlight recommended actions from the decision application, nonpredictive CBM signals, predictive CBM signals, manual schedule changes, and the baseline schedule PM calendar. Contains: Scheduled PM schedule Visualizations Maintenance Records Messaging User Input GUI User Output GUI Predictive CBM Application A real-time calculator that outputs a RUL of a tool leading to a specific maintenance event. Uses an advanced mathematical model applied to data from equipment and factory. Contains: Models Data requirement, model assigned, and threshold per maintenance event Visualizations Messaging Output to Scheduled PM System User Input GUI User Output GUI Non-Predictive CBM Application A real-time calculator that outputs a continuous health assessment of equipment in the form of user-defined equipment health indicators. Applies simple mathematics to equipment and factory data. Contains: Health Indicators Data requirement, health indicator equation/function, threshold per health indicator Visualizations Messaging Output to Scheduled PM System User Input GUI User Output GUI Equipment Data Equipment Raw Data OEM defined Health Indicators Factory/Metrology Data MES Process Data Defects Parametric Yield Parameter DCP from DCP Manager OR Collect All Data Method DCP from DCP Manager OR Collect All Data Method Process Equipment Metrology Equipment Figure 1 High Level View of PHM System Basic Scheduled PM System Inputs and Outputs The scheduled PM system is primarily a calendaring module. The system output is a calendar of scheduled PM events for selected tools in graphical or tabular format. The system will allow manual modification of the schedule to allow the user to change the schedule in response to factory operational needs. Manual modifications should be indicated as such on the calendar.

12 4 Changes to the schedule should reseed the future date assignments for the scheduled maintenance for the subject tool. Event IDs are unique to the event, such that multiples of the same tool and model that require a common maintenance event have the same event ID. The scheduled PM system is a factory-level system. In the event that OEM provided scheduled PM systems are already in use, or elected for use, the output of the OEM systems will require integration into the factory-level system. The OEM system, therefore, must output data in the format required by the factory-level system. A pictorial representation of the scheduled PM system is shown in Figure 2. In the figure, a manually rescheduled event is shown in the scheduled maintenance calendar as m m to denote that the monthly PM for the specified tool was manually delayed. Unique events invoked by the predictive and non-predictive CBM modules are also shown on the schedule. The required data from the CBM systems is the same as for manual data input for the tool ID and event ID, but in place of a frequency the CBM system passes a specific date. Note: Showing information flow from scheduled and non-scheduled CBM systems through the scheduled maintenance system and displayed on the scheduled maintenance calendar. Figure 2 Scheduled Maintenance System Example

13 5.1.2 Scheduled Maintenance Data Quality The data flow into, out of, and inside the scheduled PM system relatively simple and low frequency. The minimum requirements include identification of the source module, the equipment unique ID, the maintenance event unique ID, and in the case of predictive CBM the RUL confidence. In the graphical examples in Figure 2, these data elements are visualized through color coding the CBM RF1 event on Tool 1 and the RUL.8 ESC1 event on Tool 3. In the former case, the CBM RF1 event would be interpreted as the non-predictive CBM module is recommending the RF1 unique maintenance event (e.g., replace the RF generator) on Tool 1 on the specified date. In the latter case, the RUL.8 ESC1 event would be interpreted as the predictive CBM module is alerting that there is an 80% probability that the ESC1 unique maintenance event (e.g., replace the ESC) is required on Tool 3 on the specified date. Where there are recipe dependencies for the RUL predicted by the predictive CBM module, the worst case will be mapped onto the schedule and the decision application will analyze the other production maintenance scenarios to show the production dependent options for the factory to choose from. The predictive CBM module must pass the recipe dependent set of RULs to the scheduled maintenance system, and the decision application will have to access the WIP queue for the process step and the product-process associations to generate the options, and recommend the WIP and maintenance schedule action based on the optimization scenario run. The product to recipe associations must be available to the decision module, manually defined when setting up the PHM system for the particular equipment and process step. The recipe identifiers should be unique and shared by the PHM subsystems. Table 1 lists each of the input and output sources, and the form, format, and items of the data required by the scheduled PM system. 5 Table 1 Data Quality for Input and Output for Scheduled PM Module Data Source Type Purpose Form Format Items Special Notes Manual Input GUI Manual Input GUI Manual Input GUI Manual Input GUI User Request GUI Non-predictive CBM Input Set-up Association table Input Input Input Input Maintenance tracking Manual reschedule Messaging set up visualization Job Generation Maintenance performed history table Maintenance lookup table Messaging lookup table Job guild input stepwise Input Record update Association table Text strings, numerical data, dates Text string, date Date Text strings Menu selection, dates Text strings, numerical data, dates Tool ID, Event ID, Frequency, Entry Entity Tool ID, Event ID, Date Select Tool ID, Select Event ID, enter date Distribution lists, events Select Tool ID, input start/end dates, select visualization type Tool ID, Event ID, Confidence RUL generated Date New strings need consistent definition and use (e.g., Entry entity - CBM, Event ID = LamESC1) Removes event or reseeds next event timing Re-seeds next occurrence of event Associates events to messaging DLs for consumption by messaging engine Generates user output report For display in schedule

14 6 Data Source Type Purpose Form Format Items Special Notes Predictive CBM Input Record update Association table Decision application Input Record update Association table Visualizations Output Scheduling visualization graphic or table or list Text strings, dates Text strings, dates Tool ID, Event ID, date Tool ID, Event ID, date For display in schedule For display in schedule File File For display or output 5.2 Non-Predictive CBM A priority goal for the development PHM systems is to maximize CBM coverage for maintenance events. The non-predictive CBM system directly monitors equipment health and invokes maintenance actions when preset thresholds for a health indicator are reached. This system will also track counters and invoke maintenance where the maintenance is performed on the basis of usage (i.e. cumulative wafer count or process time). Calendar time-based maintenance is not included in non-predictive CBM, as it resides in the scheduled PM system. Non-predictive CBM implementation requires tool-specific development. Health indicators for tools, tool modules, tool subsystems, and tool components will be unique to each OEM s tool. The source data within the equipment that is mathematically manipulated to derive health indicators is unique to each OEM s hardware, naming convention, and command and control software. The development work to establish these health indicators may be performed by the OEM, an IDM, a third party, or any combination of these parties. Health indicators and raw equipment data will be consumed by the non-predictive and predictive CBM applications. In the interest of efficient data transfer and storage, it is recommended that data be acquired once from the equipment and then stored in an equipment data repository for consumption by applications, such as CBM and FDC. This collect data once principle may require either a collect all equipment data strategy or a data collection plan manager in the factory. This document assumes that data collection for consumption by the CBM modules will be managed outside of the application. The collected data that is needed by non-predictive CBM modules will be fetched periodically as instructed manually or by a programmed periodic visualization refresh. The form and format of the health indicators, and any source data from the equipment should comply with SEMI E120, E125, and E134. Any derived health indicators, calculated within the equipment envelope and exported to the equipment data repository for consumption by CBM applications, must also be put in context consistent with SEMI E120, E125, and E134. Factory data may be required to calculate health indicators. The association of factory data to equipment data must be accomplished for successful CBM, and this association can be accomplished using Lot ID and Wafer ID FOUP maps from the factory control system or from the equipment, equipment onboard wafer ID readers, time stamps attached to equipment data, or other strategies. A data synchronization tag is required to be attached to each data element that the CBM module will access in the respective databases. The non-predictive CBM application will reside outside the equipment envelope. This requirement is necessary for the following reasons: The non-predictive CBM module will require factory data as input to the calculation of equipment health indicators at some level of tool health assessment or for some module/system/subsystem/component

15 7 The non-predictive CBM module will include a manual modification of thresholds at the user s discretion Factory-based applications are easier to propagate throughout the factory User set up of the non-predictive CBM module requires: Equipment/module/subsystem/component hierarchy definition per SEMI E120/125/134 Health indicator and counter list with association to equipment/module/subsystem/ component List of required data (equipment and factory) for each health indicator and counter Health indicator and counter calculation functions User-defined health indicator and counter thresholds Association of health indicator and counter trigger to maintenance event ID Messaging list per event (if messaging is active in this module) Functions of the non-predictive CBM module are: Calculate health indicators and increment counters Associate health indicators and counters to equipment consistent with SEMI E120/125/134 Compare health indicators and counters to thresholds defined by the user Provide or invoke messaging of maintenance event triggered Provide visualization of equipment health status either continuously or upon manual request for selected tools Provide input to scheduled PM system for calendar visualization including CBM invoked maintenance events with scheduled PMs Outputs of the non-predictive CBM module are: Messaging: Direct messaging of triggered maintenance event OR invoked message command with relevant association information (tool ID, maintenance event ID) Visualization output to user via user interface: Equipment health dashboard, either realtime continuously OR when manually requested for selected tools. Includes health metric or counter value graphic versus threshold, current status and historical graphic Output to scheduled PM module: CBM invoked maintenance event with relevant tool ID and maintenance event ID as input to scheduled PM module for calendar visualization

16 8 User Interface User Requests The user will access the system through the user interface to change any health indicator or counter thresholds manually The user can manually request any health indicator or counter graphic output select from health indicator and counter library, select time period, select visualization type from library. An example output of a health indicator visualization (select X-Y graph for defined time period) for one tool with two process chambers, four subsystems per chamber, and three components for one chamber subsystem is shown in Figure 3. This particular example is for equipment: Lam plasma etcher ID PET01; modules: Chambers A and B; subsystem: health indicators for vacuum (VAC) and RF (RF) and gasbox (GAS) and temperature (TEMP); and the component: health indicators for Chamber A Gasbox Gas1 and Gas2 and Gas3. Figure 4 shows graphically a user request for health indicator visualization. From the figure, the process is as follows (process step is denoted in the list below, and in Figure 4): 0. User accesses the CBM User Input GUI. 1. User selects a list of health indicators for visualization. The health indicators are stored in the CBM health indicator library, with their associated contextual information per SEMI E120/125/134, with all associated raw data required to construct the health indicator, and with the specific health indicator calculation function. In the example, user selected PET01/ChamberA/VAC, PET01/ChamberA/RF, PET01/ChamberA/GAS, PET01/ChamberA/TEMP health indicators for visualization. This selection step results in an assembled list of health indicators and their associated component data elements, in a format that can be translated into a data extraction when merged with the time period specified in step User selects the visualization type from a list of generic visualizations stored in the library. In the example case, the user selected X-Y graph of health indicator vs. time. 3. User defines a time period. In the example the tile period is somewhat ambiguous, but in a real example the time period is displayed on the X axis of the graphical output. 4. The CBM system builds the data extraction (termed data fetch) and gathers the data from the equipment database and factory metrology database. This step involves two processes. The first process involves the organization of the data extraction from the CBM library information in step 1 and the time period specified in step 3 into a data extraction plan. The second step is to execute the data extraction plan, which results in a chronological tabular data file for health indicator generation. 5. The CBM system processes the chronological tabular data file from step 4 using the calculation function from step 1, resulting in the chronological tabular data for each health indicator selected organized for visualization. 6. The CBM system builds the user selected visualization from step 2 using the health indicator data file from step 5. The CBM System outputs to the user the visualizations requested. Figure 5 shows a summary of the non-predictive CBM module functions and libraries.

17 9 Figure 3 Example of Health Indicator Visualization Output Process Equipment USER DCP from DCP Manager OR Collect All Data Method User Input GUI Equipment Data Equipment Raw Data OEM defined Health Indicators Metrology Equipment Visualization Job Builder 1. Select Health Indicators 2. Select Visualization Type 3. Define time period 4. Build Data Fetch, execute Fetch 5. Process Data with Health Indicator Function 6. Build Graphic & Display CBM Libraries Health Indicators Visualizations Message Distribution Lists Non-Predictive CBM System Envelope Factory/Metrology Data MES Process Data Defects Parametric Yield Parameter Figure 4 Manual Visualization Job Build and Execution Example

18 10 User Requests: Adjust Specific Thresholds Specific Virtualization Requests User Input GUI Data Fetch Utility functions Calculate Health Indicators Compare to Threshold Visualization Engine Message or Invoke Message Output to Schedule PM System libraries Health Indicator Library with Source Data List Health Indicator Equations/Functions Health Indicator Threshold & Event Association Visualization Library Message Association to Maintenance Event Message Distribution Lists Figure 5 Non-Predictive CBM System Functions and Libraries Non-Predictive CBM Data Quality The data flow into, out of, and inside the non-predictive CBM system are complex. The majority of the volume of data required for CBM is equipment sensor and factory metrology data. The equipment data quality requirements depend on the specific equipment component, subsystem, or module behavior that is being monitored using health monitors (or predictive algorithms in predictive CBM). Data acquisition frequency is a known unresolved issue for some data needed for CBM. Equipment-based special data acquisition may be needed to satisfy these extreme requirements if sensitivity to performance features of these systems is to be accomplished, since no current industry specification satisfies this requirement. RF systems, implanter sources, and lithography illumination sources are a few examples where high frequency transients are of interest, and to adequately acquire equipment data to sense these features requires data acquisition at 1 khz or higher. MFCs, vacuum control systems, and stage control are examples where acquisition frequency of Hz is required. Much of the rest of the required data, such as robot position, valve position, and chamber pressure may be acquired at 1 Hz or less. Simply put, the frequency at which data can be acquired determines the sensitivity of feature detection available. Figure 1, Figure 3, Figure 4, and Table 2 show some of the inputs and outputs of the non-predictive CBM module. Figure 5 shows the functions and libraries. Table 2 lists the various data inputs and outputs for the non-predictive CBM module. The data quality requirements for the manually entered data are simply that all required fields are entered an in the appropriate units or format. This is easy to police within the user input GUI, so that is the recommended practice. The data coming to the non-predictive CBM system from the equipment and factory will have a defined format and content consistent with the policies in practice at the time in the factory. recommends use of the current Interface A suite of standards. The scheduled PM module association table will include every non-predictive CBM module invoked maintenance event that is developed. The non-predictive CBM module s internal association table sets the limits by which the CBM module acts on the scheduled PM system association table, such that when the action threshold is reached the CBM module will write the invoked maintenance action to the scheduled PM table for report out. A similar mechanism is used for messaging.

19 11 Table 2 Data Quality for Input and Output for Non-Predictive CBM Module Data Source Type Purpose Form Format Items Special Notes User Input GUI Input Set-up Association table User Input GUI Input Threshold setting and event association set-up Manual Input GUI User Request GUI Maintenance trigger to scheduled PM module Input Input Messaging set-up Visualization job generation Association table Messaging lookup table Job build input stepwise Output Record update Association table update Visualizations Output Health dashboard Graphic or table or list Text strings, SVIDs Text strings, numerical data Text strings Manu selection, dates Text strings, dates Tool/component ID, Health indicator ID, source data IDs, equation/function Health indicator ID, threshold, maintenance event ID Distribution lists, events Select Tool ID, health indicators, input start/end dates, select visualization type Tool ID, Event ID, date Unique equipment health indicators, the data elements required to generate the health indicator, and the function to use from the function library User sets health indicator threshold for maintenance event trigger and/or messaging trigger Associates events to messaging DLs for consumption by messaging engine Generates user output report For display in schedule File File For display or output 5.3 Predictive CBM High value and low frequency maintenance events are the focus of the predictive CBM module. There should only be a few, perhaps ~5, of these cases on any tool. The predictive CBM system directly monitors equipment health and predicts when a failure will occur that requires one of these high value low frequency events. Prediction from predictive CBM is in the form of RUL of the failing equipment. The RUL is in a form that can be used to jointly schedule maintenance and production. RULs generated from a predictive algorithm will be either in units of calendar time, process time, or wafers until the specific maintenance is required. A lookup table can be used to convert the RULs in other units into number of wafers. In the case of recipe dependent degradation, an RUL per recipe will be generated. The prediction output to the scheduled PM system for visualization will include the full set of recipe dependent RULs. The decision application will access the RUL set from the scheduled PM association table, access the WIP queue for the tool with the WIP-recipe association, and make the joint schedule for WIP and maintenance recommendation which, if accepted, will update the scheduled PM record. The default schedule for the predictive CBM invoked maintenance event will be the earliest RUL converted to calendar date, until either manually changed or changed by the decision application.

20 12 The large overlap in data requirements and functionality between non-predictive CBM and predictive CBM leads to a conclusion that the modules may be merged into one CBM system. Although this is logical, and time may prove that this is the preferred integration option, this document will assume separate non-predictive and predictive CBM modules. This allows for maximum flexibility, and addresses the significant differences in complexity (and thus required expertise to develop) of health indicator development in non-predictive CBM and prediction of RUL in predictive CBM. Predictive CBM implementation requires tool-specific development. Predictive model construction will be unique to each OEM s tool. The source data within the equipment that is consumed in the predictive models are unique to each OEM s hardware, naming convention, and command and control software. The development work to establish these models may be performed by the OEM, an IDM, a third party, or any combination of these parties. Health indicators, raw equipment data, and factory data will be consumed by the predictive CBM application. In the interest of efficient data transfer and storage, it is recommended that data be acquired once from the equipment and then stored in an equipment data repository for consumption by applications, such as CBM and FDC. This collect data once principle may require either a collect all equipment data strategy or a data collection plan manager in the factory. This document assumes that data collection for consumption by the CBM modules will be managed outside of the application. The collected data that is needed by predictive CBM modules will be fetched periodically as instructed manually or by a programmed periodic refresh. The form and format of the health indicators, and any source data from the equipment should comply with SEMI E120, E125, and E134. Any derived health indicators, calculated within the equipment envelope and exported to the equipment data repository for consumption by CBM applications, must also be put in context consistent with SEMI E120, E125, and E134. Factory data may be required to calculate RULs. The association of factory data to equipment data is accomplished as discussed in Section 5.2. The predictive CBM application will reside outside the equipment envelope. This requirement is necessary for the following reasons: The predictive CMB module will require factory data as input to the calculation of RUL for some cases The predictive CBM module will include a manual modification of models at the user s discretion Factory-based applications are easier to propagate common elements of the application throughout the factory Figure 6 shows a summary of the predictive CBM module functions and libraries. Figure 7 shows user set-up and visualization job building example. User set up of the predictive CBM module requires: Model list with output RUL association to equipment/module/subsystem/component List of required data (equipment and factory) for each predictive model Definition of the predictive models (modular code input to model library)

21 13 Association of RUL to maintenance event ID Threshold for each RUL to trigger messaging Messaging List per event (if messaging is active in this module) Functions of the predictive CBM module are: Calculate RULs Compare RULs to thresholds defined by the user for messaging Provide or invoke messaging of RUL when RUL threshold is triggered Provide visualization of prediction either continuously or upon manual request Provide input to scheduled PM System for calendar visualization including predicted maintenance events Outputs of the predictive CBM module are: Messaging : Direct messaging of triggered maintenance event OR invoked message command with relevant association information (tool ID, maintenance event ID, RUL, confidence value) Visualization output to user via user interface: real-time continuously OR when manually requested for selected tools. Includes RUL and recipe matrix with prediction confidence interval and historical graphic Output to scheduled PM module: CBM invoked maintenance event with relevant tool ID, maintenance event ID, RUL, and recipe matrix, and confidence values as input to scheduled PM module for calendar visualization User Interface User Requests The user will access the system through the user interface to change any assignments made in the user set-up section (above) including adjusting thresholds, messaging distribution lists, etc The user can manually request any RUL set graphic output select from event or fault specific RUL library, select time period, select visualization type from library. Output will be similar to that of the health indicator visualization shown in the non-predictive CBM module section of this document.

22 14 User Requests: Adjust Specific Thresholds Specific Virtualization Requests User Input GUI Data Fetch Utility functions Calculate RULs Compare to Thresholds Visualization Engine Message or Invoke Message Output to Schedule PM System libraries RUL with Source Data List Predictive Models RUL Thresholds & Event Association Visualization Library Message Association to Maintenance Event Message Distribution Lists Figure 6 Predictive CBM System Functions and Libraries Process Equipment USER DCP from DCP Manager OR Collect All Data Method Equipment Data Equipment Raw Data OEM defined Health Indicators Metrology Equipment User Request GUI Visualization Job Builder 1. Select Equipment + RULs 2. Select Visualization Type 3. Define time period 4. Retrieve Data 5. Build Graphic & Display Predictive CBM Libraries RUL + Source Data + Thresholds + Event + Model ID Models Visualizations Message + Maintenance Event + Distribution List Predictive CBM System Envelope User Input GUI Association Table Set-Up Input Tool ID Input Event ID Input RUL ID Select Model Input/Select Source Data Input Thresholds + Actions (event, message) Repeat above steps Messaging Table Set-Up Select RUL Input Unique Message Input/Select Distribution List Factory/Metrology Data MES Process Data Defects Parametric Yield Parameter Figure 7 Predictive CBM User Set-Up and Manual Visualization Job Build and Execution Example

23 5.3.1 Predictive CBM Data Quality Please refer to Section The same discussion applies to predictive CBM. Table 3 lists the input and outputs for the predictive CBM module, with form, format, item list, and comments. 15 Table 3 Data Quality for Input and Output for Predictive CBM Module Data Source Type Purpose Form Format Items Special Notes User Input GUI Input Set-up Association table User Input GUI Input Threshold setting and event association set-up Manual Input GUI User Request GUI Maintenance trigger to scheduled PM module Input Input Messaging set-up Visualization job generation Association table Messaging lookup table Job build input stepwise Output Record update Association table update Visualizations Output RUL dashboard Graphic or table or list Text strings, SVIDs Text strings, numerical data Text strings Manu selection, dates Text strings, date matrix Tool/component ID, RULs, source data IDs, Model ID RUL ID, threshold, maintenance event ID Distribution lists, events Select Tool ID, RUL, input start/end dates, select visualization type Tool ID, Event ID, date-recipe sets Unique RULs, the data elements required to generate the RULs, and the model to use from the model library User sets RUL thresholds for maintenance event trigger and/or messaging trigger Associates events to messaging DLs for consumption by messaging engine Generates user output report For display in schedule and access by decision application File File For display or output 5.4 Decision Making Application The decision application uses a rules engine to determine the optimal maintenance schedule. The inputs to the decision application are the existing schedule for scheduled PMs from the scheduled PM module, including the non-predictive CBM data and predictive CBM data written to the scheduled PM system, the factory parts inventory manager, maintenance event information (duration, parts required, staff required a lookup table), staffing, WIP schedules, WIP-recipe associations, factory schedule, and other economic value drivers the IDM may elect to include (e.g., value by product, lot priorities, etc.). The variety of data input to the decision application will require a careful factory integration effort. The interconnectivity is expected to be different depending on the particular factory s system architecture. The IDM will set the decision rule logic to maximize profits. It is expected that the IDM may define several reusable optimization scenarios (e.g., maximize output, maximize profit, maximize hot lots, maximize utilization, etc), and these reusable scenario rules sets will be stored in a library within the decision application module. The decision application output is a recommended maintenance schedule. Multiple

24 16 scenarios may be run in session (or regularly scheduled to run), and the calendar views from of the optimized and baseline schedules reported out for management. The IDM may elect to allow the decision application to set maintenance schedules or may elect to retain manual control. Maintenance schedules generated will highlights any changes with the source of the change noted. Thus, if the CBM application output is that a specific maintenance event existing on the schedule in the future is required immediately, and the decision application schedules that maintenance immediately, then the recommended maintenance schedule should highlight that the change was invoked by the CBM output and recommended by the decision application. Once the maintenance event is performed, the date performed field in the maintenance record is updated and the event record in the scheduled PM association table is reset to the post-tool-qualification RUL. User Requests: Scenario Requests Automation Set-Up User Input GUI Data Fetch Utility functions Calculate Recommended Actions Visualization Engine Messaging Output to Schedule PM System libraries Rules Library Optimization Scenarios Visualization Library Message Association to Decision Actions Message Distribution Lists Figure 8 Decision Application Functions and Libraries Decision Application Data Quality The data flow into, out of, and inside the decision application system is relatively simple and low frequency. The data quality requirements for the manually entered data are simply that all required fields are entered an in the appropriate units or format. This is easy to police within the user input GUI, so that is the recommended practice. The data coming to the decision application system from factory control and management systems and the scheduled PM system will have a defined format and content. The minimum requirements are that the data is available in the format required by the rules engine as defined by the user. These are expected to be different at each IDM, as each IDM has its own factory system terminology. Data sourced from the scheduled PM system will be in the form and format discussed in that section of this document. Messaging data is as discussed in the other modules. Table 4 lists each of the input and output sources, and the form, format, and items of the data required by the decision application system.

25 17 Table 4 Data Quality for Input and Output for Decision Application Data Source Type Purpose Form Format Items Special Notes User Input GUI Input Rules set-up Rules table Text strings, logicals, values User Input GUI Input Scenario definitions User Input GUI Input Automation set up Manual Input GUI User Request GUI Recommended changes to events on maintenance schedule Input Input Messaging set-up Visualization job generation Association table Auto Run table Messaging lookup table Job build input stepwise Output Record update Scheduled PM association table update Visualizations Output Scenarios calendars Graphic or table or list Text strings Text strings, data (frequency) Text strings Manu selection, dates Text strings, date matrix Input unique rule ID, select data ID, select logical argument, select value Input scenario name, Select rules from rules tables Select scenarios, input frequency Distribution lists, events Select Tool IDs, scenarios, time period, select visualization type Tool ID, Event ID, date-recipe sets Define rules Define sets of rules Runs selected scenarios automatically at frequency. Extend to automate output Associates events to messaging DLs for consumption by messaging engine Generates user output report calendar views For display in schedule output File File For display or output 6 PHM SYSTEM FACTORY ARCHITECTURE As stated in Section 4, factory integration of the PHM system is expected to be site specific. Each of the modules described in this document can be combined with another module or be divided and combined in various ways. It is logical to combine predictive CBM and nonpredictive CBM due to their common data requirements and similarity of functions. It is also logical to combine the scheduled PM and decision applications due to their similar data requirements and functions. Figure 9 and Figure 10 show the information flows between modules. Application subcomponent reorganizations that have merit are to collocate the libraries from all the modules, collocate the input and output GUIs for all the modules, etc. Each IDM in consult with their internal or external integrator should map the elements of the PHM system onto their factory architecture.

26 18 Figure 9 Integrated PHM System Data Flow Figure 10 PHM System Integrated to Fab Information

27 7 SUMMARY PHM calls for a paradigm shift from scheduled preventive maintenance plus unscheduled maintenance towards continuous, data-driven, condition-based monitoring using CBM strategies. Proper application of these CBM strategies in a PHM system with joint production and maintenance scheduling will allow the IDM optimize factory performance. Integration will necessarily be a complicated IDM-specific challenge that can be eased only partially through standardization or modular development strategies. Health assessment, degradation forecasting, maintenance and production scheduling can be merged in a PHM system to raise maintenance activities to next generation standards REFERENCES 8.1 Documents SEMI E120: Specification for the Common Equipment Model (CEM) SEMI E128: Provisional Specification for XML Message Structures SEMI E125: Specification for Equipment Self Description (EqSD) SEMI E132: Specification for Equipment Client Authentication and Authorization SEMI E134: Specification for Data Collection Management SEMI E138: XML Semiconductor Common Components SEMI E139: Specification for Recipe and Parameter Management (RaP) Various AEC/APC Conference Proceedings. (Asia, Europe, U.S., ) W3C: XML Schema Part 2: Datatypes Second Edition 8.2 Programs/Project Material [1] Predictive Preventive Maintenance (PPM) Equipment Implementation Guidelines (SEMATECH Technology Transfer # A-ENG) [2] 2009 PPM Research White Paper from AWA (TTID 33662) [3] 2009 Predictive Preventive Maintenance (PPM) Implementation Guideline (TTID 34009TD)

28

29

30 International SEMATECH Manufacturing Initiative Technology Transfer 2706 Montopolis Drive Austin, TX

ISMI Predictive and Preventive Maintenance Equipment Implementation Guidelines

ISMI Predictive and Preventive Maintenance Equipment Implementation Guidelines Predictive and Preventive Maintenance Equipment Implementation Guidelines International SEMATECH Manufacturing Initiative Advanced Materials Research Center, AMRC, International SEMATECH Manufacturing

More information

Next Generation Factory Session Opening Remarks

Next Generation Factory Session Opening Remarks Accelerating Manufacturing Productivity Next Generation Factory Session Opening Remarks Sanjay Rajguru Associate Director, ISMI Copyright 2009 SEMATECH, Inc. SEMATECH, and the SEMATECH logo are registered

More information

SEMICON Japan. e-manufacturing Workshop Introduction. Harvey Wohlwend Harvey.Wohlwend ismi.sematech.org

SEMICON Japan. e-manufacturing Workshop Introduction. Harvey Wohlwend Harvey.Wohlwend ismi.sematech.org SEMICON Japan e-manufacturing Workshop Introduction Harvey Wohlwend Harvey.Wohlwend ismi.sematech.org Advanced Materials Research Center, AMRC, International SEMATECH Manufacturing Initiative, and ISMI

More information

The Role of Models in Semiconductor Smart Manufacturing

The Role of Models in Semiconductor Smart Manufacturing The Role of Models in Semiconductor Smart Manufacturing 28 th Advanced Process Control Conference Mesa, Arizona October 17-20, 2016 Alan Weber Cimetrix Incorporated Outline What is Smart Manufacturing?

More information

ISMI Next Generation Factory (NGF) Roadmap Realization

ISMI Next Generation Factory (NGF) Roadmap Realization ISMI / SEMATECH Symposium Japan 2008 Accelerating Manufacturing Productivity ISMI Next Generation Factory (NGF) Roadmap Realization Joe Draina Director ISMI 30 October 2008 Copyright 2008 SEMATECH, Inc.

More information

Background Statement for SEMI Draft Document 5320A LINE-ITEM REVISIONS TO SEMI E E, SPECIFICATION FOR EQUIPMENT PERFORMANCE TRACKING

Background Statement for SEMI Draft Document 5320A LINE-ITEM REVISIONS TO SEMI E E, SPECIFICATION FOR EQUIPMENT PERFORMANCE TRACKING Background Statement for SEMI Draft Document 5320A LINE-ITEM REVISIONS TO SEMI E116-0707 E, SPECIFICATION FOR EQUIPMENT PERFORMANCE TRACKING Notice: This background statement is not part of the balloted

More information

APC Conference XXIV 2012 University of Michigan, Ann Arbor, Michigan, USA September 10-12, 2012

APC Conference XXIV 2012 University of Michigan, Ann Arbor, Michigan, USA September 10-12, 2012 Optimize Semiconductor SubFab Utility Consumption and Maintenance Scheduling Antonio Serapiglia, Alan Ifould, Angelo Maiorana, Adrienne Pierce, Mike Czerniak Edwards Ltd, Crawley, UK APC Conference XXIV

More information

PRODUCT DESCRIPTIONS AND METRICS

PRODUCT DESCRIPTIONS AND METRICS PRODUCT DESCRIPTIONS AND METRICS Adobe PDM - Adobe Analytics (2015v1) The Products and Services described in this PDM are either On-demand Services or Managed Services (as outlined below) and are governed

More information

Application of virtual metrology and predictive maintenance in semiconductor manufacturing

Application of virtual metrology and predictive maintenance in semiconductor manufacturing SEMICON Europa 2010 - TechARENA - Automation and Process Control Session Application of virtual metrology and predictive maintenance in semiconductor manufacturing G. Roeder, M. Pfeffer, M. Schellenberger,

More information

Solutions for Agile Semiconductor Manufacturing. Sanjiv Mittal Applied Global Services Applied Materials October 6, 2009

Solutions for Agile Semiconductor Manufacturing. Sanjiv Mittal Applied Global Services Applied Materials October 6, 2009 Solutions for Agile Semiconductor Manufacturing Sanjiv Mittal Applied Global Services Applied Materials October 6, 2009 What Is Agile Semiconductor Manufacturing? Agile (dictionary) 1: marked by ready

More information

Application of DO-254 Level A (Appendix B) Design Assurance Objectives of. Elemental Analysis. Mixed Signal (Analog/Digital) Discrete Circuitry

Application of DO-254 Level A (Appendix B) Design Assurance Objectives of. Elemental Analysis. Mixed Signal (Analog/Digital) Discrete Circuitry Application of DO-254 Level A (Appendix B) Design Assurance Objectives of Elemental Analysis To Mixed Signal (Analog/Digital) Discrete Circuitry By Dave Duncan Purple Seal Inc. THE INFORMATION CONTAINED

More information

AppManager + Operations Center

AppManager + Operations Center AppManager + Operations Center A Powerful Combination for Attaining Service Performance and Availability Objectives This paper describes an end-to-end management solution for essential business services

More information

General e-manufacturing Requirements and first Interface A Experiences

General e-manufacturing Requirements and first Interface A Experiences General e-manufacturing Requirements and first Interface A Experiences e-manufacturing Workshop San Francisco July 14, 2006 Ralf Georgi Automation Capabilities Management e-manufacturing Areas GEM 300

More information

DETERMINING A DYNAMIC MAINTENANCE THRESHOLD USING MAINTENANCE OPTIONS

DETERMINING A DYNAMIC MAINTENANCE THRESHOLD USING MAINTENANCE OPTIONS DETERMINING A DYNAMIC MAINTENANCE THRESHOLD USING MAINTENANCE OPTIONS Gilbert Haddad a, Peter Sandborn a, and Michael Pecht a,b a Center for Advanced Life Cycle Engineering (CALCE), University of Maryland,

More information

Sentinel Suite Tools.» Prognostic Health Management (PHM)» Condition-Based Maintenance (CBM)» Integrated Vehicle Health Management (IVHM)

Sentinel Suite Tools.» Prognostic Health Management (PHM)» Condition-Based Maintenance (CBM)» Integrated Vehicle Health Management (IVHM) E N G I N E E R I N G I N N O V A T I O N Sentinel Suite Tools» Prognostic Health Management (PHM)» Condition-Based Maintenance (CBM)» Integrated Vehicle Health Management (IVHM) Sentinel Suite PHM Solutions

More information

ProfessionalPLUS Station Software Suite

ProfessionalPLUS Station Software Suite DeltaV Distributed Control System Product Data Sheet September 2017 ProfessionalPLUS Station Software Suite Global database, architected for flexibility and scalability Powerful, graphical engineering

More information

NetIQ AppManager Plus NetIQ Operations Center

NetIQ AppManager Plus NetIQ Operations Center White Paper AppManager Operations Center NetIQ AppManager Plus NetIQ Operations Center A Powerful Combination for Attaining Service Performance and Availability Objectives This paper describes an end-to-end

More information

EDA Assessment. Steve Fulton Charisse Nabors

EDA Assessment. Steve Fulton Charisse Nabors EDA Assessment Steve Fulton Charisse Nabors Advanced Materials Research Center, AMRC, International SEMATECH Manufacturing Initiative, and ISMI are servicemarks of SEMATECH, Inc. SEMATECH, the SEMATECH

More information

DRIVING SEMICONDUCTOR MANUFACTURING BUSINESS PERFORMANCE THROUGH ANALYTICS

DRIVING SEMICONDUCTOR MANUFACTURING BUSINESS PERFORMANCE THROUGH ANALYTICS www.wipro.com DRIVING SEMICONDUCTOR MANUFACTURING BUSINESS PERFORMANCE THROUGH ANALYTICS Manoj Ramanujam Table of Contents 03... Introduction 03... Semiconductor Industry Overview 05... Data Sources and

More information

A technical discussion of performance and availability December IBM Tivoli Monitoring solutions for performance and availability

A technical discussion of performance and availability December IBM Tivoli Monitoring solutions for performance and availability December 2002 IBM Tivoli Monitoring solutions for performance and availability 2 Contents 2 Performance and availability monitoring 3 Tivoli Monitoring software 4 Resource models 6 Built-in intelligence

More information

Industrial IT System 800xA Engineering

Industrial IT System 800xA Engineering Industrial IT System 800xA Engineering Overview Features and Benefits Integrated Engineering Environment Supports the engineering of the entire extended automation system - from field device to plant management

More information

Benefits. + + Consistent quality to recipe specification. + + Increase asset utilization and operational efficiency

Benefits. + + Consistent quality to recipe specification. + + Increase asset utilization and operational efficiency Wonderware InBatch Flexible Batch Management Wonderware InBatch software enables sophisticated equipment arbitration and concurrent batch execution capabilities to maximize asset utilization, plant throughput

More information

MANUFACTURING EXECUTION SYSTEM

MANUFACTURING EXECUTION SYSTEM MANUFACTURING EXECUTION SYSTEM Critical Manufacturing MES, a comprehensive, proven and innovative software suite, empowers operations to move into future visions such as Industry 4.0. Compete better today

More information

Realizing Smart Manufacturing in Semiconductor Industry with SEMI Standards Alan Weber

Realizing Smart Manufacturing in Semiconductor Industry with SEMI Standards Alan Weber Realizing Smart Manufacturing in Semiconductor Industry with SEMI Standards Alan Weber Vice President, New Product Innovations, Cimetrix Incorporated Realizing Smart Manufacturing in Semiconductor Industry

More information

Review Manager Guide

Review Manager Guide Guide February 5, 2018 - Version 9.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

More information

PdM in Semiconductor Manufacturing Importance and Expectations

PdM in Semiconductor Manufacturing Importance and Expectations PdM in Semiconductor Manufacturing Importance and Expectations ISMI 2 nd International Predictive and Preventative Maintenance Workshop San Francisco - June, 2008 Dirk-Alexander Bruedern Front End Cluster

More information

EMC PERSPECTIVE Improving Information Integrity for Financial Analyses

EMC PERSPECTIVE Improving Information Integrity for Financial Analyses EMC PERSPECTIVE Improving Information Integrity for Financial Analyses How Office Business Application (OBA) solutions protect the quality of data and reduce the risk and errors inherent in ad hoc spreadsheet

More information

Agilent Quality Tool Online Help. Printable Version. Intelligent Test Software Solutions. ITFSS p January 2005

Agilent Quality Tool Online Help. Printable Version. Intelligent Test Software Solutions. ITFSS p January 2005 Agilent Quality Tool Online Help Printable Version Intelligent Test Software Solutions ITFSS 03.10 p 1204 January 2005 Agilent Quality Tool Online Help: Printable Version 1 Copyrights and Notices Agilent

More information

Manufacturing operations management. Software portfolio that helps you realize innovation in the Digital Enterprise. Siemens PLM Software

Manufacturing operations management. Software portfolio that helps you realize innovation in the Digital Enterprise. Siemens PLM Software Siemens PLM Software Manufacturing operations management Software portfolio that helps you realize innovation in the Digital Enterprise www.siemens.com/mom A holistic approach to optimize the entire value

More information

Integrated Predictive Maintenance Platform Reduces Unscheduled Downtime and Improves Asset Utilization

Integrated Predictive Maintenance Platform Reduces Unscheduled Downtime and Improves Asset Utilization November 2017 Integrated Predictive Maintenance Platform Reduces Unscheduled Downtime and Improves Asset Utilization Abstract Applied Materials, the innovator of the SmartFactory Rx suite of software products,

More information

ITM203 Build Your Dashboards in SAP Solution Manager with Focused Insights. Public

ITM203 Build Your Dashboards in SAP Solution Manager with Focused Insights. Public ITM203 Build Your Dashboards in SAP Solution Manager with Focused Insights Public Speakers Las Vegas, Sept 19-23 Marc Thier Bangalore, October 5-7 Marc Thier Barcelona, Nov 8-10 Xavier Dupeyrat 2016 SAP

More information

GE Fanuc's solutions for Automation and Intelligent Production Management

GE Fanuc's solutions for Automation and Intelligent Production Management GE Fanuc's solutions for Automation and Intelligent Production Management Giulio Capocaccia GE Fanuc Automation Solutions S.A. Zone Industrielle, L-6468 Echternach, Grand Duché de Luxembourg giulio.capocaccia@gefanuc.com

More information

INTEGRATION OF AUTONOMOUS SYSTEM COMPONENTS USING THE JAUS ARCHITECTURE

INTEGRATION OF AUTONOMOUS SYSTEM COMPONENTS USING THE JAUS ARCHITECTURE INTEGRATION OF AUTONOMOUS SYSTEM COMPONENTS USING THE JAUS ARCHITECTURE Shane Hansen Autonomous Solutions, Inc. Phone: (435) 755-2980 Fax: (435) 752-0541 shane@autonomoussolutions.com www.autonomoussolutions.com

More information

Atmospheric Transfer Robotics. Cutting-edge robotic solutions for today s advanced semiconductor manufacturers

Atmospheric Transfer Robotics. Cutting-edge robotic solutions for today s advanced semiconductor manufacturers Atmospheric Transfer Robotics Cutting-edge robotic solutions for today s advanced semiconductor manufacturers Razor provides the superior performance, repeatability, and ultra-cleanliness that today s

More information

DeltaV Continuous Historian

DeltaV Continuous Historian DeltaV Distributed Control System Product Data Sheet DeltaV Continuous Historian Continuous process data is collected by the DeltaV Continuous Historian on any DeltaV workstation. Fully integrated history

More information

Oracle Utilities Analytics Dashboards for Operational Device Analytics

Oracle Utilities Analytics Dashboards for Operational Device Analytics Oracle Utilities Analytics Dashboards for Operational Device Analytics Release 2.5.1 Service Pack 1 E49008-04 November 2014 Oracle Utilities Analytics Dashboards for Operational Device Analytics E49008-04

More information

IBM A EXAM QUESTIONS & ANSWERS

IBM A EXAM QUESTIONS & ANSWERS IBM A2010-651 EXAM QUESTIONS & ANSWERS Number: A2010-651 Passing Score: 800 Time Limit: 120 min File Version: 41.0 http://www.gratisexam.com/ Exam Code: A2010-651 Exam Name: Assess: Fundamentals of Applying

More information

Wonderware InBatch 2012 R2

Wonderware InBatch 2012 R2 Software Datasheet Summary Wonderware software effectively manages flexible batch operations found in process industries. software offers recipe modeling, sophisticated batch execution automation, material

More information

ACD MIS Supervisor Manual

ACD MIS Supervisor Manual Notice Note that when converting this document from its original format to a.pdf file, some minor font and format changes may occur. When viewing and printing this document, we cannot guarantee that your

More information

Wonderware InBatch 2012 R2

Wonderware InBatch 2012 R2 Invensys Software Datasheet Summary is now Wonderware 2012 R2 Wonderware software effectively manages flexible batch operations found in process industries. software offers recipe modeling, sophisticated

More information

IoT for SECS and Non-SECS Equipment in Semiconductor Backend Manufacturing. WOI Teck Khiong (Infineon) Maiko Kenner (PEER Group)

IoT for SECS and Non-SECS Equipment in Semiconductor Backend Manufacturing. WOI Teck Khiong (Infineon) Maiko Kenner (PEER Group) IoT for SECS and Non-SECS Equipment in Semiconductor Backend Manufacturing WOI Teck Khiong (Infineon) Maiko Kenner (PEER Group) Table of Contents - Company Information - Industry Revolution and Status

More information

MES ERP. Critical Manufacturing, 2015

MES ERP. Critical Manufacturing, 2015 MES vs ERP Critical Manufacturing, 2015 Defining MES Loosening the categories The case for modular MES Modular MES in practice Strategic enterprise integration still matters 3 6 7 8 9 Originally written

More information

Oracle Knowledge Analytics User Guide

Oracle Knowledge Analytics User Guide Oracle Knowledge Analytics User Guide Working with Oracle Knowledge Analytics Reports Oracle Knowledge Version 8.4.2.2 April, 2012 Oracle, Inc. COPYRIGHT INFORMATION Copyright 2002, 2011, Oracle and/or

More information

IBM Tivoli Composite Application Manager for Transactions V6.2. helps monitor the availability and response time of business

IBM Tivoli Composite Application Manager for Transactions V6.2. helps monitor the availability and response time of business IBM Europe Announcement ZP08-0167, dated May 13, 2008 IBM Tivoli V6.2 helps monitor the availability and response time of business applications Key prerequisites...2 Description...2 Product positioning...

More information

Subject Matter Expert: Author: Reviewed by: Margaret Goodrich Bill Schleicher Tim Simmons / Margaret Goodrich. Bulk Meter Readings

Subject Matter Expert: Author: Reviewed by: Margaret Goodrich Bill Schleicher Tim Simmons / Margaret Goodrich. Bulk Meter Readings Bill Schleicher Tim Simmons / Bulk Meter Readings "Acknowledgment: This material is based upon work supported by the Department of Energy under Award Number DE-OE0000193." Disclaimer: "This report was

More information

Business case studies. (Logistic and production models)

Business case studies. (Logistic and production models) Business case studies (Logistic and production models) 1. Logistics planning in the food industry The logistic system of the food manufacturing company consists of a network whose nodes represent suppliers

More information

Curtis Doss Deshraj Singh Rick Scott. Spansion APM Group. Building the stronger manufacturing systems software

Curtis Doss Deshraj Singh Rick Scott. Spansion APM Group. Building the stronger manufacturing systems software Curtis Doss Deshraj Singh Rick Scott Spansion APM Group Building the stronger manufacturing systems software Dec 4 th 2007 ISMI e-manufacturing Workshop Tokyo, Japan 2 Overview Spansion history and global

More information

Batch Control Part 5: Implementation Models & Terminology for Modular Equipment Control

Batch Control Part 5: Implementation Models & Terminology for Modular Equipment Control ISA Draft 88.00.05 Batch Part 5: Implementation Models & Terminology for Modular Equipment Working Draft 06 July 2010 This document is a draft that represents work being done by an ISA Standards Committee

More information

IBM Omni-Channel Merchandising

IBM Omni-Channel Merchandising Service Description IBM Omni-Channel Merchandising This Service Description describes the Cloud Service IBM provides to Client. Client means the company and its authorized users or recipients of the Cloud

More information

DeltaV Continuous Historian

DeltaV Continuous Historian DeltaV Distributed Control System Product Data Sheet DeltaV Continuous Historian Continuous process data is collected by the DeltaV Continuous Historian on any DeltaV workstation. Fully integrated history

More information

5.3 Supply Management within the MES

5.3 Supply Management within the MES Technical 6x9 / Manufacturing Execution Sytems (MES): Design, Planning, and Deployment / Meyer / 0-07-162383-3 / Chapter 5 Core Function Production Flow-Oriented Planning 85 Customer data (e.g., customer

More information

Proficy * Plant Applications. GE Intelligent Platforms. Plant Performance Analysis and Execution Software

Proficy * Plant Applications. GE Intelligent Platforms. Plant Performance Analysis and Execution Software GE Intelligent Platforms Proficy * Plant Applications Plant Performance Analysis and Execution Software As a production manager, the key to unlocking the full performance potential of your manufacturing

More information

IBM Omni-Channel Merchandising

IBM Omni-Channel Merchandising Service Description IBM Omni-Channel Merchandising This Service Description describes the Cloud Service IBM provides to Client. Client means the company and its authorized users or recipients of the Cloud

More information

2B. Performance Advantages of Alerton BACnet. 1. Alerton Overview

2B. Performance Advantages of Alerton BACnet. 1. Alerton Overview 1. Alerton Overview Alerton recognized the benefits of BACnet and introduced the industry's first native BACnet system, BACtalk. This forward thinking is consistent with Alerton's rich history of technology

More information

BUSINESS PROCESS MODELING WITH SIMPROCESS. Maya Binun. CACI Products Company 3333 North Torrey Pines Court La Jolla, CA 92037, U.S.A.

BUSINESS PROCESS MODELING WITH SIMPROCESS. Maya Binun. CACI Products Company 3333 North Torrey Pines Court La Jolla, CA 92037, U.S.A. Proceedings of the 1996 Winter Simulation Conference ed. J. M. Cbarnes, D. J. Morrice, D. T. Brunner, and J. J. Swain BUSINESS PROCESS MODELING WITH SIMPROCESS Maya Binun CACI Products Company 3333 North

More information

LAVASTORM lavastorm.com. Five Technologies that Transform Auditing to Continuous Business Improvement

LAVASTORM lavastorm.com. Five Technologies that Transform Auditing to Continuous Business Improvement Five Technologies that Transform Auditing to Continuous Business Improvement Executive Summary Internal Audit groups collect very valuable information about business operations, but in many organizations

More information

POWER INTEGRATED PERFORMANCE MONITORING FOR ASSET OPTIMIZATION

POWER INTEGRATED PERFORMANCE MONITORING FOR ASSET OPTIMIZATION Proceedings of POWER 2009 ASME Power 2009 July 21-23, 2009, Albuquerque, New Mexico, USA POWER2009-81212 INTEGRATED PERFORMANCE MONITORING FOR ASSET OPTIMIZATION Robert Holzworth Scientech a Curtiss-Wright

More information

INTERNATIONAL TECHNOLOGY ROADMAP

INTERNATIONAL TECHNOLOGY ROADMAP INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2011 EDITION FACTORY INTEGRATION THE ITRS IS DEVISED AND INTENDED FOR TECHNOLOGY ASSESSMENT ONLY AND IS WITHOUT REGARD TO ANY COMMERCIAL CONSIDERATIONS

More information

April Microsoft Corp. All rights reserved

April Microsoft Corp. All rights reserved Select the right tools for today and tomorrow. Microsoft Project 2010 offers flexibility and choice by providing tailored work management solutions for individuals, teams and the enterprise. April 2010

More information

USING SIMULATION TO UNDERSTAND CAPACITY CONSTRAINTS AND IMPROVE EFFICIENCY ON PROCESS TOOLS. Kishore Potti. Todd LeBaron

USING SIMULATION TO UNDERSTAND CAPACITY CONSTRAINTS AND IMPROVE EFFICIENCY ON PROCESS TOOLS. Kishore Potti. Todd LeBaron Proceedings of the 2002 Winter Simulation Conference E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds. USING SIMULATION TO UNDERSTAND CAPACITY CONSTRAINTS AND IMPROVE EFFICIENCY ON PROCESS

More information

T25 - Leverage the Digital Enterprise to Maximize Asset Performance

T25 - Leverage the Digital Enterprise to Maximize Asset Performance T25 - Leverage the Digital Enterprise to Maximize Asset Performance 1 Manufacturing Operational Challenges Pressure on efficiency and reliability Shrinking expertise in workforce Aging assets New assets

More information

SENG Software Reliability and Software Quality Project Assignments

SENG Software Reliability and Software Quality Project Assignments The University of Calgary Department of Electrical and Computer Engineering SENG 521 - Software Reliability and Software Quality Project Assignments Behrouz Far Fall 2012 (Revision 1.01) 1 Assignment no.

More information

AUTOSCHED TUTORIAL. Bill Lindler. AutoSimulations 655 E. Medical Drive Bountiful, Utah 84010, U.S.A.

AUTOSCHED TUTORIAL. Bill Lindler. AutoSimulations 655 E. Medical Drive Bountiful, Utah 84010, U.S.A. AUTOSCHED TUTORIAL Bill Lindler AutoSimulations 655 E. Medical Drive Bountiful, Utah 84010, U.S.A. ABSTRACT The AutoSched TM finite capacity planning and scheduling tool helps you increase throughput,

More information

Call Management Version 6.6 User Guide

Call Management Version 6.6 User Guide Call Management Version 6.6 User Guide Overview Call Management is purpose built software for all PBXs. It provides a complete communications management suite for all users of the system. Users are able

More information

ARIS PROCESS PERFORMANCE MANAGER

ARIS PROCESS PERFORMANCE MANAGER AUTOMATIC PROCESS DISCOVERY WITH ARIS PROCESS PERFORMANCE MANAGER TABLE OF CONTENTS 1 Introduction 2 Discovery and visualization of (single) process instances 4 Discovery of aggregated process views 6

More information

Index. Sarah Critchley 2018 S. Critchley, Dynamics 365 CE Essentials,

Index. Sarah Critchley 2018 S. Critchley, Dynamics 365 CE Essentials, A Accounts and contacts activities activities tab, 37 advantage of, 32 business, 29 capabilities, 35 case resolution form, 33 configuration, 36 definition, 28 feature, 29 filter, 38 form component, 34

More information

Manufacturing Informatics

Manufacturing Informatics Manufacturing Informatics utilizing information technology to identify manufacturing opportunities and implement solutions Pete Larochelle NeoMatrix, Inc. Mark Fehlmann - Madico Manufacturing Information

More information

Release December 2018

Release December 2018 Oracle Cloud What's New for Oracle Internet of Things Asset Monitoring Cloud Service Release 18.4.5 E85192-13 December 2018 What s New for Oracle IoT Asset Monitoring Cloud Service As soon as new and changed

More information

HYPERSERVICE BUSINESS PLATFORM 0

HYPERSERVICE BUSINESS PLATFORM 0 HYPERSERVICE BUSINESS PLATFORM 0 APPLICATION OVERVIEW NextAxiom Technology, Inc. http://www.nextaxiom.com COPYRIGHT 2003 NextAxiom. All rights reserved. Printed in the United States of America. TRADEMARKS

More information

Application Performance Monitoring Dashboard 7.2

Application Performance Monitoring Dashboard 7.2 User Guide Focused Insights for SAP Solution Manager Document Version: 1.1 2017-07-31 ST-OST 200 SP 1 Typographic Conventions Type Style Example Example EXAMPLE Example Example EXAMPLE Description

More information

Advanced Automation based on Standards

Advanced Automation based on Standards Advanced Automation based on Standards How other industries can profit from automation concepts in semiconductor manufacturing 14 th AIS User Conference Dresden June 26 th, 2014 Dr. Martin Schellenberger

More information

Quality Assessment Method for Software Development Process Document based on Software Document Characteristics Metric

Quality Assessment Method for Software Development Process Document based on Software Document Characteristics Metric Quality Assessment Method for Software Development Process Document based on Software Document Characteristics Metric Patra Thitisathienkul, Nakornthip Prompoon Department of Computer Engineering Chulalongkorn

More information

Developing Industry Solutions using IBM Counter Fraud Management

Developing Industry Solutions using IBM Counter Fraud Management Developing Industry Solutions using IBM Counter Fraud Management Rishi S Balaji ribalaji@in.ibm.com Bhavik H Shah bhavik.shah@in.ibm.com Suraj Kumar surajkum@in.ibm.com Sunil Lakshmana sunilaks@in.ibm.com

More information

Get Insight & Get Optimized

Get Insight & Get Optimized Get Insight & Get Optimized Corrado Giussani GE Digital Imagination at work 1 The vision is clear If you went to bed an industrial company, you re waking up a data & analytics company Jeff Immelt, GE

More information

ACD MIS SUPERVISOR S GUIDE

ACD MIS SUPERVISOR S GUIDE Notice Note that when converting this document from its original format to a.pdf file, some minor font and format changes may occur. When viewing and printing this document, we cannot guarantee that your

More information

Rethinking the way personal computers are deployed in your organization

Rethinking the way personal computers are deployed in your organization IBM Global Technology Services August 2009 Rethinking the way personal computers are deployed in your organization Leveraging an innovative, end-to-end model to save time and reduce costs 2 IBM Global

More information

PMBOK Guide Fifth Edition Pre Release Version October 10, 2012

PMBOK Guide Fifth Edition Pre Release Version October 10, 2012 5.3.1 Define Scope: Inputs PMBOK Guide Fifth Edition 5.3.1.1 Scope Management Plan Described in Section 5.1.3.1.The scope management plan is a component of the project management plan that establishes

More information

Contents Working with Oracle Primavera Analytics... 5 Legal Notices... 10

Contents Working with Oracle Primavera Analytics... 5 Legal Notices... 10 Analytics System Architecture Data Sheet for On-Premises Version 17 July 2017 Contents Working with Oracle Primavera Analytics... 5 About Oracle Primavera Analytics... 6 About Oracle Primavera Data Warehouse...

More information

DELMIA QUEST. The Systems Integration, Process Flow Design and Visualization Solution

DELMIA QUEST. The Systems Integration, Process Flow Design and Visualization Solution Resour ce Modeling & Simulation DELMIA QUEST The Systems Integration, Process Flow Design and Visualization Solution QUEST DELMIA QUEST is a complete 3D digital factory environment for The Systems Integration,

More information

EPA Mandatory Reporting Rule Update and ISMI Greenhouse Gas Activities Assessing Industry Impacts and Alternative Strategies Developments

EPA Mandatory Reporting Rule Update and ISMI Greenhouse Gas Activities Assessing Industry Impacts and Alternative Strategies Developments SESHA Texas Hill Country Chapter Austin, TX Accelerating Sustainable Manufacturing EPA Mandatory Reporting Rule Update and ISMI Greenhouse Gas Activities Assessing Industry Impacts and Alternative Strategies

More information

SSL ClearView Reporter Data Sheet

SSL ClearView Reporter Data Sheet SSL ClearView Reporter Data Sheet Written expressly for the Juniper Networks SSL VPN, the SSL ClearView Reporter application takes log data from one or more SSL VPN devices and generates feature-rich reports

More information

Unit 9 Information Systems

Unit 9 Information Systems Unit 9 Information Systems Computer Concepts 2016 ENHANCED EDITION 9 Unit Contents Section A: Information System Basics Section B: Enterprise Applications Section C: Systems Analysis Section D: Design

More information

Preventive Maintenance Work Order

Preventive Maintenance Work Order Eagle Technology, Inc. 11019 N. Towne Square Road Mequon, WI 53092 http:// www.eaglecmms.com (800) 388-3268 ProTeus CMMS is an enterprise level suite of software for Enterprise Asset Management with both

More information

Camstar Semiconductor Suite

Camstar Semiconductor Suite Camstar Semiconductor Suite Global MES to keep pace with demanding change in frontend and backend operations Benefits Rapidly implement a manufacturing execution system platform for maximum ROI Increase

More information

A Measurement Approach Integrating ISO 15939, CMMI and the ISBSG

A Measurement Approach Integrating ISO 15939, CMMI and the ISBSG A Measurement Approach Integrating ISO 15939, CMMI and the ISBSG Luc Bégnoche, Alain Abran, Luigi Buglione Abstract In recent years, a number of well-known groups have developed sets of best practices

More information

Clockwork Solutions, Inc. (CSI)

Clockwork Solutions, Inc. (CSI) (CSI) SPAR Technologies Discrete Event Modeling and Simulation For Sustainment Mission Performance Prediction and Life Cycle Risk Assessment 23 October 2006 Corporate Mission Statement Provide reliability

More information

Oracle Utilities Analytics Dashboards for Customer Analytics, Revenue Analytics, and Credit & Collections Analytics

Oracle Utilities Analytics Dashboards for Customer Analytics, Revenue Analytics, and Credit & Collections Analytics Oracle Utilities Analytics Dashboards for Customer Analytics, Revenue Analytics, and Credit & Collections Analytics Release 2.5.0.0.1 E49003-02 February 2014 Oracle Utilities Analytics Dashboards for Customer

More information

Oracle Revenue Management and Billing Product Manager s Workbench. User Guide. Version Revision 1.1. E December, 2018

Oracle Revenue Management and Billing Product Manager s Workbench. User Guide. Version Revision 1.1. E December, 2018 Oracle Revenue Management and Billing Product Manager s Workbench Version 2.7.0.0.0 User Guide Revision 1.1 E88591-01 December, 2018 Copyright 2017, Oracle and/or its affiliates. All rights reserved. 1

More information

á1058ñ ANALYTICAL INSTRUMENT QUALIFICATION

á1058ñ ANALYTICAL INSTRUMENT QUALIFICATION USP 41 General Information / á1058ñ 1 á1058ñ ANALYTICAL INSTRUMENT QUALIFICATION INTRODUCTION A large variety of analytical instruments, ranging from a simple apparatus to complex computerized systems,

More information

Autonomous Control for Generation IV Nuclear Plants

Autonomous Control for Generation IV Nuclear Plants Autonomous Control for Generation IV Nuclear Plants R. T. Wood E-mail: woodrt@ornl.gov C. Ray Brittain E-mail: brittaincr@ornl.gov Jose March-Leuba E-mail: marchleubaja@ornl.gov James A. Mullens E-mail:

More information

APM Health Classic from GE Digital Part of our On-Premise Asset Performance Management Classic Solution Suite

APM Health Classic from GE Digital Part of our On-Premise Asset Performance Management Classic Solution Suite Drives rapid situational adjustments with decision-quality information based on comprehensive knowledge of asset conditions Asset-intensive companies often struggle with a lack of visibility into physical

More information

Digital Industries Apprenticeship: Occupational Brief. Software Development Technician. September 2016

Digital Industries Apprenticeship: Occupational Brief. Software Development Technician. September 2016 Digital Industries Apprenticeship: Occupational Brief Software Development Technician September 2016 1 Digital Industries Apprenticeships: Occupational Brief Level 3 Software Development Technician Apprenticeship

More information

Impact 360: Your single-source workforce optimization solution

Impact 360: Your single-source workforce optimization solution Impact 360: Your single-source workforce optimization solution Now You Can: Unify performance management, workforce management, full-time recording, quality monitoring, and elearning under one platform

More information

Technical Information SupplyCare Enterprise SCE30B

Technical Information SupplyCare Enterprise SCE30B TI01228S/00/EN/02.16 71328492 Products Solutions Services Technical Information SupplyCare Enterprise SCE30B Enterprise inventory management platform for transparent information within the supply chain

More information

IBM Emptoris Supplier Lifecycle Management on Cloud

IBM Emptoris Supplier Lifecycle Management on Cloud Service Description IBM Emptoris Supplier Lifecycle Management on Cloud This Service Description describes the Cloud Service IBM provides to Client. Client means the contracting party and its authorized

More information

FUELING FINANCE S NEEDS FOR INSIGHTS WITH SAP S/4HANA

FUELING FINANCE S NEEDS FOR INSIGHTS WITH SAP S/4HANA FUELING FINANCE S NEEDS FOR INSIGHTS WITH SAP S/4HANA INTRODUCTION: PUTTING THE PIECES TOGETHER We are in a decade of data-driven businesses and new business models such as the sharing economy. Organizations

More information

Automation Software. Sysmac Studio. Minimize time to market Reduce installation cost Boost productivity

Automation Software. Sysmac Studio. Minimize time to market Reduce installation cost Boost productivity Automation Software Sysmac Studio Minimize time to market Reduce installation cost Boost productivity Sysmac Studio Your Automation Companion In changing market the customization and multiple variations

More information

Engine Health Monitoring - Customer User Guide

Engine Health Monitoring - Customer User Guide Engine Health Monitoring - Customer User Guide CAMP Systems International, Inc. trendsupport@campsystems.com Toll Free Phone: 877-411-CAMP Phone: 1-450-640-3286 Fax 631-588-3294 Honeywell Aerospace Pratt

More information

Oracle. SCM Cloud Using Maintenance. Release 13 (update 18B)

Oracle. SCM Cloud Using Maintenance. Release 13 (update 18B) Oracle SCM Cloud Release 13 (update 18B) Release 13 (update 18B) Part Number E94322-01 Copyright 2011-2018, Oracle and/or its affiliates. All rights reserved. Author: Manisha Padhy This software and related

More information

Oracle Utilities Analytics Dasboards for Distribution Analytics, Outage Analytics

Oracle Utilities Analytics Dasboards for Distribution Analytics, Outage Analytics Oracle Utilities Analytics Dasboards for Distribution Analytics, Outage Analytics Metric Reference Guide Release 2.5.2 E49006-06 August 2015 Oracle Utilities Analytics Dasboards for Distribution Analytics,

More information