NUMERICAL MODEL FOR PREDICTION OF CRACKS IN CONCRETE STRUCTURES

Size: px
Start display at page:

Download "NUMERICAL MODEL FOR PREDICTION OF CRACKS IN CONCRETE STRUCTURES"

Transcription

1 NUMERICAL MODEL FOR PREDICTION OF CRACKS IN CONCRETE STRUCTURES A. van Beek FEMMASSE B.V., Geldermalsen, The Netherlands B.E.J. Baetens INTRON B.V., Geldermalsen, The Netherlands E. Schlangen INTRON B.V., Geldermalsen, The Netherlands Abstract Crack free concrete is often demanded for durability reasons. Obtaining crack free concrete requires not only knowledge about the materials and the structure but also a tool that delivers this knowledge to the engineer. In this paper the use of the program HEAT of FEMMASSE is outlined. Background information is given. An example from practice is presented to show that this program is a helpful tool for engineers. This example shows how knowledge of science and practice has been combined to obtain a crack free water retaining wall. 1. Introduction For durability reasons, crack widths in concrete structures should be limited. Prevention of cracks is often required in water retaining structures like tunnels. Numerical models are a helpful tool to prevent cracks or limit crack widths of young concrete. INTRON uses and developed together with FEMMASSE a model called HEAT. HEAT is developed as calculation tool for engineers. With this model the engineer can simulate the hydration process of young concrete and the effect of environment on the changing material properties and on the structural behaviour. 2. HEAT the engineering tool FEMMASSE designs its programs especially to be used by engineers. FEMMASSE delivers and develops software for reliable, efficient and effective design of structures and structure-related products. The products of FEMMASSE are developed in close corporation with their clients. HEAT was designed especially for contractors to optimise the building process so cracks can be prevented. Information about the materials, the structure and the results of the analysis is easily obtained due to a user-friendly interface (figure 1). 39

2 2.1 State parameter approach Most properties of civil engineering materials are not absolute, but depend on the state of the material. This can be described with parameters such as temperature and moisture content. For concrete the age is also a parameter, expressed as maturity or hydration degree. The relation between state parameters and material properties is called the stateparameter concept. This approach is used in HEAT in order to make realistic analysis. 2.2 Material database Information of different types of concrete and soil are stored in a database. The information belonging to each material in this database is obtained with experiments. The materials in the database can be used to show the differences in the risk of cracking of the different types of concrete in a structure. 2.3 Design panel Cracks in concrete do not only depend on the material properties. Even more important is the structure itself. If the deformations due to shrinkage and/or temperature are restrained by the structure this can lead to cracks. In the HEAT model it is possible to draw a two dimensional picture of the structure. The temperature and moisture conditions can be placed on the boundaries of this structure. 2.4 Results The computer simulates the hydration process in the structure and calculates the stresses and strength in the concrete structure. The results can be presented in 2D-planes and in graphs. Figure 1 The user-interface of HEAT 40

3 3. Material models The simulations of HEAT are based on a number of material models to calculate the effect of the environment on the material in a structure. A database contains a number of concrete mixtures and their material properties necessary for these models. Models incorporated in the HEAT are: Maturity Relaxation Authogeneous Shrinkage Hygral Shrinkage Thermal dilatation etc. In the following paragraphs, the models that are important to determine cracks in young concrete will be outlined. 3.1 Heat transport The mathematical theory of heat transfer in isotropic media is based on the hypothesis that the rate of heat transfer through a unit area of a section is proportional to the temperature gradient normal to the section (Fick's first law): q r = λ T T xx Eq. 1 q T λ T = heat flux = temperature = thermal conductivity The partial differential equation describing the heat transfer under transient conditions is (Fick's second law): c T λ T H = 0 Eq. 2 T t T xx t c T H t =heat capacity =heat source Eq. (2) can be derived from Eq. (1) taking the heat balance into consideration (1). 3.2 Aging of concrete In order to describe the age dependent physical and mechanical processes a maturity model has been implemented. The maturity, M, (or also called equivalent hydration period) is defined as: 41

4 M ( t) = t tcon e Q ( R Tref T ) 1+ ( a c 1 a h) c bc dt Eq. 3 t t con Q R T ref T h a c b c = actual time = time at casting = activation energy = universal gas constant = reference temperature = temperature = moisture potential (relative humidity) = coefficient = coefficient This expression was first given by Bazant (2). The first part under the integral is the well-known Arrhenius expression to take the influence of the temperature history on the maturity in consideration. With the second part the influence of moisture potential h (0 =< h =<1 ) on the maturity process is described. Properties related to maturity are: Tensile strength Compressive strength Modulus of elasticity Creep etc. 3.3 Temperature increase due to hydration Effectively 2 different heat source models have been implemented to describe the liberation of heat of hydration of concrete. The first model is based on a shrinkage core model and has been applied successfully in many consulting projects (3). The second model is more a empirical model, developed by the Danish concrete industry, and also applied successfully to e.g. the east and west Storebaelt Bridges and the Øresund Tunnel (4). For projects in the Netherlands mostly the shrinkage Core Model is used. The mathematical expression for the Shrinkage Core Model is: a( M d) H t ( M ) = H T Eq a( M d) H T d a = total heat of hydration = dormant period (reaction rate very slow) = function coefficient 42

5 4. Example of HEAT used in practice This example describes the ramps on the north side of the Western Scheldt tunnel. For the whole ramp the stresses due to temperature in the early age have been analysed. The aim of this analysis was to prevent cracks in the water retaining walls. This example deals with one of the cross sections as presented in figure ± 5-16 m ± 5-16 m Figure 2 Characteristic cross section 4.1 Geometry and phases This analysis mainly concerns the connection between wall and base slab. The base slab is a floor build in two stages. In the first stage the concrete is cast under water. In the second stage the water has been pumped from the floor and the constructive floor was cast. The concrete of the two phases was modelled as one solid floor. The time between cast of the base slab and cast of the walls was 4 weeks. In the analysis it is assumed that both walls are cast at the same time. Therefore a vertical axis of symmetry was used. 4.2 Materials properties Table 1 Materials properties Composition Amount Strength Type cement Amount of cement Additives Aggregates w/c-ratio B35 (f 28 days ) = 35 N/mm² CEM III/B 42,5 LH HS 340 kg/m 3 BV/FM en LP-Bildner River sand and gravel (4-32 mm)

6 4.3 Kinematical boundaries Figure 3 shows the system of axis. In the analysis only the strains in the X-Y-plane (ε xx, ε yy en γ xy ) and perpendicular to this plane (ε zz ) are taken into account. ε zz is defined as: zz ( x, y) = ε(0,0) + κ y + κ x ε Eq. 5 x y with κ x as the rotation around the X axis and κ y is the rotation around the Y axis. Rotation around the Y-axis is restrained due to symmetry. Mechanical analyses had shown that the rotation κ x and dilation ε(0,0) were not restrained. y Figure 3 System of axis with respect to the structure z 4.4 Physical boundaries Climate The average ambient temperature is 15 C. Day temperature was 18 C at maximum and the night temperature 12 C at minimum. The wind speed is set on 5 m/s. Initial temperature The initial temperature of the concrete is 20 C for the wall and 15 o C for the base slab. Formwork and insulation The formwork is removed 4 days after casting. The formwork is a 18 mm plywood plate. With a wind speed of 5 m/s, the heat transfer coefficient in combination with the plywood is 7 W/m²K. After the formwork is removed the heat transfer coefficient is 25 W/m²K. x 44

7 5. Analysis without measures The temperature differences in the structure are the main reason for cracks. In figure 4 it is shown that after 36 hours the centre of the wall has a temperature of 45ºC. While the concrete is the floor has a temperature of 15ºC. Even in the wall a temperature difference of 13ºC was found. Figure 4 Distribution of temperature and temperature development in the structure. Temperature on it self will not cause cracks. The deformations of the structure due to thermal dilation can cause cracks. The different dilations within a structure will cause stresses as presented in figure 5. If these stresses exceed the tensile strength cracks will occur. Figure 5 Distribution of stresses and stress and strength development in the structure. Figure 5 shows that the stress (σ zz ) in the wall exceeds the limit of 50% of the tensile strength. This means that there is a high risk on cracking. The stresses are caused by the average temperature difference between the wall and the base slab during hardening of the concrete. Measures must be taken to lower this temperature difference. 45

8 Cooling was used as a useful and economical way to prevent cracks because: Pouring of base slab and walls in one pour (for example the Øresund tunnel) could be a solution but due to construction reasons a change of phasing was not possible. A less insulating formwork (for example steel) is not useful due to the large thickness of the walls. The average temperature will hardly decrease and the local gradient will increase unfavourable. Reinforcement that limits the crack width was not possible due to leakage limits. Other measures such as heating up the base slab, lowering the initial mix temperature and adjustments of the concrete mix composition were technically not possible. 6. Analysis with internal cooling 6.1 Design of the cooling system The largest tensile stresses occur at the base of the wall. It is, therefore, not necessary to cool the entire wall. A cooling system with diverging distances as shown in figure 6 gives the best results. outlet 4 * * 600 inlet 3 * 400 Figure 6 Position cooling pipes and thermocouples in the wall The design of a cooling system is an iterative process. The combination of the results of the simulations and practical consideration, which were obtained in discussions with the contractor, has lead to the following scenario and details: Positioning the cooling pipes in the middle of the wall according to figure 5 The cooling pipes are made of plastic with a diameter of 32 mm and a thickness of 3 mm 46

9 The cooling pipes are in one system with the inlet on the bottom and the outlet on the top part of the wall. The inlet temperature of the water is 10 C. The flow of the cooling water is 1.0 m 3 /hours. The duration of the cooling is 50 hours. 6.2 Results of the analysis The cooling of concrete in the wall has resulted in smaller temperature differences between the slab and the wall and in the wall itself (figure 7). By optimising the distance between the cooling pipes, period of cooling and the cooling capacity of the system the temperature can be controlled so that the stresses will not exceed the tensile strength (figure 8). Figure 7 Distribution of temperature at the maximum temperature and development of the temperature in the core of the wall. Figure 8 Distribution of stresses (σ zz ) in the wall at the maximum stress and the stress development in the core of the wall. 47

10 7. Future developments The programs of FEMMASSE have always been developed in co-operation with Universities. This co-operation assures that HEAT incorporates the latest know-how of science. Even at this moment development of the FEMMASSE products continues. Models that describe moisture transport in inhomogeneous materials are under development. HEAT is used for predicting moisture transport in multi-layered systems like floors already (5). Modelling concrete structures with the effect of reinforcement on the stresses and on the crack formation (6) is one of the topics that has to be incorporated in the near future. With these developments HEAT will become a tool for the engineer with which he can design not only on forces and stresses but also on durability aspects. 8. Conclusions With the HEAT module, the effect of cooling of concrete, application of insulation, low heat cements etc. can be simulated to obtain crack free and thus durable concrete structures. In this paper the background of the models and some applications of the HEAT module on structures in practice has been demonstrated. In a structure without measures, it was shown that cracks are likely to occur while the concrete is still young. By using a measure which is not focussed on decreasing temperatures alone, but mainly on decreasing the chance of cracking (stresses compared with tensile strength) an economical solution was found. It is shown that with a user-friendly user-interface science from university can be made available to the engineer. In the future this type of software will be used to determine the durability of structures without having to perform extensive testing. 9. References 1. Crank, J., The mathematics of diffusion, Oxford University Press, 2 nd edition (1979). 2. Bazant, Z.P., Creep and shrinkage of concrete, Mathematical Modeling, Fourth Rilem International Symposium, Evanstone, Illinois 60201, USA, (1986). 3. Roelfstra, P.E., A numerical approach to investigate the properties of concrete, Numerical Concrete, Ph.D.Thesis, EPF -Lausanne, Switzerland, (1989). 4. J. Visser, T.A.M. Salet, P.E. Roelfstra, Temperature control of young concrete based on computer models, Cement nr. 9, pp , (1992). 5. A. van Beek, E. Schlangen, Simulating the effect of shrinkage on concrete structures, Rilem Workshop, Shrinkage 2000, (2000). 6. M. Sule, K. van Breugel, Cracking behaviour of reinforced concrete subjected to early-age shrinkage, Rilem Workshop, Shrinkage 2000, (2000). 48

And maybe more importantly, you do not need to know anything about finite element simulations, you do need to know about concrete.

And maybe more importantly, you do not need to know anything about finite element simulations, you do need to know about concrete. WHAT IS HEAT or MLS? The tool HEAT was developed to make plans for temperature control that prevent early age cracking. It is mostly used by contractors, engineers, material consultancy firms and universities.

More information

Girder-End Cracking in Prestressed I-Girders

Girder-End Cracking in Prestressed I-Girders Girder-End Cracking in Prestressed I-Girders T. Patrick Earney Department of Civil and Environmental Engineering, University of Missouri Columbia, Columbia, MO, USA 65211 1. Introduction There has been

More information

Shrinkage Effects on a Concrete Slab on Ground

Shrinkage Effects on a Concrete Slab on Ground Shrinkage Effects on a Concrete Slab on Ground Outline 1 Description 2 Finite Element Model 2.1 Units 2.2 Geometry Definition 2.3 Properties 2.3.1 Concrete slab 2.3.2 Grid reinforcement 2.3.3 Soil interface

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering, Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering, Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering, Indian Institute of Technology Madras Module 2: Losses in Prestress Lecture 10: Creep, Shrinkage and Relaxation

More information

Early Thermal Cracking of Concrete

Early Thermal Cracking of Concrete THE HIGHWAYS AGENCY THE SCOTTISH OFFICE DEVELOPMENT DEPARTMENT Incorporating Amendment No.1, 1989 THE WELSH OFFICE Y SWYDDFA GYMREIG THE DEPARTMENT OF THE ENVIRONMENT FOR NORTHERN IRELAND Early Thermal

More information

Practical Methods for the Analysis of Differential Strain Effects

Practical Methods for the Analysis of Differential Strain Effects Practical Methods for the Analysis of Differential Strain Effects Doug Jenkins, Principal, Interactive Design Services, Sydney, Australia Abstract: In the assessment of time and temperature related strain

More information

Early Age Thermal Cracking Control In Mass Concrete Shearwalls Using High Strength SCC

Early Age Thermal Cracking Control In Mass Concrete Shearwalls Using High Strength SCC Early Age Thermal Cracking Control In Mass Concrete Shearwalls Using High Strength SCC Des Guo, Metro Testing Laboratories (Burnaby), Canada Jimmy Li, Fast + Epp Structural Engineers, Canada JCI-RILEM

More information

EXPERIMENTAL STUDY ON CREEP OF NEW CONCRETE MIXTURES

EXPERIMENTAL STUDY ON CREEP OF NEW CONCRETE MIXTURES EXPERIMENTAL STUDY ON CREEP OF NEW CONCRETE MIXTURES Andina Sprince*, Leonids Pakrastinsh**, Aleksandrs Korjakins*** *Riga Technical University, Department of Structural Engineering andina.sprince@rtu.lv

More information

1.6 Concrete (Part II)

1.6 Concrete (Part II) 1.6 Concrete (Part II) This section covers the following topics. Properties of Hardened Concrete (Part II) Properties of Grout Codal Provisions of Concrete 1.6.1 Properties of Hardened Concrete (Part II)

More information

CHAPTER 11: PRESTRESSED CONCRETE

CHAPTER 11: PRESTRESSED CONCRETE CHAPTER 11: PRESTRESSED CONCRETE 11.1 GENERAL (1) This chapter gives general guidelines required for the design of prestressed concrete structures or members with CFRM tendons or CFRM tendons in conjunction

More information

Influences of Heat of Hydration on Autogenouse Shrinkage induced Stresses in Reinforced High Strength Concrete Columns at Early Ages.

Influences of Heat of Hydration on Autogenouse Shrinkage induced Stresses in Reinforced High Strength Concrete Columns at Early Ages. Influences of Heat of Hydration on Autogenouse Shrinkage induced Stresses in Reinforced High Strength Concrete Columns at Early Ages. Keiichi IMAMOTO Ashikaga Institute of Technology, JAPAN Abstract This

More information

A Study of the Coefficient of Thermal Expansion of Paste, Mortar and Concrete

A Study of the Coefficient of Thermal Expansion of Paste, Mortar and Concrete A Study of the Coefficient of Thermal Expansion of Paste, Mortar and Concrete Sappakit Amonamarittakul 1, Pongsak Choktaweekarn, Pakawat Sancharoen Somnuk Tangtermsirikul 3 1 Graduate student, School of

More information

DEVELOPMENT OF AUTOMATED CURING SYSTEM FOR MASS CONCRETE. *Ju-hyung Ha, Youn-su Jung and Yun-gu Cho

DEVELOPMENT OF AUTOMATED CURING SYSTEM FOR MASS CONCRETE. *Ju-hyung Ha, Youn-su Jung and Yun-gu Cho DEVELOPMENT OF AUTOMATED CURING SYSTEM FOR MASS CONCRETE *Ju-hyung Ha, Youn-su Jung and Yun-gu Cho Hyundai Engineering & Construction, Research & Development Division 102-4 Mabuk-dong, Giheung-gu, Yongin-si

More information

The cooling of concrete slabs using water pipe networks

The cooling of concrete slabs using water pipe networks The cooling of concrete slabs using water pipe networks Dr. Sarah Mitchell MACSI, University of Limerick, Ireland S. L. Mitchell, MACSI, University of Limerick - p. 1/7 Piped water is used to remove hydration

More information

Simulation Analysis of Mass Concrete Temperature Field

Simulation Analysis of Mass Concrete Temperature Field Available online at www.sciencedirect.com Procedia Earth and Planetary Science 5 (2012) 5 12 2012 International Conference on Structural Computation and Geotechnical Mechanics Simulation Analysis of Mass

More information

Determination of the residual stress distribution of steel bridge components by modelling the welding process

Determination of the residual stress distribution of steel bridge components by modelling the welding process EUROSTEEL 2017, September 13 15, 2017, Copenhagen, Denmark Determination of the residual stress distribution of steel bridge components by modelling the welding process Evy Van Puymbroeck*,a, Wim Nagy

More information

Large scale fire test on tunnel segment: Real boundary conditions in order to evaluate spalling sensitivity and fire resistance

Large scale fire test on tunnel segment: Real boundary conditions in order to evaluate spalling sensitivity and fire resistance MATEC Web of Conferences 6, 04001 (2013) DOI: 10.1051/matecconf/20130604001 C Owned by the authors, published by EDP Sciences, 2013 Large scale fire test on tunnel segment: Real boundary conditions in

More information

CRACK-FREE CONCRETE FLOORS WITHOUT METALLIC WIRE-MESH AND WET-CURING

CRACK-FREE CONCRETE FLOORS WITHOUT METALLIC WIRE-MESH AND WET-CURING CRACK-FREE CONCRETE FLOORS WITHOUT METALLIC WIRE-MESH AND WET-CURING M. COLLEPARDI, S. COLLEPARDI, J. J. OGOUMAH OLAGOT, R. TROLI Abstract A research work, based on laboratory and field tests, was made

More information

Analysis of the effect of shoring in the behaviour of reinforced concrete slabs. Extended abstract

Analysis of the effect of shoring in the behaviour of reinforced concrete slabs. Extended abstract Analysis of the effect of shoring in the behaviour of reinforced concrete slabs David Simavorian Master Thesis in Civil Engineering Extended abstract Supervisors Professor Doctor Luís Manuel Soares dos

More information

EVALUATION OF TIME-DEPENDENT BEHAVIOUR OF COMPOSITE CONCRETE SLABS WITH STEEL DECKING (AN EXPERIMENTAL STUDY)

EVALUATION OF TIME-DEPENDENT BEHAVIOUR OF COMPOSITE CONCRETE SLABS WITH STEEL DECKING (AN EXPERIMENTAL STUDY) VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8 J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang (Eds) EVALUATION OF TIME-DEPENDENT BEHAVIOUR

More information

EXPERIMENTAL INVESTIGATION OF HOLLOW CORE SLAB USING DIFFERENT FIBRE

EXPERIMENTAL INVESTIGATION OF HOLLOW CORE SLAB USING DIFFERENT FIBRE International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 11, November 2018, pp. 1199 1206, Article ID: IJCIET_09_11_116 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=11

More information

Questions with Solution

Questions with Solution Questions with Solution Q 1: For making fresh concrete, the quantity of water is expressed in the ratio of (a) Coarse aggregates (b) Fine aggregates (c) Cement (d) None of these Explanation: In a mix proportion,

More information

Influence of Restraint Conditions and Reinforcing Bar on Plastic Shrinkage of Self-consolidating Concrete

Influence of Restraint Conditions and Reinforcing Bar on Plastic Shrinkage of Self-consolidating Concrete Influence of Restraint Conditions and Reinforcing Bar on Plastic Shrinkage of Self-consolidating Concrete Parviz Ghoddousi 1, and Ali Akbar Shirzadi Javid 2 1 Assistant Professor of Civil Engineering at

More information

Modelling of shrinkage induced curvature of cracked concrete beams

Modelling of shrinkage induced curvature of cracked concrete beams Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8 Modelling of shrinkage induced curvature of cracked concrete beams R. Mu, J.P. Forth

More information

Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete

Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete CIVL 1112 Contrete Introduction from CIVL 1101 1/10 Concrete is an artificial conglomerate stone made essentially of Portland cement, water, and aggregates. While cement in one form or another has been

More information

Reinforced Concrete Design. A Fundamental Approach - Fifth Edition

Reinforced Concrete Design. A Fundamental Approach - Fifth Edition CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition REINFORCED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

DETERMINATION OF REQUIRED INSULATION FOR PREVENTING EARLY-AGE CRACKING IN MASS CONCRETE FOOTINGS

DETERMINATION OF REQUIRED INSULATION FOR PREVENTING EARLY-AGE CRACKING IN MASS CONCRETE FOOTINGS Tu A. Do, Adrian M. Lawrence, Mang Tia, and Michael J. Bergin 0 0 0 0 DETERMINATION OF REQUIRED INSULATION FOR PREVENTING EARLY-AGE CRACKING IN MASS CONCRETE FOOTINGS Tu A. Do Post-Doctoral Associate Dept.

More information

A Simplified Analytical Method of Shrinkage Stresses on Thick Concrete Walls

A Simplified Analytical Method of Shrinkage Stresses on Thick Concrete Walls 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 2015, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

THE PERFORMANCE OF CONCRETE GROUND FLOOR SLAB REINFORCEMENT TO CONTROL SHRINKAGE CRACKING. D H Chisholm 1

THE PERFORMANCE OF CONCRETE GROUND FLOOR SLAB REINFORCEMENT TO CONTROL SHRINKAGE CRACKING. D H Chisholm 1 THE PERFORMANCE OF CONCRETE GROUND FLOOR SLAB REINFORCEMENT TO CONTROL SHRINKAGE CRACKING D H Chisholm 1 ABSTRACT In a typical residential concrete floor slab, the cast in strip footings on the slab perimeter

More information

Early Age Concrete Thermal and Creep effects: Relevance to Anchorage Zones of Post-tensioned Members

Early Age Concrete Thermal and Creep effects: Relevance to Anchorage Zones of Post-tensioned Members Early Age Concrete Thermal and Creep effects: Relevance to Anchorage Zones of Post-tensioned Members M. Sofi* P. A. Mendis S. Lie Civil and Environmental Engineering Department, The University of Melbourne

More information

DURABILITY of CONCRETE STRUCTURES. Part- 3 Concrete Cracks

DURABILITY of CONCRETE STRUCTURES. Part- 3 Concrete Cracks DURABILITY of CONCRETE STRUCTURES Assist. Prof. Dr. Mert Yücel YARDIMCI Part- 3 Concrete Cracks This presentation covers the subjects in CEB Durable Concrete Structures Guideline and has been prepared

More information

Concrete Cracking. ε ctr = f ctr / E c = 0.6 / 4400 = x 10-3

Concrete Cracking. ε ctr = f ctr / E c = 0.6 / 4400 = x 10-3 Concrete Cracking Concrete is known as a sensitive material for cracking. The code defines concrete modulus of elasticity (E c ) and concrete cracking-limit tensile stress (f ctr ) as: E c = 4400 (f cu

More information

INFLUENCE OF CRACKS ON CHLORIDE PENETRATION IN CONCRETE

INFLUENCE OF CRACKS ON CHLORIDE PENETRATION IN CONCRETE INFLUENCE OF CRACKS ON CHLORIDE PENETRATION IN CONCRETE Katrien Audenaert*, Geert De Schutter* & Liviu Marsavina** * Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent

More information

8 Displacements near the Face of an Advancing Shaft

8 Displacements near the Face of an Advancing Shaft Displacements near the Face of an Advancing Shaft 8-1 8 Displacements near the Face of an Advancing Shaft 8.1 Problem Statement A circular shaft is excavated in chalk and lined with monolithic precast

More information

Staggered Structural-Heat Flow Analysis of Young Hardening Concrete

Staggered Structural-Heat Flow Analysis of Young Hardening Concrete Temperature [ C] 40 38 35 33 30 28 25 23 20 Crack index [-] 1.5 1.3 1.2 1.0 0.8 0.7 0.5 0.3 0.2 0.0 Staggered Structural-Heat Flow Analysis of Young Hardening Concrete Outline 1 Description 1.1 Material

More information

Mesocosmic study on autogenous shrinkage of concrete with consideration of effects of temperature and humidity

Mesocosmic study on autogenous shrinkage of concrete with consideration of effects of temperature and humidity Water Science and Engineering, 2009, 2(4): 85-94 doi:10.3882/j.issn.1674-2370.2009.04.008 http://kkb.hhu.edu.cn e-mail: wse@hhu.edu.cn Mesocosmic study on autogenous shrinkage of concrete with consideration

More information

Introduction to Masonry Materials and Assemblages

Introduction to Masonry Materials and Assemblages 2:15 PM 4:15 PM Bennett Banting Introduction to Masonry Materials and Assemblages Lecture Outline 1. Overview (5) 2. Masonry Materials a) Concrete Block (20) b) Mortar (15) c) Grout (15) 3. Masonry Assemblages

More information

CD 360 Use of Compressive Membrane Action in Bridge Decks

CD 360 Use of Compressive Membrane Action in Bridge Decks Design Manual for Roads and Bridges Highway Structures & Bridges Design CD 360 Use of Compressive Membrane Action in Bridge Decks (formerly BD 81/02) Revision 1 Summary This document provides requirements

More information

CONCREEP 10. September 21-23, 2015 Vienna, Austria. SPONSORED BY RILEM Engineering Mechanics Institute of ASCE

CONCREEP 10. September 21-23, 2015 Vienna, Austria. SPONSORED BY RILEM Engineering Mechanics Institute of ASCE CONCREEP 1 Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures PROCEEDINGS OF THE 1TH INTERNATIONAL CONFERENCE ON MECHANICS AND PHYSICS OF CREEP, SHRINKAGE, AND

More information

Measuring the Creep and Material Properties of Cement Paste Specimens

Measuring the Creep and Material Properties of Cement Paste Specimens Measuring the Creep and Material Properties of Cement Paste Specimens PAVEL PADEVĚT, PETR BITTNAR Department of Mechanics Czech Technical University in Prague Thákurova 7, 166 29, Prague 6 CZECH REPUBLIC

More information

Prediction of Creep Deformation in Concrete Using Some Design Code Models

Prediction of Creep Deformation in Concrete Using Some Design Code Models IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684 Volume 4, Issue 3 (Nov. - Dec. 2012), PP 49-53 Prediction of Creep Deformation in Concrete Using Some Design Code Models 1 Brian

More information

Control of cracks due to shrinkage and early age thermal actions

Control of cracks due to shrinkage and early age thermal actions Danish Concrete Days, 2017 Control of cracks due to shrinkage and early age thermal actions Jens Mejer Frederiksen, Chief Project Manager, Specialist, concrete COWI Bridge design and Management 1 Agenda

More information

Fire Safety Day Fire Behaviour of Steel and Composite Floor Systems Simple design method

Fire Safety Day Fire Behaviour of Steel and Composite Floor Systems Simple design method Fire Safety Day 011 Fire Behaviour of Steel and Composite Floor Systems method Prof. Colin Bailey 1 3 Content of presentation in a fire situation method of reinforced concrete slabs at 0 C Floor slab model

More information

EGCE 406: Bridge Design

EGCE 406: Bridge Design EGCE 406: Bridge Design Design of Slab for Praveen Chompreda Mahidol University First Semester, 2006 Bridge Superstructure Outline Components of bridge Superstructure Types Materials Design of RC Deck

More information

Fire resisting concrete

Fire resisting concrete Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8 Fire resisting concrete B.P. Van den Bossche Concrete technology engineer ABSTRACT:

More information

Conventional Models for Shrinkage of Concrete

Conventional Models for Shrinkage of Concrete American Journal of Materials Science and Application 2015; 3(6): 81-87 Published online November 3, 2015 (http://www.openscienceonline.com/journal/ajmsa) ISSN: 2381-6074 (Print); ISSN: 2381-6090 (Online)

More information

CHAPTER 7: SERVICEABILITY LIMIT STATES

CHAPTER 7: SERVICEABILITY LIMIT STATES CHAPTER 7: SERVICEABILITY LIMIT STATES 7.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 7.1. 7.2 CALCULATION OF STRESS AND STRAIN It shall be in accordance with JSCE Standard

More information

Fire behaviour of HPLWC hollow core slabs: full scale furnace tests and numerical modelling

Fire behaviour of HPLWC hollow core slabs: full scale furnace tests and numerical modelling Fire behaviour of HPLWC hollow core slabs: full scale furnace tests and numerical modelling Annibale Luigi MATERAZZI Professor University of Perugia Perugia, ITALY Marco BRECCOLOTTI Assistant Researcher

More information

Chapter VI Mix Design of Concrete

Chapter VI Mix Design of Concrete CIV415 CONCRETE TECHNOLOGY Chapter VI Mix Design of Concrete Assist.Prof.Dr. Mert Yücel YARDIMCI Advanced Concrete Technology - Zongjun Li 1 Mix Design Mix design can be defined as the processes of selecting

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2018/2019

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2018/2019 OCD030 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2018/2019 ADVANCED STRUCTURAL ANALYSIS AND DESIGN MODULE NO: CIE6001 Date: Tuesday 8

More information

The Effect Of Reinforcement On The Risk Of Cracking in Hardening High Strength Concrete

The Effect Of Reinforcement On The Risk Of Cracking in Hardening High Strength Concrete The Effect Of Reinforcement On The Risk Of Cracking in Hardening High Strength Concrete M Sule K van Breugel Delft University of Technology The Netherlands Summary: High strength concrete (HSC) undergoes

More information

Study of Drying Shrinkage of Retempered Concrete

Study of Drying Shrinkage of Retempered Concrete Study of Drying Shrinkage of Retempered Concrete S.B. Bhagate 1, & Dr. D.K. Kulkarni 2 M.E. Structures Rajarambapu Institute of Technology, Rajaramnagar, Islampur-415 409 (Dt:Sangli), Maharashtra-India.

More information

New Formula for Creep of Concrete in fib Model Code 2010

New Formula for Creep of Concrete in fib Model Code 2010 American Journal of Materials Science and Application 2015; 3(5): 59-66 Published online September 7, 2015 (http://www.openscienceonline.com/journal/ajmsa) New Formula for Creep of Concrete in fib Model

More information

Stress Redistribution of Concrete Prisms Due to Creep and Shrinkage: Long- Term Observations and Analysis

Stress Redistribution of Concrete Prisms Due to Creep and Shrinkage: Long- Term Observations and Analysis CONCREEP 10 138 Stress Redistribution of Concrete Prisms Due to Creep and Shrinkage: Long- Term Observations and Analysis P. Criel 1 ; R. Caspeele 1 ; N. Reybrouck 1 ; S. Matthys 1 ; and L. Taerwe 1 1

More information

midas Gen Release Note

midas Gen Release Note Gen 2014 Integrated Design System for Building and General Structures midas Gen Release Note Release Date : May. 28, 2014 Product Ver. : 2014(v2.1) Gen 2014 (v2.1) Release Note Gen 2014 (v2.1) Release

More information

Total 30. Chapter 7 HARDENED CONCRETE

Total 30. Chapter 7 HARDENED CONCRETE Total 30 Chapter 7 HARDENED CONCRETE 1 Shrinkage Shrinkage of concrete is caused by the settlement of solids and the loss of free water from the plastic concrete (plastic shrinkage), by the chemical combination

More information

Numerical Modeling of Slab-On-Grade Foundations

Numerical Modeling of Slab-On-Grade Foundations Numerical Modeling of Slab-On-Grade Foundations M. D. Fredlund 1, J. R. Stianson 2, D. G. Fredlund 3, H. Vu 4, and R. C. Thode 5 1 SoilVision Systems Ltd., 2109 McKinnon Ave S., Saskatoon, SK S7J 1N3;

More information

STRUCTURAL BEHAVIOUR OF REINFORCED CONCRETE ELEMENTS IMPROVED BY LAYERS OF ULTRA HIGH PERFORMANCE REINFORCED CONCRETE

STRUCTURAL BEHAVIOUR OF REINFORCED CONCRETE ELEMENTS IMPROVED BY LAYERS OF ULTRA HIGH PERFORMANCE REINFORCED CONCRETE 6 th International PhD Symposium in Civil Engineering Zurich, August 23-26, 2006 STRUCTURAL BEHAVIOUR OF REINFORCED CONCRETE ELEMENTS IMPROVED BY LAYERS OF ULTRA HIGH PERFORMANCE REINFORCED CONCRETE John

More information

ATENA Program Documentation Part 4-8

ATENA Program Documentation Part 4-8 Červenka Consulting s.r.o. Na Hrebenkach 55 150 00 Prague Czech Republic Phone: +420 220 610 018 E-mail: cervenka@cervenka.cz Web: http://www.cervenka.cz ATENA Program Documentation Part 4-8 ATENA Science

More information

Lecture Notes. Elasticity, Shrinkage and Creep. Concrete Technology

Lecture Notes. Elasticity, Shrinkage and Creep. Concrete Technology Lecture Notes Elasticity, Shrinkage and Creep Concrete Technology Here the following three main types of deformations in hardened concrete subjected to external load and environment are discussed. Elastic

More information

Behaviour of deviated CFRP-Strips

Behaviour of deviated CFRP-Strips Fourth International Conference on FRP Composites in Civil Engineering (CICE2008) 22-24July 2008, Zurich, Switzerland Behaviour of deviated CFRP-Strips M. Hwash 1, J. Knippers 1 & F. Saad 2 1 Institut

More information

Prediction of Interfacial Cracking due to Differential Drying Shrinkage of Concrete in Precast Shell Pier Cap

Prediction of Interfacial Cracking due to Differential Drying Shrinkage of Concrete in Precast Shell Pier Cap Copyright 2013 Tech Science Press CMC, vol.38, no.3, pp.155-173, 2013 Prediction of Interfacial Cracking due to Differential Drying Shrinkage of Concrete in Precast Shell Pier Cap Kyong Pil Jang 1, Je

More information

mortarless masonry Design Manual Part 1 (IS 456:2000) Section 1 Page 1 IS 456:2000 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE

mortarless masonry Design Manual Part 1 (IS 456:2000) Section 1 Page 1 IS 456:2000 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE SECTION 1. mortarless masonry Design Manual Part 1 (IS 456:2000) Section 1 Page 1 1.1 Overview of IS 456:2000 IS 456:2000 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE IS 456:2000 is the current Indian

More information

Characterization of Physical Properties of Roadware Clear Repair Product

Characterization of Physical Properties of Roadware Clear Repair Product Characterization of Physical Properties of Roadware Clear Repair Product November 5, 2009 Prof. David A. Lange University of Illinois at Urbana-Champaign Introduction Roadware MatchCrete Clear (MCC) is

More information

CRITERIA for the maximal admissible thermal differential within a mass concrete element

CRITERIA for the maximal admissible thermal differential within a mass concrete element CRITERIA for the maximal admissible thermal differential within a mass concrete element CONCRACK 5 TOKYO, April 24-26, 2017 Alain Jeanpierre edf Ceidre Laurent Boutillon VINCI GP JCI-RILEM International

More information

3D fatigue analysis of RC bridge slabs and slab repairs by fiber cementitious materials

3D fatigue analysis of RC bridge slabs and slab repairs by fiber cementitious materials D fatigue analysis of RC bridge slabs and slab repairs by fiber cementitious materials P. Suthiwarapirak & T. Matsumoto The University of Tokyo, Tokyo, Japan. ABSTRACT: The present paper considers the

More information

5.4 Analysis for Torsion

5.4 Analysis for Torsion 5.4 Analysis for Torsion This section covers the following topics. Stresses in an Uncracked Beam Crack Pattern Under Pure Torsion Components of Resistance for Pure Torsion Modes of Failure Effect of Prestressing

More information

Moisture Gradient as Loading of Curved Timber Beams

Moisture Gradient as Loading of Curved Timber Beams 0 20 40 60 80 100 120 140 160 Moisture Gradient as Loading of Curved Timber Beams Alpo RANTA-MAUNUS Research professor VTT Building and Transport Espoo, Finland Alpo Ranta-Maunus, born 1944, received his

More information

HYDRATION TEMPERATURE RISE AND THERMAL STRESSES INDUCED IN SEGMENT-ON-PIER OF PRESTRESSED CONCRETE BOX GIRDER BRIDGE

HYDRATION TEMPERATURE RISE AND THERMAL STRESSES INDUCED IN SEGMENT-ON-PIER OF PRESTRESSED CONCRETE BOX GIRDER BRIDGE HYDRATION TEMPERATURE RISE AND THERMAL STRESSES INDUCED IN SEGMENT-ON-PIER OF PRESTRESSED CONCRETE BOX GIRDER BRIDGE P.L. Ng 1,*, J.S. Du 2, X.F. Luo 2 and F.T.K. Au 1 1 Department of Civil Engineering,

More information

SEISMIC DESIGN CHARACTERISTICS OF THE NEW BUILDING FOR DIGITAL AUTOMATION EQUIPMENT FOR LOVIISA NUCLEAR POWER PLANT

SEISMIC DESIGN CHARACTERISTICS OF THE NEW BUILDING FOR DIGITAL AUTOMATION EQUIPMENT FOR LOVIISA NUCLEAR POWER PLANT 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2803 SEISMIC DESIGN CHARACTERISTICS OF THE NEW BUILDING FOR DIGITAL AUTOMATION EQUIPMENT FOR LOVIISA

More information

Concrete Placement for Bridge Decks on an Expressway Extension Project

Concrete Placement for Bridge Decks on an Expressway Extension Project Journal of Civil Engineering and Architecture 9 (2015) 1354-1361 doi: 10.17265/1934-7359/2015.11.010 D DAVID PUBLISHING Concrete Placement for Bridge Decks on an Expressway Extension Project Janusz Hołowaty

More information

Behavior of ECC/Concrete Layer Repair System Under Drying Shrinkage Conditions

Behavior of ECC/Concrete Layer Repair System Under Drying Shrinkage Conditions Behavior of ECC/Concrete Layer Repair System Under Drying Shrinkage Conditions Mo Li and Victor C. Li Advanced Civil Engineering Materials Research Laboratory, Department of Civil and Environmental Engineering,

More information

SPECIAL COMPOUND FOR RHEOPLASTIC AND ANTI-CORROSION SUPERCONCRETE WITH VERY HIGH DURABILITY

SPECIAL COMPOUND FOR RHEOPLASTIC AND ANTI-CORROSION SUPERCONCRETE WITH VERY HIGH DURABILITY BS 40 M6 MuCis mono SPECIAL COMPOUND FOR RHEOPLASTIC AND ANTI-CORROSION SUPERCONCRETE WITH VERY HIGH DURABILITY LE CE LE type: "expansive binder which allows the production of extremely fluid concrete

More information

EFFECTS OF POLYPROPYLENE FIBERS ON PHYSICAL AND MECHANICAL PROPERTIES OF CONCRETES

EFFECTS OF POLYPROPYLENE FIBERS ON PHYSICAL AND MECHANICAL PROPERTIES OF CONCRETES CD7-9 EFFECTS OF POLYPROPYLENE FIBERS ON PHYSICAL AND MECHANICAL PROPERTIES OF CONCRETES M. Najimi, F.M. Farahani and A.R. Pourkhorshidi Concrete Department, Building and Housing Research Centre, Tehran,

More information

Analysis of Jointed Plain Concrete Pavement Containing RAP

Analysis of Jointed Plain Concrete Pavement Containing RAP Analysis of Jointed Plain Concrete Pavement Containing RAP Kukjoo Kim 1, Mang Tia 1,and James Greene 2 1 (Department of Civil and Coastal Engineering, University of Florida, United States) 2 (State Materials

More information

Simulation Analysis on Mass Concrete Temperature Field of Lock Floor Layered Pouring

Simulation Analysis on Mass Concrete Temperature Field of Lock Floor Layered Pouring Journal of Environmental Science and Engineering A 5 (2016) 476-483 doi:10.17265/2162-5298/2016.09.006 D DAVID PUBLISHING Simulation Analysis on Mass Concrete Temperature Field of Lock Floor Layered Pouring

More information

A STUDY ON THE ENHANCEMENT OF DURABILITY PERFORMANCE OF FACED SLAB CONCRETE IN CFRD

A STUDY ON THE ENHANCEMENT OF DURABILITY PERFORMANCE OF FACED SLAB CONCRETE IN CFRD 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Abstract The main purpose of this research was to enhance the durability in both the design and construction of dams. Especially, in case of rockfill

More information

Level 6 Graduate Diploma in Engineering Structural analysis

Level 6 Graduate Diploma in Engineering Structural analysis 9210-111 Level 6 Graduate Diploma in Engineering Structural analysis Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler, drawing

More information

BORAL MICRON 3 WORKABILITY, SHRINKAGE CRACK RESISTANCE, AND HIGH STRENGTH CONCRETE

BORAL MICRON 3 WORKABILITY, SHRINKAGE CRACK RESISTANCE, AND HIGH STRENGTH CONCRETE Workability reduces water and high range water reducing (HRWR) admixture demand and improves concrete workability. This is in contrast to most highly reactive pozzolans. Figure 1 is a summary of the water

More information

EVALUATION ON SHEAR CAPACITY OF RC BEAMS USING U-SHAPED UFC PERMANENT FORMWORK

EVALUATION ON SHEAR CAPACITY OF RC BEAMS USING U-SHAPED UFC PERMANENT FORMWORK - Technical Paper - EVALUATION ON SHEAR CAPACITY OF RC BEAMS USING U-SHAPED PERMANENT FORMWORK Puvanai WIROJJANAPIROM *1, Koji MATSUMOTO *2, Katsuya KONO *3 and Junichiro NIWA *4 ABSTRACT Shear resistance

More information

PAVEMENT INFORMATION NOTE. THE REASONS and EFFECT of CRACKING in LMC SUBBASES

PAVEMENT INFORMATION NOTE. THE REASONS and EFFECT of CRACKING in LMC SUBBASES TMC Tinni Management Consulting PAVEMENT INFORMATION NOTE Issue No. 68 Edited by Arvo Tinni. Email arvo@tinni.com.au 13 10 2011 The following Discussion Paper summarises the reasons for the virtual irrelevance

More information

Plastic Shrinkage Cracking in Steel and Polypropylene Fiber Reinforced Concrete

Plastic Shrinkage Cracking in Steel and Polypropylene Fiber Reinforced Concrete Plastic Shrinkage Cracking in Steel and Polypropylene Fiber Reinforced Concrete Abstract Aminath Ali and Prasert Suwanvitaya Department of Civil Engineering, Faculty of Engineering, Kasetsart University

More information

Steel-Fibre-Reinforced Concrete Pavements

Steel-Fibre-Reinforced Concrete Pavements Concrete Communication Conference 1-2 September 2008, University of Liverpool Steel-Fibre-Reinforced Concrete Pavements Naeimeh Jafarifar, Kypros Pilakoutas, Kyriacos Neocleous Department of Civil and

More information

CHAPTER 7 FINITE ELEMENT ANALYSIS

CHAPTER 7 FINITE ELEMENT ANALYSIS 189 CHAPTER 7 FINITE ELEMENT ANALYSIS 7.1 SCOPE In Engineering applications, the physical response of the structure to the system of external forces is very much important. Understanding the response of

More information

Active crack control in continuously reinforced concrete pavements (CRCP)

Active crack control in continuously reinforced concrete pavements (CRCP) fib_symposium_2017, 245, v2 (final): Active crack control in continuously reinforced co... 1 Active crack control in continuously reinforced concrete pavements (CRCP) Pieter De Winne 1, Hans De Backer

More information

Creep of Concrete in Contemporary Code-Type Models

Creep of Concrete in Contemporary Code-Type Models Journal of Civil Engineering and Architecture 9 (2015) 1025-1033 doi: 10.17265/1934-7359/2015.09.002 D DAVID PUBLISHING Janusz Hołowaty Faculty of Civil Engineering and Architecture, West Pomeranian University

More information

Effect of fiber fatigue rupture on bridging stress degradation in fiber reinforced cementitious composites

Effect of fiber fatigue rupture on bridging stress degradation in fiber reinforced cementitious composites Effect of fiber fatigue rupture on bridging stress degradation in fiber reinforced cementitious composites T. Matsumoto, P. Chun, & P. Suthiwarapirak The University of Tokyo, Tokyo, Japan. ABSTRACT: This

More information

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams Journal of Asian Concrete Federation Vol. 2, No. 2, Dec. 2016, pp. 117-127 ISSN 2465-7964 / eissn 2465-7972 http://dx.doi.org/10.18702/acf.2016.12.2.2.117 Experimental investigation of the use of CFRP

More information

Long term losses in pre-stressed concrete member as per IS 1343:2012 and IS 1343:1980

Long term losses in pre-stressed concrete member as per IS 1343:2012 and IS 1343:1980 Long term losses in pre-stressed concrete member as per IS 1343:2012 and IS 1343:1980 P Markandeya Raju and T Raghuram Sandeep In prestressed concrete structures, Creep and Shrinkage of concrete and Relaxation

More information

STRESS-RIBBON BRIDGES STIFFENED BY ARCHES OR CABLES

STRESS-RIBBON BRIDGES STIFFENED BY ARCHES OR CABLES 2nd Int. PhD Symposium in Civil Engineering 1998 Budapest STRESS-RIBBON BRIDGES STIFFENED BY ARCHES OR CABLES Tomas Kulhavy Technical University of Brno, Department of Concrete and Masonry Structures Udolni

More information

Design of an LNG Tank for Accidental Loads in Finland. 1. Introduction

Design of an LNG Tank for Accidental Loads in Finland. 1. Introduction Design of an LNG Tank for Accidental Loads in Finland Francisco MARTÍNEZ Operations Manager Principia Madrid, Spain francisco.martinez@principia.es Francisco Martínez, born 1963, received his PhD in civil

More information

Figure 6 - Column tested at DTU with 120x120 mm cross-section, 2% fibres, length 3898 mm, reinforcement 4Y16, maximum test load 1430 kn.

Figure 6 - Column tested at DTU with 120x120 mm cross-section, 2% fibres, length 3898 mm, reinforcement 4Y16, maximum test load 1430 kn. 10 Figure 6 - Column tested at DTU with 120x120 mm cross-section, 2% fibres, length 3898 mm, reinforcement 4Y16, maximum test load 1430 kn. Figure 7 - Other columns tested at DTU. The one on the far right

More information

FasteningSystems Rosenbergsaustraße HEERBRUGG SCHWEIZ EAD This version replaces ETA-13/0699 issued on 13 June 2013

FasteningSystems Rosenbergsaustraße HEERBRUGG SCHWEIZ EAD This version replaces ETA-13/0699 issued on 13 June 2013 European Technical Assessment ETA-13/0699 of 14 June 2018 - Original version in German language General Part Technical Assessment Body issuing the European Technical Assessment: Trade name of the construction

More information

JJMIE Jordan Journal of Mechanical and Industrial Engineering

JJMIE Jordan Journal of Mechanical and Industrial Engineering JJMIE Jordan Journal of Mechanical and Industrial Engineering Volume 5, Number 6, Dec. 211 ISSN 1995-6665 Pages 553-557 On the Deformation Modes of Continuous Bending under Tension Test A. Hadoush*,a a

More information

Doç. Dr. Halit YAZICI

Doç. Dr. Halit YAZICI Dokuz Eylül Üniversitesi Đnşaat Mühendisliği Bölümü DIMENSIONAL STABILITY of CONCRETE Doç. Dr. Halit YAZICI http://kisi.deu.edu.tr/halit.yazici/ CIE 5073 DIMENSIONAL STABILITY OF CONCRETE Three hours lecture

More information

EARLY AGE CREEP AND STRESS RELAXATION OF CONCRETE CONTAINING BLENDED CEMENTS

EARLY AGE CREEP AND STRESS RELAXATION OF CONCRETE CONTAINING BLENDED CEMENTS EARLY AGE CREEP AND STRESS RELAXATION OF CONCRETE CONTAINING BLENDED CEMENTS Ivindra Pane and Will Hansen Department of Civil and Environmental Engineering, University of Michigan, USA Abstract The main

More information

STRUCTURAL BEHAVIOUR OF HYBRID CONCRETE BEAMS WITH FIBRE REINFORCED LIGHTWEIGHT CONCRETE

STRUCTURAL BEHAVIOUR OF HYBRID CONCRETE BEAMS WITH FIBRE REINFORCED LIGHTWEIGHT CONCRETE BEFIB212 Fibre reinforced concrete Joaquim Barros et al. (Eds) UM, Guimarães, 212 STRUCTURAL BEHAVIOUR OF HYBRID CONCRETE BEAMS WITH FIBRE REINFORCED LIGHTWEIGHT CONCRETE Linn G. Nes *, Jan A. Øverli 1

More information

MICROMECHANICS OF ELASTO-PLASTIC FIBER PULL OUT OF ELASTIC MATRIX

MICROMECHANICS OF ELASTO-PLASTIC FIBER PULL OUT OF ELASTIC MATRIX MICROMECHANICS OF ELASTO-PLASTIC FIBER PULL OUT OF ELASTIC MATRIX Angelina Galushchak*, Olga Kononova** Riga Technical University Institute of Mechanics and Concrete mechanics laboratory E-mail: *Galushchak.a@gmail.com,

More information

Part 3: Mechanical response Part 3: Mechanical response

Part 3: Mechanical response Part 3: Mechanical response DIFSEK Part 3: Mechanical response Part 3: Mechanical response 0 Resistance to fire - Chain of events Θ Loads 1: Ignition time Steel columns 2: Thermal action 3: Mechanical actions R 4: Thermal response

More information

Cement and Concrete Research

Cement and Concrete Research Cement and Concrete Research 42 (2012) 1286 1297 Contents lists available at SciVerse ScienceDirect Cement and Concrete Research journal homepage: http://ees.elsevier.com/cemcon/default.asp Evaluation

More information