Introduction 17/05/2015. How prestressing force transmitted to concrete?

Size: px
Start display at page:

Download "Introduction 17/05/2015. How prestressing force transmitted to concrete?"

Transcription

1 End Block Design Introduction How prestressing force transmitted to concrete? - Pretensioned : transmitted by an internal force system through bond between steel and concrete - Post-tensioned : through external anchorage system The zone within which the applied prestressing force on steel is fully dissipated in to concrete and made to act as a distributed force is known as transmission zone in pretensioned element and anchor zone in post-tensioned elements. 1

2 Introduction In post-tensioned construction, the prestressing force is transferred to the concrete through relatively small anchorage plates behind the anchorage by bearing. This results in a very high concrete bearing stress behind the anchorage plate. Failure of anchorage zone is perhaps the most common cause of problems arising during construction Such failures are difficult and expensive to repair and might require replacement of the entire member. Introduction Anchorage zones failure due to uncontrolled cracking or splitting of the concrete from insufficient transverse reinforcement. Bearing failures immediately behind the anchorage plate are also common and may be caused by inadequate dimensions of bearing plates or poor quality of concrete. 2

3 End Block 3

4 End Block End Block 4

5 Stress Distribution The prestressing force in a tendon is applied through the anchorages as a concentrated force. By St Venant s principle, the stress distribution in a member is reasonably uniform away from the anchorage, but in the region of the anchorage itself the stress distribution within the concrete is complex. The most significant effect for design is that the tensile stresses are set up transverse to the axis of the member, tending to split this concrete apart. This tensile force also known as bursting force. Reinforcement must be provided to resist these tensile stresses. Stress Distribution 5

6 Stress distribution Design for Bursting Force It is sufficiently accurate to consider the resultant of these stresses, Fbst At SLS, Fbst is assumed to act in a region extending from 0.2y o to 2y o. The value of Fbst as a proportion of Pi may be found from Table 4.7 BS8110. The values in Table can be defined by the following equation : With y po /y o 0.3, Fbst/Pi = 0.23 y po /y o 0.7, Fbst/Pi =

7 Design for Bursting Force For post-tensioned members which are grouted after tensioning, the maximum force applied to the member is the initial jacking force, Pi and the design is based on SLS. The bursting force is resisted by reinforcement in the form of spirals or closed links, uniformly distributed throughout the end block (from 0.2y o to 2.0y o ) and with a stress of 200 N/mm 2. Design for Bursting Force For post-tensioned members with unbonded tendons, area of reinforcement is design at ULS given by Fbst/0.87fy, where Fbst is obtained bti from Table Tbl BS8110. Where an end block contains several anchorages, it should be divided into a series of symmetrically loaded prisms and then each prism treated as a separate end block. Additional reinforcement should be provided around the whole group of anchorages to maintain overall equilibrium. 7

8 Example 1 End block of a T-beam is made solid rectangular in cross-section and the tendons are grouped in three bundles with a parabolic profile. Three plates are provided for the three bundles of tendon. Design and detail stirrups placement in the end block according to BS8110. Each bundle of tendons has a jacking force 1000 kn.a plate of 150mm x 150mm can be used for each bundle In the vertical direction Use formula 8

9 In the horizontal direction < 0.3 From Table 4.7, Max Fbst = 0.23Pi use T10 2 leg, Asv = 157 mm2 No of links = 1150/157 = 7.3, use 8 bars Provide 8T10 through a distance of 500mm (2y o ) For checking: Force provided by bar = = kn >230 kn..ok 9

10 Example 2 Design the end block reinforcement for the following bonded post-tensioned beam. A prestressing force of 1055 kn is applied by a single tendon using a bearing plate of 200 x 300mm. Take e = 0 at supports. In the vertical direction, From Table 4.7 or equation In horizontal direction, 10

11 Fbst = 0.17 (1055) = kn Use T12 2leg, As = 113 mm2 No of links = /113 = 7.9, use 8 Provide 8T12 through a distance of 600mm (2y o ) Example 3 The beam end shown below has six anchorages with 75mm x 75mm bearing plates and a jacking force of 500 kn applied to each anchorages. Determine the reinforcement required to contain the bursting forces if f y = 460 N/mm 2. y 11

12 Individual Prism (150mm x 250mm) In the vertical direction, In the horizontal direction, Max Fbst = 115 kn Use T10 2 leg, As = 157 mm2 No of links = 575/157 = 3.7, use 4 Provide 4T10 through a distance of 250mm (2y o ) 12

13 Overall Prism (350mm x 750mm) Equivalent 2y po = (6 x 75 x 75) 0.5 = 184mm In the vertical direction In the horizontal direction Max Fbst = 690 kn Use T16 2 leg, As = 402 mm2 No of links = 3450/402 = 8.5, use 9 Provide 9T16 through a distance of 750mm (2y o ) 13

14 Detailing Reinforcement 14

7.2 Transmission of Prestress (Part II)

7.2 Transmission of Prestress (Part II) 7.2 Transmission of Prestress (Part II) This section covers the following topic. Post-tensioned Members 7.2.1 Post-tensioned Members Unlike in a pre-tensioned member without anchorage, the stress in the

More information

ASSIGNMENT 1 ANALYSIS OF PRESTRESS AND BENDING STRESS BFS 40303

ASSIGNMENT 1 ANALYSIS OF PRESTRESS AND BENDING STRESS BFS 40303 Instruction : Answer all question ASSIGNMENT 1 ANALYSIS OF PRESTRESS AND BENDING STRESS BFS 40303 1. A rectangular concrete beam, 100 mm wide by 250 mm deep, spanning over 8 m is prestressed by a straight

More information

7.1 Transmission of Prestress (Part I)

7.1 Transmission of Prestress (Part I) 7.1 Transmission of Prestress (Part I) This section covers the following topics. Pre-tensioned Members 7.1.1 Pre-tensioned Members The stretched tendons transfer the prestress to the concrete leading to

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module 7: Transmission of Prestress Lecture 30: Pre-tensioned Members Welcome

More information

ST7008 PRESTRESSED CONCRETE

ST7008 PRESTRESSED CONCRETE ST7008 PRESTRESSED CONCRETE QUESTION BANK UNIT-I PRINCIPLES OF PRESTRESSING PART-A 1. Define modular ratio. 2. What is meant by creep coefficient? 3. Is the deflection control essential? Discuss. 4. Give

More information

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) Department of Civil Engineering LIST OF QUESTIONS

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) Department of Civil Engineering LIST OF QUESTIONS OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) Department of Civil Engineering LIST OF QUESTIONS Year/ Sem. : IV / VII Staff Name : S.LUMINA JUDITH Subject Code : CE 6702 Sub. Name : PRE STRESSED

More information

1 Prepared By:Mr.A.Sathiyamoorthy, M.E., AP/Civil

1 Prepared By:Mr.A.Sathiyamoorthy, M.E., AP/Civil UNIVERSITY QUESTIONS PART A UNIT 1: INTRODUCTION THEORY AND BEHAVIOUR 1. List the loss of prestress. 2. Define axial prestressing. 3. What is the need for the use of high strength concrete and tensile

More information

Design for Shear for Prestressed Concrete Beam

Design for Shear for Prestressed Concrete Beam Design for Shear for Prestressed Concrete Beam Introduction The behaviour of prestressed beams at failure in shear is distinctly different from their behaviour in flexure. The beam will tend to fail abruptly

More information

Fundamentals of Prestressed Concrete Bridge

Fundamentals of Prestressed Concrete Bridge Fundamentals of Prestressed Concrete Bridge MAB1053 Bridge Engineering Prof. Dr. Azlan Abdul Rahman Universiti Teknologi Malaysia UTM 2006 azlanfka/utm05/mab1053 1 Introduction In prestressed concrete,

More information

Chapter 2 Notation and Terminology

Chapter 2 Notation and Terminology Reorganized 318 Chapter Titles Chapter 1 General 1.1 Scope 1.2 Purpose 1.3 Interpretation 1.4 Drawings and Specifications 1.5 Testing and Inspection 1.6 Administatration and Enforcement 1.6.1 Retention

More information

The Hashemite University Department of Civil Engineering. Dr. Hazim Dwairi. Dr. Hazim Dwairi 1

The Hashemite University Department of Civil Engineering. Dr. Hazim Dwairi. Dr. Hazim Dwairi 1 Department of Civil Engineering Lecture 2.1 Methods of Prestressing Advantages of Prestressing Section remains uncracked under service loads Reduction of steel corrosion (increase durability) Full section

More information

COLUMNS. Classification of columns:

COLUMNS. Classification of columns: COLUMNS are vertical compression members in structures, the effective length of which exceeds three times its lateral dimension. Which are provided for bear the load of Beam, Slab, etc. since columns support

More information

SHEAR BEHAVIOR OF RC DEEP BEAMS WITH SOLID CIRCULAR CROSS SECTION UNDER SIMPLY SUPPORTED CONDITION AND ANTI-SYMMETRIC MOMENT

SHEAR BEHAVIOR OF RC DEEP BEAMS WITH SOLID CIRCULAR CROSS SECTION UNDER SIMPLY SUPPORTED CONDITION AND ANTI-SYMMETRIC MOMENT SHEAR BEHAVIOR OF RC DEEP BEAMS WITH SOLID CIRCULAR CROSS SECTION UNDER SIMPLY SUPPORTED CONDITION AND ANTI-SYMMETRIC MOMENT Koji MATSUMOTO (Tokyo Institute of Technology) Moe YONEHANA (Kajima Corporation)

More information

Design and analysis of deep beams, plates and other discontinuity regions BJÖRN ENGSTRÖM. q l (SLS) d ef. T SLS A ef. Tie = reinforced concrete Aef

Design and analysis of deep beams, plates and other discontinuity regions BJÖRN ENGSTRÖM. q l (SLS) d ef. T SLS A ef. Tie = reinforced concrete Aef q l (SLS) d ef T SLS A ef Tie = reinforced concrete Aef Design and analysis of deep beams, plates and other discontinuity regions BJÖRN ENGSTRÖM Department of Civil and Environmental Engineering Division

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module 5: Analysis and Design for Shear and Torsion Lecture-24: Design for

More information

TAB.3 13 Post Tensioning Terminology (PTT)

TAB.3 13 Post Tensioning Terminology (PTT) TAB.3 13 Post Tensioning Terminology (PTT) PTI Technicical Advisory Board Page 0 of 34 The following Post-Tensioning Terminology (PTT) document contains the consensus definitions for terms relating to

More information

Contents. Foreword 1 Introduction 1

Contents. Foreword 1 Introduction 1 Contents Notation x Foreword xiii 1 Introduction 1 1.1 Aims of the Manual 1 1.2 Eurocode system 1 1.3 Scope of the Manual 3 1.4 Contents of the Manual 4 1.5 Notation and terminology 4 2 General principles

More information

PRESTRESSED CONCRETE STRUCTURES UNIT I INTRODUCTION THEORY AND BEHAVIOUR

PRESTRESSED CONCRETE STRUCTURES UNIT I INTRODUCTION THEORY AND BEHAVIOUR BASIC CONCEPTS: PRESTRESSED CONCRETE STRUCTURES UNIT I INTRODUCTION THEORY AND BEHAVIOUR A prestressed concrete structure is different from a conventional reinforced concrete structure due to the application

More information

Concept of Prestressing

Concept of Prestressing Concept of Prestressing Concept of Prestressing Prestressing the concrete is to transfer precompression (compressive stress) to the concrete How the prestressing force transmitted to concrete can be explained

More information

CHAPTER 10: GENERAL STRUCTURAL DETAILS

CHAPTER 10: GENERAL STRUCTURAL DETAILS CHAPTER 10: GENERAL STRUCTURAL DETAILS 10.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 9.1, "steel" shall be taken to signify "steel or CFRM". 10.2 CONCRETE COVER (1)

More information

BS EN :2004 EN :2004 (E)

BS EN :2004 EN :2004 (E) Contents List 1. General 1.1 Scope 1.1.1 Scope of Eurocode 2 1.1.2 Scope of Part 1-1 of Eurocode 2 1.2 Normative references 1.2.1 General reference standards 1.2.2 Other reference standards 1.3 Assumptions

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module 5: Analysis and Design for Shear and Torsion Lecture-23: Analysis

More information

Chapter Five Torsion. Reinforced Concrete Structures 2 (CEng-3122)

Chapter Five Torsion. Reinforced Concrete Structures 2 (CEng-3122) Reinforced Concrete Structures 2 (CEng-3122) Chapter Five Torsion 1 School of Civil and Environmental Engineering Concrete Material and Structures Chair 2 1. Introduction 2. Torsional Resistance 3. Analysis

More information

Design of Anchorage-Zone Reinforcement in Prestressed Concrete Beams

Design of Anchorage-Zone Reinforcement in Prestressed Concrete Beams Design of Anchorage-Zone Reinforcement in Prestressed Concrete Beams by Peter Gergely* and Mete A. Sozen** NOTATION The symbols as used in the text are defined as follows: p uniform stress on cross section

More information

3. Bond, Anchorage and Shear This chapter will discuss the following topics:

3. Bond, Anchorage and Shear This chapter will discuss the following topics: 3. Bond, Anchorage and Shear This chapter will discuss the following topics: Outline the theory of calculating the anchorage bond length. Determination of anchorage bond length, tension lap length and

More information

Prestressed Concrete

Prestressed Concrete N. Rajagopalan Prestressed Concrete Alpha Science International Ltd. Pangbourne England Contents Foreword Preface Acknowledgements Notations v vii xi xiii 1. Introduction 1 1.1 Development of Prestressed

More information

CHAPTER 11: PRESTRESSED CONCRETE

CHAPTER 11: PRESTRESSED CONCRETE CHAPTER 11: PRESTRESSED CONCRETE 11.1 GENERAL (1) This chapter gives general guidelines required for the design of prestressed concrete structures or members with CFRM tendons or CFRM tendons in conjunction

More information

GATE SOLVED PAPER - CE

GATE SOLVED PAPER - CE YEAR 2013 Q. 1 Maximum possible value of compaction factor for fresh (green) concrete is (A) 0.5 (B) 1.0 (C) 1.5 (D) 2.0 Q. 2 As per IS 456 : 2000, bond strength of concrete t bd = 12. for M20. It is increased

More information

IMPROVING SHEAR CAPACITY OF RC BEAMS USING EPOXY BONDED CONTINOUS STEEL PLATES

IMPROVING SHEAR CAPACITY OF RC BEAMS USING EPOXY BONDED CONTINOUS STEEL PLATES IMPROVING SHEAR CAPACITY OF RC BEAMS USING EPOXY BONDED CONTINOUS STEEL PLATES MS. SEEMA A. BHAGAT 1, MRS. JYOTI P. BHUSARI 2 1 PG student -Civil (Structures) Sinhgad College of Engineering, Pune, India

More information

SECTION 1 INTRODUCTION TO POST-TENSIONED CONCRETE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE

SECTION 1 INTRODUCTION TO POST-TENSIONED CONCRETE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE SECTION 1 INTRODUCTION TO POST-TENSIONED CONCRETE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams to the tensile

More information

1. Cast-in-place concrete is specified in Section

1. Cast-in-place concrete is specified in Section SECTION 03 38 00 PART 1 - GENERAL 1.01 DESCRIPTION A. This Section describes the requirements for furnishing and installing post-tensioned slabs, jacks, jacking and anchors at Parking Structure, and record

More information

Questions with Solution

Questions with Solution Questions with Solution Q 1. Vus/d depends on a) Asv b) spacing of shear reinforcement c) grade of steel d) all of these. Refer Cl. 40.4 (a), pg. 73 IS 456:2000 V us = 0.87 f y A sv d s v 1. (d) all of

More information

HILTI HY 150 REBAR DESIGN GUIDE

HILTI HY 150 REBAR DESIGN GUIDE HILTI HY 150 REBAR DESIGN GUIDE HILTI HY 150 REBAR DESIGN GUIDE 1 HY150 Rebar Dowelling using Limit States Concrete Design ( A23.3-94) The design method presented here was originally based on Eurocode

More information

Diploma in Civil Engineering. Term-End Examination June, BCE-041 : THEORY OF STRUCTURES II

Diploma in Civil Engineering. Term-End Examination June, BCE-041 : THEORY OF STRUCTURES II No. of Printed Pages : 6 BCE-041 Diploma in Civil Engineering Term-End Examination June, 2012 00819 BCE-041 : THEORY OF STRUCTURES II Time : 2 hours Maximum Marks : 70 Note : Question number 1 is compulsory.

More information

Innovative procedure to produce high performance pretensioned concrete girders combining high strength concrete and normal or special concrete types

Innovative procedure to produce high performance pretensioned concrete girders combining high strength concrete and normal or special concrete types High Performance Structures and Materials III 401 Innovative procedure to produce high performance pretensioned concrete girders combining high strength concrete and normal or special concrete types C.

More information

ten reinforced concrete construction Concrete Concrete Materials Concrete Construction columns beams slabs domes footings

ten reinforced concrete construction Concrete Concrete Materials Concrete Construction columns beams slabs domes footings APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 018 lecture ten Concrete columns beams slabs domes ootings http://nisee.berkeley.edu/godden reinorced concrete construction

More information

Constitutive Models of Prestressed Steel-Fiber Concrete

Constitutive Models of Prestressed Steel-Fiber Concrete Constitutive Models of Prestressed Steel-Fiber Concrete Christopher P. Caruso Dept. of Civil & Environmental Engineering University of Houston NSF REU Program August 2007 Outline of Presentation Introduction

More information

ISSN: [Mathur* et al., 6(1): January, 2017] Impact Factor: 4.116

ISSN: [Mathur* et al., 6(1): January, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY CHEMICAL & ELECTRICAL METHOD IN POST TENSIONING OF PRE- STRESSING CAN BE USED FOR MAKING DUCKED THROUGH STRUCTURAL ELEMENT AFTER

More information

Rak Production Technology of Concrete Structures (2015) Concrete Reinforcement

Rak Production Technology of Concrete Structures (2015) Concrete Reinforcement Rak-82-2121 Production Technology of Concrete Structures (2015) Concrete Reinforcement 09.10.2015 1 Learning Outcomes To acquaint the student with concrete reinforcement 2 Reinforcement The of concrete

More information

Construction Measurement III SBQ3314. Precast Pre stressed Concrete Works. Dr. Sarajul Fikri Mohamed

Construction Measurement III SBQ3314. Precast Pre stressed Concrete Works. Dr. Sarajul Fikri Mohamed Construction Measurement III SBQ3314 Precast Pre stressed Concrete Works Dr. Sarajul Fikri Mohamed Table of Contents 1. Pre stressed concrete in bridgeworks: technological aspects 2. SMM2 measurement rules

More information

Sabah Shawkat Cabinet of Structural Engineering 2017

Sabah Shawkat Cabinet of Structural Engineering 2017 3.1-1 Continuous beams Every building, whether it is large or small, must have a structural system capable of carrying all kinds of loads - vertical, horizontal, temperature, etc. In principle, the entire

More information

Flexural Analysis and Design of Beams. Chapter 3

Flexural Analysis and Design of Beams. Chapter 3 Flexural Analysis and Design of Beams Chapter 3 Introduction Fundamental Assumptions Simple case of axial loading Same assumptions and ideal concept apply This chapter includes analysis and design for

More information

Concrete Design Guide

Concrete Design Guide Number 7 38 TheStructuralEngineer Technical July 2015 Post-tensioned slabs Concrete Design Guide No. 7: Design of post-tensioned slabs This series is produced by The Concrete Centre to enable designers

More information

The nominal cover can be assessed as follows: C nom

The nominal cover can be assessed as follows: C nom Detailing and durability requirements are to ensure that a structure has satisfactory durability and serviceability performance under normal circumstances throughout its lifetime. These requirements will

More information

CHAPTER 2. Design Formulae for Bending

CHAPTER 2. Design Formulae for Bending CHAPTER 2 Design Formulae for Bending Learning Objectives Appreciate the stress-strain properties of concrete and steel for R.C. design Appreciate the derivation of the design formulae for bending Apply

More information

GIRDER DESIGN FOR BUILDINGS

GIRDER DESIGN FOR BUILDINGS POST-TENSIONED TRANSFER GIRDER DESIGN FOR BUILDINGS Overload, Restraint and Construction Staging g Issues Almıla Uzel and Neb Erakovic (C) COPYRIGHT POST-TENSIONING INSTITUTE, ALL RIGHTS RESERVED Page

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module 3: Analysis of Members Lecture 13: Cracking Moment, Kern Point and

More information

Should the anchorage length and overlap splice length for reinforcement be the same in codes? Ralejs Tepfers

Should the anchorage length and overlap splice length for reinforcement be the same in codes? Ralejs Tepfers Should the anchorage length and overlap splice length for reinforcement be the same in codes? Ralejs Tepfers Ralejs Tepfers 2006-10-30 1 Stetements Overlap splice length is situated within the moment envelop

More information

Important note To cite this publication, please use the final published version (if applicable). Please check the document version above.

Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Delft University of Technology Shear tests on large prestressed concrete t-beams Ensink, Sebastiaan; van der Veen, Cor; de Boer, A. Publication date 2016 Document Version Peer reviewed version Published

More information

Behavior of Segmental Precast Post-Tensioned Bridge Pier

Behavior of Segmental Precast Post-Tensioned Bridge Pier IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Behavior of Segmental Precast Post-Tensioned Bridge Pier Sachin V Ingalkar

More information

Post-tensioned prestressed concrete bridge - assignment

Post-tensioned prestressed concrete bridge - assignment Post-tensioned prestressed concrete bridge - assignment Design a post-tensioned prestressed concrete bridge of a three-span arrangement. The construction is prestressed at the age of 7 days and put into

More information

Seismic Behaviour of RC Shear Walls

Seismic Behaviour of RC Shear Walls Ductile Detailing of RC Structures :: IS:13920-1993 1993 Short Course on Seismic Design of RC Structures Durgesh C. Rai Department of Civil Engineering, IIT Kanpur The material contained in this lecture

More information

AXIAL AND FLEXURAL PERFORMANCE OF CONCRETE PILES PRESTRESSED WITH CFRP TENDONS

AXIAL AND FLEXURAL PERFORMANCE OF CONCRETE PILES PRESTRESSED WITH CFRP TENDONS AXIAL AND FLEXURAL PERFORMANCE OF CONCRETE PILES PRESTRESSED WITH CFRP TENDONS Steven Schiebel, Graduate Research Assistant/ MS Candidate Antonio Nanni, Ph.D., PE, V&M Jones Professor of Civil Engineering

More information

Field Investigation of Post-Tensioned Box Girder Anchorage Zone

Field Investigation of Post-Tensioned Box Girder Anchorage Zone 6 th International Conference on Advances in Experimental Structural Engineering 11 th International Workshop on Advanced Smart Materials and Smart Structures Technology August 1-2, 2015, University of

More information

Flexure Design Sequence

Flexure Design Sequence Prestressed Concrete Beam Design Workshop Load and Resistance Factor Design Flexure Design Flexure Design Sequence Determine Effective flange width Determine maximum tensile beam stresses (without prestress)

More information

CHAPTER 11 Bar Cutoff

CHAPTER 11 Bar Cutoff page 188 CHAPTER 11 11.1. Anchorage of Tension Bars by Hooks In the event that the desired tensile stress in a bar cannot be developed by bond alone, it is necessary to provide special anchorage at the

More information

PRESTRESSED CONCRETE STRUCTURES

PRESTRESSED CONCRETE STRUCTURES LECTURE NOTES PRESTRESSED CONCRETE STRUCTURES ON Course code: A80150 Regulation: R13 (JNTUH) IV B. Tech II Sem PREPARED BY Dr. J.S.R. PRASAD Professor K. ANAND GOUD Assistant Professor CIVIL ENGINEERING

More information

SKP Engineering College

SKP Engineering College SKP Engineering College Tiruvannamalai 606611 A Course Material on Prestressed Concrete Structures By P. Selvarasan Assistant Professor Civil Engineering Department Computer Science Engineering Department

More information

Concrete Prestressed Concrete Pretensioned Concrete Posttensioned Concrete Typical Tendon Layout

Concrete Prestressed Concrete Pretensioned Concrete Posttensioned Concrete Typical Tendon Layout Concrete 45 1.13.0 Prestressed Concrete Concrete in which internal stresses (forces) are induced by means of prestressing steel tendons such that tensile stresses resulting from loads are counteracted

More information

DESIGN OF A CONTINUOUS DEEP BEAM USING THE STRUT AND TIE METHOD

DESIGN OF A CONTINUOUS DEEP BEAM USING THE STRUT AND TIE METHOD ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 7, NO. 5 (2006) PAGES 461-477 DESIGN OF A CONTINUOUS DEEP BEAM USING THE STRUT AND TIE METHOD B. Singh 1, S.K. Kaushik, K.F. Naveen and S.

More information

SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS

SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS M. T. Shedid 1, W. W. El-Dakhakhni 2, and R. G. Drysdale 3 1 Ph.D. Candidate, Dept. of Civil Engineering, McMaster University, Hamilton.

More information

Schöck Isokorb type CVB Design

Schöck Isokorb type CVB Design Schöck Isokorb type Design Schöck Isokorb type The Schöck Isokorb type is suitable for supported reinforced concrete slabs with interior slab joists at interior slab level (CB concrete beam). It transmits

More information

TORSION SIMPLIFIED: A FAILURE PLANE MODEL FOR DESIGN OF SPANDREL BEAMS

TORSION SIMPLIFIED: A FAILURE PLANE MODEL FOR DESIGN OF SPANDREL BEAMS TORSION SIMPLIFIED: A FAILURE PLANE MODEL FOR DESIGN OF SPANDREL BEAMS Gary Klein, Gregory Lucier, Sami Rizkalla, Paul Zia and Harry Gleich Biography: Gary Klein, FACI, is Executive Vice President and

More information

5.4 Analysis for Torsion

5.4 Analysis for Torsion 5.4 Analysis for Torsion This section covers the following topics. Stresses in an Uncracked Beam Crack Pattern Under Pure Torsion Components of Resistance for Pure Torsion Modes of Failure Effect of Prestressing

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 2, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 2, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 2, 2012 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Optimizing the use of swimmer

More information

LATERAL LOAD BEHAVIOR OF UNBONDED POST-TENSIONED HYBRID COUPLED WALLS. Qiang SHEN Graduate Research Assistant. Yahya C. KURAMA Assistant Professor

LATERAL LOAD BEHAVIOR OF UNBONDED POST-TENSIONED HYBRID COUPLED WALLS. Qiang SHEN Graduate Research Assistant. Yahya C. KURAMA Assistant Professor LATERAL LOAD BEHAVIOR OF UNBONDED POST-TENSIONED HYBRID COUPLED WALLS Qiang SHEN Graduate Research Assistant Yahya C. KURAMA Assistant Professor University of Notre Dame, Civil Engineering and Geological

More information

Design Values of Materials

Design Values of Materials 9 Chapter 3 Design Values of Materials 3.1 General (1) This chapter provides general guidelines on the material characteristics of the UFC, particularly required for design activities. The material characteristics

More information

TENSILE STRESSES IN THE END REGIONS OF PRETENSIONED I-BEAMS AT RELEASE

TENSILE STRESSES IN THE END REGIONS OF PRETENSIONED I-BEAMS AT RELEASE TENSILE STRESSES IN THE END REGIONS OF PRETENSIONED I-BEAMS AT RELEASE by Matthew R. O Callaghan and Oguzhan Bayrak Technical Report: IAC-88-5DD1A003-1 conducted for the Texas Department of Transportation

More information

In Association with. DSE PROJECTS - Lebanon

In Association with. DSE PROJECTS - Lebanon In Association with DSE PROJECTS - Lebanon Pre-Stressing System Pre-Stressing, results in thinner slabs, which produces valuable extra space, and in turn will be used to create additional floors. This

More information

Appendix A Proposed LRFD Specifications and Commentary

Appendix A Proposed LRFD Specifications and Commentary NCHRP Project 12-71 Design Specifications and Commentary for Horizontally Curved Concrete Box-Girder Highway Bridges Appendix A Proposed LRFD Specifications and Commentary A-1 A-2 4.2 DEFINITIONS (Additional)

More information

The Use of Bolted U-Link Swimmer Bars in the Reinforced Concrete Beams

The Use of Bolted U-Link Swimmer Bars in the Reinforced Concrete Beams IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 10 (October. 2013), V5 PP 26-32 The Use of Bolted U-Link Swimmer Bars in the Reinforced Concrete Beams Moayyad M.

More information

Experimental Investigation of Vertical Connections in Precast Wall Panel under Shear Load

Experimental Investigation of Vertical Connections in Precast Wall Panel under Shear Load IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): 2349-784X Experimental Investigation of Vertical Connections in Precast Wall Panel under Shear

More information

PRESTRESSED CONCRETE BEAMS -AU 141

PRESTRESSED CONCRETE BEAMS -AU 141 AN EXPERIMENTAL INVESTIGATION OF " END-BLOCK" REINFORCING in yni. O TLCI PRESTRESSED CONCRETE BEAMS -AU 141 LIBRAR by George John Tsavalas SBBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

Flexure and Serviceability Limit State

Flexure and Serviceability Limit State UNIT 3 Flexure and Serviceability Limit State Beam A structural member that support transverse (Perpendicular to the axis of the member) load is called a beam. Beams are subjected to bending moment and

More information

STRUCTURAL PRECAST CONCRETE

STRUCTURAL PRECAST CONCRETE SECTION 03410 STRUCTURAL PRECAST CONCRETE PART 1 GENERAL 1.01 SUMMARY A. Provide labor, materials, necessary equipment, services and included, but not limited to, related work to complete the structural

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213 QUESTION BANK CE2404 PRESTRESSED CONCRETE STRUCTURES UNIT 4 COMPOSITE CONSTRUCTION PART A (2 marks) 1. Define propped construction. (AUC May/June 2013,

More information

Prestressed Concrete

Prestressed Concrete Prestressed Concrete Part 4 (Losses of prestress) Prof. Ing. Jaroslav Procházka, CSc. Department of Concrete and Masonry Structures 1 Prestressing force Prestressing force varies along the length of the

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module 01: Introduction, Prestressing Systems and Material Properties Lecture

More information

Analytical prediction of tension force on stirrups in concrete beams longitudinally reinforced with CFRP bars

Analytical prediction of tension force on stirrups in concrete beams longitudinally reinforced with CFRP bars Analytical prediction of tension force on stirrups in concrete beams longitudinally reinforced with CFRP bars Rendy Thamrin 1,* 1 Civil Engineering Department, Engineering Faculty, Andalas University,

More information

DEVELOPMENT OF UNBONDED BAR REINFORCED CONCRETE STRUCTURE

DEVELOPMENT OF UNBONDED BAR REINFORCED CONCRETE STRUCTURE 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1537 DEVELOPMENT OF UNBONDED BAR REINFORCED CONCRETE STRUCTURE Hirokazu IEMURA 1, Yoshikazu TAKAHASHI

More information

Florida s Flexible Filler Experience. Dr. Natassia Brenkus, The Ohio State University

Florida s Flexible Filler Experience. Dr. Natassia Brenkus, The Ohio State University Florida s Flexible Filler Experience Dr. Natassia Brenkus, The Ohio State University Motivation Cost-effective method of bridge construction Prestressed Concrete Durability Issues Poor grouting practice

More information

Load Transfer Test of Post-Tensioned Anchorage Zones in High Strength Concrete

Load Transfer Test of Post-Tensioned Anchorage Zones in High Strength Concrete ISBN 978-93-84422-76-9 International Conference on Research & Innovation in Environment, Civil and Architecture Engineering (RIECAE-17) Bangkok (Thailand), Feb. 6-7, 2017 Load Transfer Test of Post-Tensioned

More information

Special Reinforced Concrete Structural Walls

Special Reinforced Concrete Structural Walls 135 Special Reinforced Concrete Structural Walls The requirements of this section apply to special reinforced concrete structural walls serving as part of the earthquake force-resisting system. Shear Strength:

More information

Chapter 5: Introduction To Prestressed Concrete Design

Chapter 5: Introduction To Prestressed Concrete Design Chapter 5: Introduction To Prestressed Concrete Design Prepared by: Koh Heng Boon Faculty of Civil & Environmental Engineering 31 October 2012 5.1 Principles of Prestressed Concrete Design Prestressed

More information

***************************************************************************************************************

*************************************************************************************************************** 03365 POST-TENSIONED CONCRETE *************************************************************************************************************** SPECIFIER: CSI MasterFormat 2004 number 03 38 00. ***************************************************************************************************************

More information

A Review on External Prestressing In Concrete

A Review on External Prestressing In Concrete A Review on External Prestressing In Concrete Harpreet Kaur 1 and Dr Jaspal Singh 2 1Student, Department of Civil Engineering, Punjab Agricultural University, Ludhiana, Punjab, India 2 Professor, Department

More information

PRESTRESSED CONCRETE DESIGN

PRESTRESSED CONCRETE DESIGN PRESTRESSED CONCRETE DESIGN A01_Prestressed Concrete Design_FM.indd i 4/29/2013 4:00:08 PM A01_Prestressed Concrete Design_FM.indd ii PRESTRESSED CONCRETE DESIGN Praveen Nagarajan Department of Civil Engineering

More information

DESIGN OF RC ELEMENTS UNIT 1 PART-A

DESIGN OF RC ELEMENTS UNIT 1 PART-A DESIGN OF RC ELEMENTS UNIT 1 PART-A 1. Calculate the design strength for M 30 grade concrete and Fe 415 grade steel? 2. What is the important principle of ultimate load method? 3. Write the classification

More information

Dr. NAGY GYÖRGY Tamás Professor

Dr. NAGY GYÖRGY Tamás Professor Dr. NAGY GYÖRGY Tamás Professor E mail: tamas.nagy gyorgy@upt.ro Tel: +40 256 403 935 Web: http://www.ct.upt.ro/users/tamasnagygyorgy/index.htm Office: A219 Dr.ing. Nagy György T. Faculty of Civil Engineering

More information

Strength Design of Reinforced Concrete Structures

Strength Design of Reinforced Concrete Structures Chapter 6 Strength Design of Reinforced Concrete Structures 6.1 Analysis and Design General Considerations 6.1.1 Convention and Notation Unless otherwise explicitly stated, the following units shall be

More information

TESTS ON A POST TENSIONED MOMENT RESISTING CONNECTION FOR PRECAST CONCRETE STRUCTURES

TESTS ON A POST TENSIONED MOMENT RESISTING CONNECTION FOR PRECAST CONCRETE STRUCTURES TESTS ON A POST TENSIONED MOMENT RESISTING CONNECTION FOR PRECAST CONCRETE STRUCTURES Tuğrul Tankut, Uğur Ersoy, Seval Pınarbaşı Middle East Technical University Ersin Arıoğlu, Ezel Özdil, Müfit Yorulmaz

More information

Proposed Revisions to Part 2, Sections 2.13 to Draft DEVELOPMENT AND SPLICES OF REINFORCEMENT SECTION 2.13 DEVELOPMENT REQUIREMENTS

Proposed Revisions to Part 2, Sections 2.13 to Draft DEVELOPMENT AND SPLICES OF REINFORCEMENT SECTION 2.13 DEVELOPMENT REQUIREMENTS Proposed Revisions to Part 2, Sections 2.13 to 2.22 Reason for changes: To update the provisions for development and splices of reinforcement. These are to be added to the Nomenclature for Part 2. ldb

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module - 4: Design of Members Lecture - 17: Design of Members for Axial Tension

More information

***************************************************************************************************************

*************************************************************************************************************** 03410 STRUCTURAL PRECAST CONCRETE *************************************************************************************************************** SPECIFIER: CSI MasterFormat 2004 number 03 41 00 ***************************************************************************************************************

More information

CHAPTER 12. Composite Beams Steel reinforced timber beams E, I, M,=- E, I, M,= - R

CHAPTER 12. Composite Beams Steel reinforced timber beams E, I, M,=- E, I, M,= - R CHAPTER 12 Composite Beams Frequently in civil engineering construction beams are fabricated from comparatively inexpensive materials of low strength which are reinforced by small amounts of high-strength

More information

Precast concrete is significantly being used in earthquake

Precast concrete is significantly being used in earthquake Structural Connections for Precast Concrete Buildings - Review of Seismic and Other Design Provisions in Various International Codes - An Overview 1 2 C.A Prasad 1, Pavan Patchigolla 2 1 Director, METEY

More information

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams 111 Nonlinear Models of Reinforced and Post-tensioned Concrete Beams ABSTRACT P. Fanning Lecturer, Department of Civil Engineering, University College Dublin Earlsfort Terrace, Dublin 2, Ireland. Email:

More information

Lecture 13 CONCRETE WORKS

Lecture 13 CONCRETE WORKS Lecture 13 TSP-308 MPK Ferdinand Fassa CONCRETE WORKS Concrete works Concrete is a man-made (rock) construction material, which is a mixture of portland cement, water, aggregates, and in some cases, admixtures.

More information

Ce 479 Reinforced Masonry Fall 2005

Ce 479 Reinforced Masonry Fall 2005 INTRODUCTION TO STRUCTURAL DESIGN OF REINFORCED MASONRY In the preceding lecture on structural design of masonry, we have seen examples of unreinforced masonry bearing walls. In bearing walls, when the

More information

Analysis of Masonry Shear Walls Using Strut-and-Tie Models

Analysis of Masonry Shear Walls Using Strut-and-Tie Models Analysis of Masonry Shear Walls Using Strut-and-Tie Models Patrick B. Dillon, Ph.D., P.E. Project Engineer WDP & Associates Fernando S. Fonseca, Ph.D., S.E. Professor Brigham Young University The Masonry

More information