2020 NEHRP PROVISIONS IT5: NONSTRUCTURAL COMPONENTS. PUC Update April 13, 2017

Size: px
Start display at page:

Download "2020 NEHRP PROVISIONS IT5: NONSTRUCTURAL COMPONENTS. PUC Update April 13, 2017"

Transcription

1 2020 NEHRP PROVISIONS IT5: NONSTRUCTURAL COMPONENTS PUC Update April 13, 2017

2 Issue team 5 - Scope Address issues that significantly influence the performance of nonstructural components, but are not adequately covered in the current Provisions Develop proposals/issue papers based on findings and recommendations of the ATC-120 project

3 Issue Team 5 John Gillengerten Peter Carrato Travis Churpalo Bill Holmes Bret Lizundia John Silva Greg Soules Chris Tokas Hussain Bhatia Phil Caldwell Meaghan Halligan Matthew Hoehler Maryann Phipps Robert Simmons Siavash Soroushian

4 IT5 Kick-off Meeting Sacramento, 3/23/2017 Reviewed the status of the ATC-120 project Provided feedback to the ATC-120 team Identified and prioritized issues that should be addressed in the 2020 NEHRP Provisions Developed preliminary action plan

5 ATC-120 Organized into 3 working groups WG1 Assessment of current nonstructural design provisions WG2 Performance expectations for nonstructural components WG3 Evaluation of ASCE 7 nonstructural design equations and alternative philosophies for nonstructural design

6 Working Group 1 Holistic evaluation of the seismic provisions for nonstructural Components Three main tasks Nonstructural design exercises to evaluate the existing design provisions and test proposed changes to the design methodology Roadmap of the nonstructural design provisions in ASCE/SEI 7-16 Review the requirements for anchorage to concrete and masonry

7 Design Exercises Working Group 1 Perform seismic designs for components 4 Design Firms 5 Problems Approach the problems as they would in practice with limited time and budget Comments provided on the technical adequacy and ease of use of the current provisions incorporated into the ASCE 7 roadmap

8 Working Group 1 Develop a roadmap for seismic design of nonstructural components Describe administrative and technical requirements and place them in context Describe the interrelationships between the different design requirements Assess the clarity and completeness of those requirements Draft assessment of Chapter 13 is being reviewed by WG1

9 Working Group 1 Preliminary observations and recommendations on Chapter 13 The scope of the nonstructural requirements should be revised to include all components and systems connected to, supported by, or located within a structure The detailed design provisions need to be consistent with the general provisions Terminology needs to be more precise

10 Working Group 1 Preliminary observations and recommendations on Chapter 13 The tables for architectural and MEP components can be greatly simplified Penthouses should be treated be governed by Chapter 15 as a nonbuilding structure, rather than an architectural component URM partitions, chimneys, and parapets should be prohibited

11 Working Group 1 Anchorage to Concrete and Masonry What is the appropriate design force for anchors to concrete and masonry? Review of recent test data that measures demands in fasteners during dynamic testing Develop recommendations to simpliy force determination for anchors, and provide an appropriate margin of safety against brittle failure

12 Working Group 2 - Nonstructural Performance Objectives Create a set of seismic performance objectives for nonstructural components and systems that addresses components in all seismic design categories that has broad acceptance and dovetails with proposed design recommendations.

13 Working Group 2 - Nonstructural Performance Objectives WG2 Outcomes and Deliverables Framework for nonstructural performance objectives Nonstructural objectives vetted with stakeholders and PUC Recommendations for translating objectives into design practice Implementation by IT1

14 Working Group 3 Evaluation of ASCE 7 nonstructural design equations and exploring alternative philosophies for nonstructural design Goals: Understand the response of nonstructural components Evaluate the validity of current code design procedures and recommend improvements Propose a new design philosophy based on the concept of a nonstructural fuse

15 Terminology PFA: Peak floor acceleration T abldg : ASCE 7 fundamental period of the building T 1IDbldg : The fundamental period per system ID of recorded motion T 1modelbldg : The fundamental period per in analytical model T comp : The fundamental period of the component PCA: Peak component acceleration from an oscillator placed on a floor or roof. This is the vertical ordinate of a floor spectrum where the horizontal axis is the component period, T comp. μ bldg : Ductility experienced by the building μ comp : Ductility experienced by the component β bldg : Damping in the building β comp : Damping in the component

16 From Miranda(2017)

17 Design Equations The current primary ASCE 7 equation for nonstructural design is of the form: F p = f(a p, S DS, R p, I p, z/h) This can be rewritten as F p = f(t comp, S DS, μ comp, z/h) since a p is a function of component period and R p is related to component ductility, μ comp. In a more refined approach, the forces experienced by nonstructural components are of the form: F p = f(shaking intensity, building system/building stiffness, T abldg, μ bldg, z/h, T comp, β bldg, μ comp, β comp ).

18 WG3 - Seeking answers to the following questions Which parameters in the general equation are of significance and which can reasonably be ignored? What is the best measure for shaking intensity? Tying it to more easily available code values like S DS or PGA is desirable. Is a measure for structural system stiffness and deflected shape (such as a flexural beam or shear beam) necessary or is ASCE 7 design period sufficient?

19 WG3 - Seeking answers to the following questions If a component remains elastic, what are the anticipated forces it must be designed for? In large ground shaking, how beneficial would component ductility μ comp > 1 be? What nonstructural design equations are supported by the data and what is their level of uncertainty? Should the code maximum and minimum design demands be modified?

20 WG3 - Seeking answers to the following questions Does the concept of a generic floor spectrum appear promising? If so, what form would it take and how would it be used in practice? Simplified Rigid or Low Bound Flexible or High Bound From Bachman (2016)

21 WG3 - Seeking answers to the following questions Is there an opportunity to introduce capacitybased design for nonstructural components

22

23

24 z/h The Cloud of Acceleration Data 1.0 From Fathali and Lizundia (2011) Data Points from Fixed-base CSMIP Building Stations (N=3241) 0.8 CSMIP Data Inc. Height No. = 2224 Increasing Amplification No. = 920 No. = 97 PFA/PGA 151 Fixed-base Building Stations 73 Earthquakes 541 Building-Earthquake Cases

25 Working Group 3 Task assignments as of IT5 meeting on 3/23

26 Representative Issues to be Resolved Tying all the research together Making it practical for engineers Achieving consensus How many options to have Lack of information on component period, damping and ductility

27 Representative Issues to be Resolved Distribution of loads in yielding systems of interconnected elements Construction practicality and cost Qualification testing Situations where providing a fuse is not realistic Product liability and engineering responsibility

28 Discussion Photo from :

Nonstructural Components

Nonstructural Components Nonstructural Components Architectural, Mechanical and Electrical Components supported by or located within buildings or other structures. In 2003 NEHRP Recommended Provisions: Chapter 6 Architectural,

More information

Improved Seismic Design of Nonstructural Components and Systems (ATC-120)

Improved Seismic Design of Nonstructural Components and Systems (ATC-120) Improved Seismic Design of Nonstructural Components and Systems (ATC-120) Maryann Phipps, S.E. Estructure Oakland, CA John Gillengerten, S.E. Consulting Engineer Hebron, KY Abstract NIST, through the ATC-120

More information

THE HORIZON FOR NEXT-GENERATION PERFORMANCE ASSESSMENT OF BUILDINGS IS HERE: FEMA P-58

THE HORIZON FOR NEXT-GENERATION PERFORMANCE ASSESSMENT OF BUILDINGS IS HERE: FEMA P-58 THE HORIZON FOR NEXT-GENERATION PERFORMANCE ASSESSMENT OF BUILDINGS IS HERE: FEMA P-58 Abstract Jon A. Heintz Applied Technology Council Redwood City, California/USA The Applied Technology Council (ATC)

More information

Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities

Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities ASCE/SEI 43-05 American Society of Civil Engineers Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities This document uses both the International System of Units (SI) and

More information

3.5 Tier 1 Analysis Overview Seismic Shear Forces

3.5 Tier 1 Analysis Overview Seismic Shear Forces Chapter 3.0 - Screening Phase (Tier ) 3.5 Tier Analysis 3.5. Overview Analyses performed as part of Tier of the Evaluation Process are limited to Quick Checks. Quick Checks shall be used to calculate the

More information

3. Analysis Procedures

3. Analysis Procedures 3. Analysis Procedures 3.1 Scope This chapter sets forth requirements for analysis of buildings using the Systematic Rehabilitation Method. Section 3.2 specifies general analysis requirements for the mathematical

More information

Remarks regarding FEMA 368 seismic analysis guidelines

Remarks regarding FEMA 368 seismic analysis guidelines Earthquake Resistant Engineering Structures V 765 Remarks regarding FEMA 368 seismic analysis guidelines O. A. Mohamed Department of Civil and Environmental Engineering, University of Hartford, U.S.A.

More information

Chapter 4 Commentary STRUCTURAL DESIGN CRITERA

Chapter 4 Commentary STRUCTURAL DESIGN CRITERA Chapter 4 Commentary STRUCTURAL DESIGN CRITERA 4.1 GENERAL 4.1.2 References. ASCE 7 is referenced for the combination of earthquake loadings with other loads as well as for the computation of other loads;

More information

Progress Report on the Technical Development of the 2014 NEHRP Recommended Seismic Provisions

Progress Report on the Technical Development of the 2014 NEHRP Recommended Seismic Provisions Progress Report on the Technical Development of the 2014 NEHRP Recommended Seismic Provisions David R. Bonneville Degenkolb Engineers SUMMARY The 2014 NEHRP Recommended Seismic Provisions for New Buildings

More information

0306 SEISMIC LOADS GENERAL

0306 SEISMIC LOADS GENERAL 0306 SEISMIC LOADS 0306.1 GENERAL Every structure, and portion thereof, including nonstructural components such as architectural, mechanical, and electrical components, shall be designed and constructed

More information

Table 1. Detailed Comparison of Structural Provisions of 2000 IBC to 1997 NEHRP (continued)

Table 1. Detailed Comparison of Structural Provisions of 2000 IBC to 1997 NEHRP (continued) 1997 NEHRP 2000 IBC Section Provision Section Provision Comments 1 GENERAL PROVISIONS 1.1 PURPOSE No corresponding provision The lack of a purpose statement does not make IBC 1.2 SCOPE AND APPLICATION

More information

7. Seismic Design. 1) Read.

7. Seismic Design. 1) Read. 7. Seismic Design Lesson Objectives: 1) Describe code based seismic design in accordance with ASCE 7-16 and IBC 2012. 2) Compute mapped and design spectral accelerations. 3) Categorize and identify the

More information

4.2 Tier 2 Analysis General Analysis Procedures for LSP & LDP

4.2 Tier 2 Analysis General Analysis Procedures for LSP & LDP 4.2 Tier 2 Analysis 4.2.1 General Four analysis procedures are provided in this section: Linear Static Procedure (LSP), Linear Dynamic Procedure (LDP), Special Procedure, and Procedure for Nonstructural

More information

Panduit Corporation Tinley Park, Illinois. Outset and Inset Cabinets Seismic Load Rating and Anchorage Design

Panduit Corporation Tinley Park, Illinois. Outset and Inset Cabinets Seismic Load Rating and Anchorage Design Panduit Corporation Tinley Park, Illinois Outset and Inset Cabinets Seismic Load Rating and Anchorage Design February 13, 2013 Degenkolb Job Number B2439007.00 www.degenkolb.com 500 Degenkolb Engineers

More information

DEFINING RIGID VS. FLEXIBLE NONSTRUCTURAL COMPONENTS

DEFINING RIGID VS. FLEXIBLE NONSTRUCTURAL COMPONENTS 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska DEFINING RIGID VS. FLEXIBLE NONSTRUCTURAL COMPONENTS B. E. Kehoe 1

More information

Chapter 13 SEISMICALLY ISOLATED STRUCTURE DESIGN REQUIREMENTS

Chapter 13 SEISMICALLY ISOLATED STRUCTURE DESIGN REQUIREMENTS Chapter 13 SEISMICALLY ISOLATE STRUCTURE ESIGN REQUIREMENTS 13.1 GENERAL 13.1.1 Scope. Every seismically isolated structure and every portion thereof shall be designed and constructed in accordance with

More information

Available at: Last Modified: December 2012

Available at:   Last Modified: December 2012 6.4 Mechanical, Electrical, and Plumbing Components 6.4.3 Pressure piping 6.4.3.3 Flexible Connections, Expansion Joints, and Seismic Separations This category covers the flexible piping connections required

More information

Design Provisions for Earthquake Resistance of Structures. The Standards Institution of Israel

Design Provisions for Earthquake Resistance of Structures. The Standards Institution of Israel Israeli Standard SI 413 June 1995 Amendment No. 5 December 2013 Design Provisions for Earthquake Resistance of Structures The Standards Institution of Israel 42 Haim Levanon, Tel Aviv 69977, tel. 03-6465154,

More information

SEISMIC DAMAGE CONTROL WITH PASSIVE ENERGY DEVICES: A CASE STUDY

SEISMIC DAMAGE CONTROL WITH PASSIVE ENERGY DEVICES: A CASE STUDY SEISMIC DAMAGE CONTROL WITH PASSIVE ENERGY DEVICES: A CASE STUDY by Robert J. McNamara, SE McNamara/Salvia, Inc. Consulting Structural Engineers One International Place Boston, MA 02110 This paper presents

More information

An Introduction to the 2015 NEHRP Recommended Seismic Provisions for New Buildings and Other Structures

An Introduction to the 2015 NEHRP Recommended Seismic Provisions for New Buildings and Other Structures An Introduction to the 2015 NEHRP Recommended Seismic Provisions for New Buildings and Other Structures David R Bonneville 1 and Andrew M Shuck 2 ABSTRACT The 2015 NEHRP Recommended Seismic Provisions

More information

Background and Purpose Acknowledgments. 1.1 Background The Architect s Role in Seismic Design Contents The Bottom Line 1-8

Background and Purpose Acknowledgments. 1.1 Background The Architect s Role in Seismic Design Contents The Bottom Line 1-8 FOREWORD AND ACKNOWLEDGMENTS Background and Purpose Acknowledgments i iii CHAPTER 1 INTRODUCTION Christopher Arnold 1.1 Background 1-1 1.2 The Architect s Role in Seismic Design 1-4 1.3 Contents 1-5 1.4

More information

SESSION TU4C: The Steps Behind Building Resilience

SESSION TU4C: The Steps Behind Building Resilience SESSION TU4C: The Steps Behind Building Resilience A 2020 NEHRP Effort: What Can You Expect on Major Changes on Seismic Provisions and US Seismic Value maps S.K. Ghosh, President, PhD, S.K. Ghosh Associates

More information

Concept of Earthquake Resistant Design

Concept of Earthquake Resistant Design Concept of Earthquake Resistant Design Sudhir K Jain Indian Institute of Technology Gandhinagar November 2012 1 Bhuj Earthquake of 2001 Magnitude 7.7, ~13,805 persons dead Peak ground acceleration ~0.60g

More information

Special Civil Engineer Examination Seismic Principles Test Plan

Special Civil Engineer Examination Seismic Principles Test Plan SDR Workbook 2015 IBC Version Special Civil Engineer Examination Definition of Seismic Principles Seismic Principles is defined as the fundamental principles, tasks and knowledge s underlying those activities

More information

BUILDING INTEGRITY SUMMARY REPORT

BUILDING INTEGRITY SUMMARY REPORT BUILDING INTEGRITY SUMMARY REPORT SUPPLIER NAME Karnafuli Shoes Industries Ltd (Garments Unit) SUPPLIER ADDRESS Building No 17, Building No 16, Canteen Building No 2, Canteen Building No 1; Building No

More information

Elements of 2012 IBC / ASCE 7-10 Nonstructural Seismic Provisions: Bridging the Implementation Gap

Elements of 2012 IBC / ASCE 7-10 Nonstructural Seismic Provisions: Bridging the Implementation Gap Elements of 2012 IBC / ASCE 7-10 Nonstructural Seismic Provisions: Bridging the Implementation Gap J. A. Gatscher, Fellow Engineer Schneider Electric R. E. Bachman, S.E. R. E. Bachman Consulting Engineer

More information

Development of the 2020 NEHRP Provisions ASCE/SEI 7-16 Adoption Report

Development of the 2020 NEHRP Provisions ASCE/SEI 7-16 Adoption Report Building Seismic Safety Council Development of the 2020 NEHRP Provisions ASCE/SEI 7-16 Adoption Report November 30, 2017 1 Development of the 2020 NEHRP Provisions ASCE/SEI 7-16 Adoption Report Prepared

More information

STRUCTURAL DESIGN REQUIREMENTS (SEISMIC PROVISIONS) FOR EXISTING BUILDING CONVERTED TO JOINT LIVING AND WORK QUARTERS

STRUCTURAL DESIGN REQUIREMENTS (SEISMIC PROVISIONS) FOR EXISTING BUILDING CONVERTED TO JOINT LIVING AND WORK QUARTERS INFORMATION BULLETIN / PUBLIC - BUILDING CODE REFERENCE NO.: LABC Chapter 85 Effective: 01-01-2011 DOCUMENT NO.: P/BC 2011-110 Revised: Previously Issued As: P/BC 2002-110 STRUCTURAL DESIGN REQUIREMENTS

More information

Available at: Last Modified: December 2012

Available at:  Last Modified: December 2012 6.3 Architectural Components 6.3.7 Chimneys and Stacks 6.3.7.1 Unreinforced Masonry Chimney Unreinforced masonry (URM) chimneys are extremely vulnerable to earthquake damage; their behavior has long been

More information

sixteen seismic design Earthquake Design Earthquake Design Earthquake Design dynamic vs. static loading hazard types hazard types: ground shaking

sixteen seismic design Earthquake Design Earthquake Design Earthquake Design dynamic vs. static loading hazard types hazard types: ground shaking APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS FALL 2017 lecture sixteen dynamic vs. static loading amplification of static affect time duration acceleration & velocity

More information

IS 1893 and IS Codal Changes

IS 1893 and IS Codal Changes IS 1893 and IS 13920 Codal Changes Reading between the lines Alpa Sheth IS 1893-2016 Changes In Estimation Of The Hazard a) Design spectra extended up to natural period up of 6 s; b) Same design response

More information

Structural Engineering, Mechanics, and Materials. Preliminary Exam - Structural Design

Structural Engineering, Mechanics, and Materials. Preliminary Exam - Structural Design Fall Semester 2018 Preliminary Exam - Structural Design A small building is located in downtown Berkeley. The structural system, either structural steel or reinforced concrete, comprises gravity framing

More information

SECTION NON-STRUCTURAL SEISMIC DESIGN CRITERIA PART 1 - GENERAL 1.1 RELATED DOCUMENTS

SECTION NON-STRUCTURAL SEISMIC DESIGN CRITERIA PART 1 - GENERAL 1.1 RELATED DOCUMENTS SECTION 014100 - PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply

More information

SEISMIC VULNERABILITY ASSESSMENT OF STEEL PIPE SUPPORT STRUCTURES

SEISMIC VULNERABILITY ASSESSMENT OF STEEL PIPE SUPPORT STRUCTURES 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska SEISMIC VULNERABILITY ASSESSMENT OF STEEL PIPE SUPPORT STRUCTURES

More information

Performance Based Seismic Design of Reinforced Concrete Building

Performance Based Seismic Design of Reinforced Concrete Building Open Journal of Civil Engineering, 2016, 6, 188-194 Published Online March 2016 in SciRes. http://www.scirp.org/journal/ojce http://dx.doi.org/10.4236/ojce.2016.62017 Performance Based Seismic Design of

More information

Floor spectra for analysis of acceleration-sensitive equipment in buildings

Floor spectra for analysis of acceleration-sensitive equipment in buildings Floor spectra for analysis of acceleration-sensitive equipment in buildings Vladimir Vukobratović University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

More information

ON DRIFT LIMITS ASSOCIATED WITH DIFFERENT DAMAGE LEVELS. Ahmed GHOBARAH 1 ABSTRACT

ON DRIFT LIMITS ASSOCIATED WITH DIFFERENT DAMAGE LEVELS. Ahmed GHOBARAH 1 ABSTRACT ON DRIFT LIMITS ASSOCIATED WITH DIFFERENT DAMAGE LEVELS Ahmed GHOBARAH ABSTRACT Performance objectives in performance-based design procedures have been described in several ways according to the operational

More information

FLOOR AND ATTACHED COMPONENT SEISMIC AMPLIFICATION FACTORS FROM NONLINEAR TIME-HISTORY ANALYSIS

FLOOR AND ATTACHED COMPONENT SEISMIC AMPLIFICATION FACTORS FROM NONLINEAR TIME-HISTORY ANALYSIS The th October -,, Beijing, China FLOOR AND ATTACHED COMPONENT SEISMIC AMPLIFICATION FACTORS FROM NONLINEAR TIME-HISTORY ANALYSIS R.K. Dowell, J.W. Smith and T.C. Hutchinson Assistant Professor, Dept.

More information

SEISMIC DESIGN OF STRUCTURE

SEISMIC DESIGN OF STRUCTURE SEISMIC DESIGN OF STRUCTURE PART I TERMINOLOGY EXPLANATION Chapter 1 Earthquake Faults Epicenter Focal Depth Focus Focal Distance Epicenter Distance Tectonic Earthquake Volcanic Earthquake Collapse Earthquake

More information

Generic Methodology to Establish Model Building Code Compliance Acceptance Criteria for Qualification of OFC s by Shake Table Test

Generic Methodology to Establish Model Building Code Compliance Acceptance Criteria for Qualification of OFC s by Shake Table Test Generic Methodology to Establish Model Building Code Compliance Acceptance Criteria for Qualification of OFC s by Shake Table Test ABSTRACT: P.J. Caldwell 1, J.A. Gatscher 2 and S.R. Littler 3 1 Staff

More information

Question 8 of 55. y 24' 45 kips. 30 kips. 39 kips. 15 kips x 14' 26 kips 14' 13 kips 14' 20' Practice Exam II 77

Question 8 of 55. y 24' 45 kips. 30 kips. 39 kips. 15 kips x 14' 26 kips 14' 13 kips 14' 20' Practice Exam II 77 Question 8 of 55 A concrete moment frame building assigned to SDC = D is shown in the Figure. Equivalent lateral force analysis procedure is used to obtain the seismic lateral loads, E h, as shown. Assume

More information

SEISMIC ISOLATION STANDARD FOR CONTINUED FUNCTIONALITY. Table C.3-1. Resiliency Criteria Limits for Structure Design Categories

SEISMIC ISOLATION STANDARD FOR CONTINUED FUNCTIONALITY. Table C.3-1. Resiliency Criteria Limits for Structure Design Categories Abstract 17th U.S.-Japan-New Zealand Workshop on the Improvement of Structural Engineering and Resilience SEISMIC ISOLATION STANDARD FOR CONTINUED FUNCTIONALITY Dr. Victor Zayas 1, Prof. Stephen Mahin

More information

This point intends to acquaint the reader with some of the basic concepts of the earthquake engineer:

This point intends to acquaint the reader with some of the basic concepts of the earthquake engineer: Chapter II. REVIEW OF PREVIOUS RESEARCH II.1. Introduction: The purpose of this chapter is to review first the basic concepts for earthquake engineering. It is not intended to review the basic concepts

More information

REINFORCED CONCRETE WALL BOUNDARY ELEMENT LONGITUDINAL REINFORCING TERMINATION

REINFORCED CONCRETE WALL BOUNDARY ELEMENT LONGITUDINAL REINFORCING TERMINATION 1NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 1-, 1 Anchorage, Alaska REINFORCED CONCRETE WALL BOUNDARY ELEMENT LONGITUDINAL REINFORCING TERMINATION

More information

Trends in the Seismic Design Provisions of U.S. Building Codes

Trends in the Seismic Design Provisions of U.S. Building Codes Trends in the Seismic Design Provisions of U.S. Building Codes Seismic design provisions in building codes of the United States have undergone profound and farreaching changes in recent years. This paper

More information

Division IV EARTHQUAKE DESIGN

Division IV EARTHQUAKE DESIGN 1997 UNIFORM BUILDING CODE CHAP. 16, DIV. IV 1626 1627 Division IV EARTHQUAKE DESIGN SECTION 1626 GENERAL 1626.1 Purpose. The purpose of the earthquake provisions herein is primarily to safeguard against

More information

Recent Advances in Seismic and Wind Design of Wood Structures &Historic Preservation Examples

Recent Advances in Seismic and Wind Design of Wood Structures &Historic Preservation Examples SEAoA 2015 Conference and Convention Recent Advances in Seismic and Wind Design of Wood Structures &Historic Preservation Examples Kelly Cobeen Wiss Janney Elstner Associates, Inc. Seminar Outline 1. NEHRP

More information

Proposed Chapter is attached. Text is not underlined to allow easier review.

Proposed Chapter is attached. Text is not underlined to allow easier review. 0 0 0 PROPOSAL -R (00) SCOPE: Part, Commentary Chapter PROPOSAL FOR CHANGE: Add Chapter to Part, of the 00 Commentary: Proposed Chapter is attached. Text is not underlined to allow easier review. REASON

More information

Building-Specific Seismic Loss Assessment

Building-Specific Seismic Loss Assessment Building-Specific Seismic Loss Assessment A. S. Whittaker 1, R. O. Hamburger 2, Y.-N. Huang 3 1. S.E., Professor of Structural Engineering; State University of New York, Buffalo, NY; awhittak@buffalo.edu

More information

NON-LINEAR STATIC PUSHOVER ANALYSIS FOR MULTI-STORED BUILDING BY USING ETABS

NON-LINEAR STATIC PUSHOVER ANALYSIS FOR MULTI-STORED BUILDING BY USING ETABS NON-LINEAR STATIC PUSHOVER ANALYSIS FOR MULTI-STORED BUILDING BY USING ETABS Polupalli Victor Paul 1, K Sampath Kumar 2 1 PG Student, Dept of Civil Engineering, Nova College of Engineering & Technology,

More information

Chapter 5 Direct Physical Damage - General Building Stock

Chapter 5 Direct Physical Damage - General Building Stock 5.1 Introduction Chapter 5 Direct Physical Damage - General Building Stock This chapter describes methods for determining the probability of Slight, Moderate, Extensive and Complete damage to general building

More information

CEE Earthquake Resistant Design General Information

CEE Earthquake Resistant Design General Information University of California at Berkeley Civil and Environmental Engineering Instructor: Stephen A. Mahin Spring Semester 2003 CEE 227 -- Earthquake Resistant Design General Information Course Objectives This

More information

SEISMIC DESIGN OF BRIDGES SECTION 6 MECHANICAL ENERGY DISSIPATING DEVICES. R.W.G. Blakeley*, L.G. Cormack**, M.J. Stockwell***

SEISMIC DESIGN OF BRIDGES SECTION 6 MECHANICAL ENERGY DISSIPATING DEVICES. R.W.G. Blakeley*, L.G. Cormack**, M.J. Stockwell*** 264 SEISMIC DESIGN OF BRIDGES SECTION 6 MECHANICAL ENERGY DISSIPATING DEVICES R.W.G. Blakeley*, L.G. Cormack**, M.J. Stockwell*** CODE: 6.1 The following criteria are to be satisfied for design of bridge

More information

A Full-Scale Experimental Study on Seismic Behaviour of Vibration Isolated Mechanical/Electrical Equipment

A Full-Scale Experimental Study on Seismic Behaviour of Vibration Isolated Mechanical/Electrical Equipment Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 211, Auckland, New Zealand A Full-Scale Experimental Study on Seismic Behaviour

More information

IBC 2006 & ASCE 7-05 Structural Provisions. Martin Johnson, SE & Todd Erickson, SE June 14, 2007

IBC 2006 & ASCE 7-05 Structural Provisions. Martin Johnson, SE & Todd Erickson, SE June 14, 2007 IBC 2006 & ASCE 7-05 Structural Provisions Martin Johnson, SE & Todd Erickson, SE June 14, 2007 Schedule of Adoption 2006 IBC, ASCE 7-05 and material standard documents are available now. 2007 CBC will

More information

Chapter 2 Review of Seismic Design Philosophies and Analysis Methods. Chapter 2 Design and Analysis

Chapter 2 Review of Seismic Design Philosophies and Analysis Methods. Chapter 2 Design and Analysis Chapter 2 Review of Seismic Design Philosophies and Analysis Methods 1 CONTENT 1. Introduction 2. Force-Based Seismic Design Procedure 3. Performance-Based Seismic Design Procedure 4. Static Nonlinear

More information

AC : EXPERIMENTAL EXPLORATION OF COMMON MODEL- ING ASSUMPTIONS

AC : EXPERIMENTAL EXPLORATION OF COMMON MODEL- ING ASSUMPTIONS AC 2011-129: EXPERIMENTAL EXPLORATION OF COMMON MODEL- ING ASSUMPTIONS Cole C McDaniel, California Polytechnic State University Cole C. McDaniel, Ph.D., P.E. Associate Professor, Architectural Engineering

More information

Seismic Performance Evaluation of an Existing Precast Concrete Shear Wall Building

Seismic Performance Evaluation of an Existing Precast Concrete Shear Wall Building Seismic Performance Evaluation of an Existing Precast Concrete Shear Wall Building J. Sanchez, L. Toranzo & T. Nixon KPFF Consulting Engineers, Los Angeles, CA, USA SUMMARY: Nonlinear analysis has become

More information

Available at: Last Modified: December 2012

Available at:   Last Modified: December 2012 6.5 Furniture, Fixtures, Equipment and Contents 6.5.1 Storage Racks 6.5.1.2 Industrial Storage Racks This subcategory includes heavy duty steel pallet storage racks such as those found in public warehouse

More information

Seismic Design of Precast Concrete Structures

Seismic Design of Precast Concrete Structures Seismic Design of Precast Concrete Structures S. K. Ghosh S. K. Ghosh Associates Inc. Palatine, IL and Aliso Viejo, CA Instructional Material Complementing FEMA 1052, Design Examples Diaphragms Analysis

More information

CASE STUDY OF A 40 STORY BRBF BUILDING LOCATED IN LOS ANEGELES

CASE STUDY OF A 40 STORY BRBF BUILDING LOCATED IN LOS ANEGELES DESIGN INVESTIGATE REHABILITATE CASE STUDY OF A 40 STORY BRBF BUILDING LOCATED IN LOS ANEGELES Anindya Dutta, Ph.D., S.E. Ronald O. Hamburger, S.E., SECB www.sgh.com Background Study performed on behalf

More information

Earthquake Design of Flexible Soil Retaining Structures

Earthquake Design of Flexible Soil Retaining Structures Earthquake Design of Flexible Soil Retaining Structures J.H. Wood John Wood Consulting, Lower Hutt 207 NZSEE Conference ABSTRACT: Many soil retaining wall structures are restrained from outward sliding

More information

2009 NEHRP Recommended Seismic Provisions for New Buildings and Other Structures: PART 3, RESOURCE PAPERS (RP) ON SPECIAL TOPICS IN SEISMIC DESIGN

2009 NEHRP Recommended Seismic Provisions for New Buildings and Other Structures: PART 3, RESOURCE PAPERS (RP) ON SPECIAL TOPICS IN SEISMIC DESIGN 2009 NEHRP Recommended Seismic Provisions for New Buildings and Other Structures: PART 3, RESOURCE PAPERS (RP) ON SPECIAL TOPICS IN SEISMIC DESIGN This part of the 2009 NEHRP Recommended Seismic Provisions

More information

Comparison of Chilean and US Seismic Design Provisions for Timber Structures

Comparison of Chilean and US Seismic Design Provisions for Timber Structures Comparison of Chilean and US Seismic Design Provisions for Timber Structures J. Daniel Dolan Professor and Director of Codes and Standards, Wood Materials and Engineering Laboratory, Washington Peter Dechent

More information

GLOSSARY EARTHQUAKE-RESISTANT DESIGN CONCEPTS GLOSSARY 95

GLOSSARY EARTHQUAKE-RESISTANT DESIGN CONCEPTS GLOSSARY 95 GLOSSARY Acceleration Rate of change of velocity with time. Acceleration Response Spectrum A graphical plot of the maximum acceleration that structures having different characteristics will experience

More information

Engr. Thaung Htut Aung M. Eng. Asian Institute of Technology Deputy Project Director, AIT Consulting

Engr. Thaung Htut Aung M. Eng. Asian Institute of Technology Deputy Project Director, AIT Consulting Engr. Thaung Htut Aung M. Eng. Asian Institute of Technology Deputy Project Director, AIT Consulting Selection of Structural systems Load paths Materials Approximate sizing of members Primary mechanisms

More information

A STRUCTURAL RESPONSE PREDICTION ENGINE TO SUPPORT ADVANCED SEISMIC RISK ASSESSMENT

A STRUCTURAL RESPONSE PREDICTION ENGINE TO SUPPORT ADVANCED SEISMIC RISK ASSESSMENT Eleventh U.S. National Conference on Earthquake Engineering Integrating Science, Engineering & Policy June 5-9, 018 Los Angeles, California A STRUCTURAL RESPONSE PREDICTION ENGINE TO SUPPORT ADVANCED SEISMIC

More information

SEAU 5 th Annual Education Conference 1. Read the Standard! ASCE Analysis Provisions. (not just the tables and equations)

SEAU 5 th Annual Education Conference 1. Read the Standard! ASCE Analysis Provisions. (not just the tables and equations) ASCE 41-13 Robert Pekelnicky, PE, SE Principal, Degenkolb Engineers Chair, ASCE 41 Committee* *The view expressed represent those of the author, not the standard s committee as a whole. ASCE 41-13 Analysis

More information

Seismic Response of Low-rise Steel Frame Buildings

Seismic Response of Low-rise Steel Frame Buildings Seismic Response of Low-rise Steel Frame Buildings Carlos E. Ventura, P.Eng. Mark Bakhtavar Department of Civil Engineering The University of British Columbia Outline of presentation Background of project

More information

EVALUATION OF ANALYSIS PROCEDURES FOR PERFORMANCE-BASED SEISMIC DESIGN OF BUILDINGS

EVALUATION OF ANALYSIS PROCEDURES FOR PERFORMANCE-BASED SEISMIC DESIGN OF BUILDINGS EVALUATION OF ANALYSIS PROCEDURES FOR PERFORMANCE-BASED SEISMIC DESIGN OF BUILDINGS H S LEW And Sashi K KUNNATH SUMMARY A critical issue in seismic design is how to account for energy dissipation through

More information

Design Example 2 Reinforced Concrete Wall with Coupling Beams

Design Example 2 Reinforced Concrete Wall with Coupling Beams Design Example 2 Reinforced Concrete Wall with Coupling Beams OVERVIEW The structure in this design example is a six story office building with reinforced concrete walls as its seismic force resisting

More information

JSEE. Soil-Structure Interaction Analyses Using Cone Models

JSEE. Soil-Structure Interaction Analyses Using Cone Models JSEE Winter 2009, Vol. 10, No. 4 Soil-Structure Interaction Analyses Using Cone Models Sassan Mohasseb 1 and Bahareh Abdollahi 2 1. Technical Director, SMTEAM GmbH 8706 MEILEN-Switzerland, email: smteam@gmx.ch

More information

Static Analysis of Multistoreyed RC Buildings By Using Pushover Methodology

Static Analysis of Multistoreyed RC Buildings By Using Pushover Methodology IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 8 January 2015 ISSN (online): 2349-6010 Static Analysis of Multistoreyed RC Buildings By Using Pushover Methodology

More information

U.S. CODE DEVELOPMENT FOR BUILDINGS WITH ADDED DAMPING

U.S. CODE DEVELOPMENT FOR BUILDINGS WITH ADDED DAMPING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1922 U.S. CODE DEVELOPMENT FOR BUILDINGS WITH ADDED DAMPING Robert D. HANSON 1 and Kit MIYAMOTO 2 SUMMARY

More information

Life Safety Risks to Schools from Nonstructural Earthquake Damage

Life Safety Risks to Schools from Nonstructural Earthquake Damage Life Safety Risks to Schools from Nonstructural Earthquake Damage 2012 EERI ANNUAL MEETING AND NATIONAL EARTHQUAKE CONFERENCE Presented by Michael J. Griffin, P.E. Principal CCS Group, Inc. School Safety!

More information

Linear and Nonlinear Seismic Analysis of a Tall Air Traffic Control (ATC) Tower

Linear and Nonlinear Seismic Analysis of a Tall Air Traffic Control (ATC) Tower Linear and Nonlinear Seismic Analysis of a Tall Air Traffic Control (ATC) Tower A. Adnan, M. Vafaei & A.K. Mirasa Faculty of Civil Engineering, Universiti Teknologi Malaysia SUMMARY: Air Traffic Control

More information

SEISMIC EVALUATION AND RETROFIT OF A HOSPITAL BUILDING USING NONLINEAR STATIC PROCEDURE IN ACCORDANCE WITH ASCE/SEI 41-06

SEISMIC EVALUATION AND RETROFIT OF A HOSPITAL BUILDING USING NONLINEAR STATIC PROCEDURE IN ACCORDANCE WITH ASCE/SEI 41-06 SEISMIC EVALUATION AND RETROFIT OF A HOSPITAL BUILDING USING NONLINEAR STATIC PROCEDURE IN ACCORDANCE WITH ASCE/SEI 41-6 Y. Wang Design Engineer, PhD, TMAD Taylor & Gaines, Pasadena, California, USA Email:

More information

Mandatory Wood Frame Soft-story Retrofit Program STRUCTURAL DESIGN GUIDELINES

Mandatory Wood Frame Soft-story Retrofit Program STRUCTURAL DESIGN GUIDELINES INFORMATION BULLETIN / PUBLIC - BUILDING CODE REFERENCE NO.: LAMC Division 93 Effective: 11/22/15 DOCUMENT NO.: P/BC 2014-137 Revised: 06/07/16 Previously Issued As: N/A Mandatory Wood Frame Soft-story

More information

SOIL-STRUCTURE INTERACTION EFFECTS ON NUCLEAR STRUCTURES FOUNDED ON ROCK SITES

SOIL-STRUCTURE INTERACTION EFFECTS ON NUCLEAR STRUCTURES FOUNDED ON ROCK SITES SOIL-STRUCTURE INTERACTION EFFECTS ON NUCLEAR STRUCTURES FOUNDED ON ROCK SITES L. M. Anderson 1, A. Hashemi 2 and F. Ostadan 3 ABSTRACT Following the US NRC 50.54 letter, all operating plants in the United

More information

DEFLECTION AMPLIFICATION FACTORS FOR DUCTILE BRACED FRAMES

DEFLECTION AMPLIFICATION FACTORS FOR DUCTILE BRACED FRAMES DEFLECTION AMPLIFICATION FACTORS FOR DUCTILE BRACED FRAMES Brandon K. Thompson 1 and Paul W. Richards 2 1 Graduate Student Researcher, Dept. of Civil and Environmental Engineering, Brigham Young University,

More information

Nonlinear Dynamic Analysis a Step Advance

Nonlinear Dynamic Analysis a Step Advance Nonlinear Dynamic Analysis a Step Advance in Assessing the Vulnerability of Buildings Editor s note: The strength of an earthquake catastrophe model in producing to Earthquake reliable loss estimates lies

More information

Effects of Horizontal and Vertical Earthquake Accelerations to Rooftop Pool during Medium Earthquake by Nathan Madutujuh

Effects of Horizontal and Vertical Earthquake Accelerations to Rooftop Pool during Medium Earthquake by Nathan Madutujuh Effects of Horizontal and Vertical Earthquake Accelerations to Rooftop Pool during Medium Earthquake by Nathan Madutujuh (nathanmadutujuh@gmail.com) (Director of Engineering Software Research Centre, Bandung,

More information

SEISMIC PERFORMANCE OF CONCRETE TILT-UP BUILDINGS: CURRENT WALL-TO-SLAB CONNECTIONS

SEISMIC PERFORMANCE OF CONCRETE TILT-UP BUILDINGS: CURRENT WALL-TO-SLAB CONNECTIONS SEISMIC PERFORMANCE OF CONCRETE TILT-UP BUILDINGS: CURRENT WALL-TO-SLAB CONNECTIONS Frank Devine, 1 Omri Olund, 2 Ken Elwood 3 and Perry Adebar 4 1 Graduate Student, Dept. of Civil Engineering, University

More information

Consideration of torsional irregularity in Modal Response Spectrum Analysis

Consideration of torsional irregularity in Modal Response Spectrum Analysis Earthquake Resistant Engineering Structures X 209 Consideration of torsional irregularity in Modal Response Spectrum Analysis O. A. Mohamed & O. A. Abbass Department of Civil Engineering, Abu Dhabi University,

More information

Utah State Capitol Building Restoration and Seismic Base Isolation

Utah State Capitol Building Restoration and Seismic Base Isolation Utah State Capitol Building Restoration and Seismic Base Isolation Presented by Jerod G. Johnson, SE, LEED(AP) Reaveley Engineers + Associates for CSCE Regional Lecture Tour February 28-29, 2012 Building

More information

Seismic Rehabilitation of Selby Condominium Complex, Montreal (Quebec), Canada

Seismic Rehabilitation of Selby Condominium Complex, Montreal (Quebec), Canada Seismic Rehabilitation of Selby Condominium Complex, Montreal (Quebec), Canada M. Zarrabi & R. Bartosh BCA Consultants, Montreal, Quebec, Canada A. Pall Pall Dynamics Limited, Montreal, Canada SUMMARY

More information

What is a Steel Plate Shear Wall (SPSW) and How Does It Work?

What is a Steel Plate Shear Wall (SPSW) and How Does It Work? Earthquake Engineering Abstract Introduction Earthquake engineering is the branch of engineering that focuses on the design and analysis of structures with earthquake risk concerns. The main goal of earthquake

More information

Seismic Soil Pressure for Building Walls-An Updated Approach

Seismic Soil Pressure for Building Walls-An Updated Approach 11 th International Conference on Soil Dynamics and Earthquake Engineering (11 th ICSDEE) and the 3 rd International Conference on Earthquake Geotechnical Engineering (3 rd ICEGE), University of California,

More information

HIGH RISE CONDO SOHO, NEW YORK, NY

HIGH RISE CONDO SOHO, NEW YORK, NY HIGH RISE CONDO SOHO, NEW YORK, NY TECHNICAL ASSIGNMENT 3 November 21, 2006 Joseph Mugford The Pennsylvania State University Structural Option Faculty Advisor: Andres Lepage TABLE OF CONTENTS TABLE OF

More information

SCENARIOS OF LOSSES AND REAL TIME MAPS OF DAMAGE BY BUILDING LEVEL FOR MEXICO CITY

SCENARIOS OF LOSSES AND REAL TIME MAPS OF DAMAGE BY BUILDING LEVEL FOR MEXICO CITY SCENARIOS OF LOSSES AND REAL TIME MAPS OF DAMAGE BY BUILDING LEVEL FOR MEXICO CITY E. Reinoso 1, M. A. Jaimes 2 and J. F. González 3 1 Professor, Institute of Engineering, Universidad Nacional Autónoma

More information

Evaluation of Response Reduction Factor and Ductility Factor of RC Braced Frame

Evaluation of Response Reduction Factor and Ductility Factor of RC Braced Frame 12 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 2 (215) 12 129 Research Paper Evaluation of Response Reduction Factor and Ductility Factor of RC Braced Frame Kruti Tamboli, J. A. Amin * Department of

More information

COMPARATIVE STUDY OF REINFORCED CONCRETE SHEAR WALL ANALYSIS IN MULTI- STOREYED BUILDING WITH OPENINGS BY NONLINEAR METHODS

COMPARATIVE STUDY OF REINFORCED CONCRETE SHEAR WALL ANALYSIS IN MULTI- STOREYED BUILDING WITH OPENINGS BY NONLINEAR METHODS Int. J. Struct. & Civil Engg. Res. 2013 Satpute S G and D B Kulkarni, 2013 Research Paper COMPARATIVE STUDY OF REINFORCED CONCRETE SHEAR WALL ANALYSIS IN MULTI- STOREYED BUILDING WITH OPENINGS BY NONLINEAR

More information

twelve design methods, structural codes ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2017 lecture ARCH 614

twelve design methods, structural codes ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2017 lecture ARCH 614 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2017 lecture twelve design methods, structural codes Methods & Codes 1 Design factors out of the designer s control

More information

EFFECTS OF SOFT FIRST STORY ON SEISMIC PERFORMANCE OF RC BUILDINGS AND SUSTAINABLE APPROACH TO RETROFIT

EFFECTS OF SOFT FIRST STORY ON SEISMIC PERFORMANCE OF RC BUILDINGS AND SUSTAINABLE APPROACH TO RETROFIT EFFECTS OF SOFT FIRST STORY ON SEISMIC PERFORMANCE OF RC BUILDINGS AND SUSTAINABLE APPROACH TO RETROFIT MD. KAMRUZZAMAN Supervisor: Matsutaro SEKI MEE77 ABSTRACT The structural configuration with a soft

More information

DESIGN OF A STEEL SPECIAL MOMENT FRAME SUSCEPTIBLE TO HIGH SEISMIC RISK

DESIGN OF A STEEL SPECIAL MOMENT FRAME SUSCEPTIBLE TO HIGH SEISMIC RISK DESIGN OF A STEEL SPECIAL MOMENT FRAME SUSCEPTIBLE TO HIGH SEISMIC RISK Mustafa Kamal Al-Kamal Civil Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq E-Mail: alkamal20042003@yahoo.com

More information

Available at: Last Modified: December 2012

Available at:   Last Modified: December 2012 6.5 Furniture, Fixtures, Equipment and Contents 6.5.3 Computer and Communication Equipment 6.5.3.1 Computer Access Floors and Equipment Computer access floors are raised floor systems used in many facilities

More information

Comparison between RCC and Encased Composite Column Elevated Water Tank

Comparison between RCC and Encased Composite Column Elevated Water Tank IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 5 Ver. VIII (Sep. - Oct. 2016), PP 57-64 www.iosrjournals.org Comparison between RCC and

More information

YES. Performance objectives 3 performance levels for specified seismic hazard levels

YES. Performance objectives 3 performance levels for specified seismic hazard levels Performance-based assessment Limit states Distinction between ductile and fragile structural elements State of damage in the structure - defined based on limit states Seismic hazard levels - defined based

More information

Seismic Performance of Hollow-core Flooring: the Significance of Negative Bending Moments

Seismic Performance of Hollow-core Flooring: the Significance of Negative Bending Moments Seismic Performance of Hollow-core Flooring: the Significance of Negative Bending Moments L.J. Woods University of Canterbury and Holmes Consulting Group, New Zealand. R.C. Fenwick University of Canterbury,

More information

Chapter 15 Commentary STRUCTURES WITH DAMPING SYSTEMS

Chapter 15 Commentary STRUCTURES WITH DAMPING SYSTEMS Chapter 5 Commentary STRUCTURES ITH AMPING SYSTEMS Background. Chapter 5, Structures with amping Systems, appears for the first time in the body of to the 003 Provisions, having first appeared as an appendix

More information