Design of a Beam Structure for Failure Prevention at Critical Loading Conditions

Size: px
Start display at page:

Download "Design of a Beam Structure for Failure Prevention at Critical Loading Conditions"

Transcription

1 International Academic Institute for Science and Technology International Academic Journal of Innovative Research Vol. 3, No. 10, 2016, pp ISSN X International Academic Journal of Innovative Research Design of a Beam Structure for Failure Prevention at Critical Loading Conditions Owunna Ikechukwu, Ikpe Aniekan E. *, Satope Paul Mechanical Engineering Department, Coventry University, UK. Abstract To avoid failure in most engineering designs, von-mises failure criterion must be met. This criterion requires that the stress a body is subjected to is less than the yield strength of the material of the body. In this analysis, a beam structure has been designed with CATIA software to ensure that the von-mises criteria is met. This was done with critical evaluation of the mass requirement and the pivot constraints on the body. The first load case considers a total force of 18kN while the second load case considers a force of 9kN. The final weight of the initial model was kg. The maximum von-mises stress obtained from the initial analysis for load case 1 was 1560MPa whereas, the maximum von-mises stress obtained from the initial analysis for load case 2 was 530MPa. For the final design analysis, weight of the final model was kg. The maximum von-mises stress obtained from the final analysis for load case 1 was 102MPa whereas, the maximum von-mises stress obtained from the final analysis for load case 2 was 101MPa. Hence, one of the methods that failure can be avoided in beam design is to ensure that the maximum allowable stress is not exceeded. Keywords: Beam Structure, Design, Deformation, Weight, Stress, Applied Load. 32

2 Introduction: A beam is a structural member that is horizontally positioned between vertically supporting member (column) in such a manner that carries load acting at right angle to the length of the beam. A beam is generally used for resisting loading reactions resulting from shear forces, vertical loads, and bending moments (Sankararaj, 2013). A typical beam has a small cross-section compared to its span, for example, the width and depth of a given beam is less than span/10. In practice, a beam is generally known to be subjected to two types of external forces which includes external loads acting on the beam as well as reactions to the load from supporting members. Moreover, a beam is also known to be subjected to two types of internal forces such as bending moments and shear forces, and both the internal shear forces as well as the internal bending moment can be considered as pairs of forces (Nilantha, 2015). Generally, applied load is usually responsible for bending moment which results in bending stresses on the beam structure and consequently tensile and compressive stresses. Under positive moment as oftentimes the case, tensile stresses are produced underneath the beam whereas, compressive stresses are found on top of the beam and it is important for beam structures to resist both tensile and compressive stress in beam related applications (Frederick and Dominic, 2009; Bansal, 2010). The classification of beam structures can be done based on three major criteria which includes geometry such as beam straight profile, curved profile, tapered cross section, shape of cross section (for example, beam with I cross section, T cross section, C cross section etc.). The second criteria in which the classification of a beam structure is based includes equilibrium conditions such as statically determinate beam and statically indeterminate beam whereas, the third criteria for beam classification includes the type of support such as Simply supported beam, Cantilever beam, Overhanging beam, Continuous beam and Fixed beam respectively (Erasmo et al., 2011; Chennu, 2015). Solving engineering problems could be time consuming basically because there is always need to meet different design conditions. To achieve such solutions engineers use best design practices. In cases where weight is important practices like cut outs are fundamental in removing wastage. The dilemma of finding engineering solutions is not the unavailability of innovative designs, the major challenge is making designs that can be easily manufactured. In doing this, engineers use mostly standard parts obtainable from the market and then remove weight where possible. The customer requirement for the part contained in this analysis requires that the product meets two different load cases. To ensure that this is achieved in this paper, the analysis of the load cases was carried out in CATIA software with special emphasis on the mesh used in performing the analysis. The mesh size that can provide accuracy with small simulation time was employed in the analysis. By using 2D meshing, the critical points in the design would be determined easily and reinforcements provided where possible. Different kinds of weight reduction techniques will be utilized in ensuring that the weight limit for this product is not exceeded or the minimum possible. Analysis of Initial Load Case For components with thickness of less than or equal to 10mm, the mid surface of the component is often created and meshed (Bastien, 2013), and such principle is applied in this analysis. The mid surface of the beam was designed in CATIA. The mid surfaces created for both the lug and the hollow beam was meshed with 2D elements of maximum element length of 8mm as shown in Figure 1. To reduce stress concentrations within regions in the model, the same mesh size was applied on all parts of 33

3 the assembly. The mesh size was however carefully selected after a thorough mesh convergence study was carried out on the initial design. Figure 1: 2D mesh generated for initial analysis The beam is provided with clamping holes at the edges about 40mm from the holes on the axes of the beam. The beam is provided with a pivot at the holes. The pivot at the holes retrains the body in the Z and Y axes but not the X-axes, some form of rotation in the Y axes is also permitted. The design problem requires the body to withstand a 4500N force at each of the slug in the first load scenario. The second scenario is a 1250N horizontal force and a 1kN vertical force at each slugs. The first scenario requires a total of 18KN bending force while the second scenario is a total of 9KN torsional load. This forces were exerted on the beam. The first load case situation is shown in Figure 2. 34

4 Figure 2: Load case 1 for the beam analysis The material for the beam was steel which has a density of 7850 kg/m3, Young s modulus, 210GPa, Yield Strength 800MPa and Poisson s ratio of 0.3. The thickness of the pipe for 2D analysis is therefore 3.85mm and this was applied as 2D property on the pipe in the CATIA analysis uniform thickness was applied for the hollow beam, however, the lug plates had a different thickness of 10mm and thus different 2D properties were made for the lugs. The Finite Element Analysis (FEA) was prepared from CATIA and the results for the von-mises plot and the deflections were generated. The final weight of the initial model was kg. The maximum von-mises stress obtained from the analysis is 1560MPa for the initial load case and maximum displacement stood at 24.9mm. The maximum von-mises stress obtained from the analysis is 530MPa for the second load case and maximum displacement stood at 6.53mm. With a linear relationship between maximum stress and displacement reducing either the stress or displacement will reduce the other simultaneously (Borst et al., 2012). Its application in this design therefore is to use such techniques that can result in direct reduction of any of stress or displacement. Design Parameters Structural design plays a vital role in bridges, buildings as well as other complex load bearing infrastructures that require salient design considerations in the design phase in order to achieve the purpose of such design. The following design parameters were taken into consideration while carrying out the beam structure design. Moment of Inertia The moment of inertia of a body determines the resistance of any object to rotational forces or bending forces. The moment of inertia of the body however depends on the axes of reference of the calculation of the moment of inertia (Ashby, 1992). The moment of inertia is often calculated with reference to the central axes of the body in question. For beam structures, the moment of inertia is given as (1) (2) The second moment of area of a beam on the other determines the deflection of the beam under the influence of applied load, and can be expressed as shown in equation (4) Where, h = height of the beam structure b = width of the beam structure (3) (4) 35

5 To ensure a reduction in the deflection of the body in order to ensure conformity with stress restrictions in the design, the second moment of area must increase. The moment of inertia of the initial design of the pipe is given in Figure 3. Figure 3: Measure of Moment of Inertia Design Requirement The design problem requires that the factor of safety for the design be 2.0. The beam is made of steel with yield strength of 250MPa. With this F.O.S requirement, the allowable stress in the new beam can be calculated. From the hand calculation, F.O.S for the allowable stress and yield strength shows that the allowable stress for the new design is 147MPa. Factor of Safety and Von-Mises Stress Failure of engineering materials are often judged by using different criterion for analysis of the design based on the type material. The design parameter shown in appendix 3 requires a factor of safety of 1.7. The factor of safety is a ratio of failure load and the design load (Budynas and Nisbett, 2008). For the beam design, to obtain a value of 1.7 for the factor of safety, the allowable stress is calculated as follows: ( ) (5) Therefore, 36

6 ( ) (6) The allowable stress for this design is therefore 147MPa. Elastic Region and Ultimate Tensile Strength. For every material there is a maximum level of stress and strain that the material can withstand, this is referred to as yield level of strain or stress. Before such level, the stress or strain in the body is elastic (the body returns to its initial state after the application of a system of forces or load. Before such level, the stress or strain in a body is elastic (the body returns to its initial state after the application of a system of forces or load). Beyond the yield point the extension in the material is plastic. The yield stress therefore defines the advent of plastic deformation in a material (Tyler, 2007; Bucciarelli, 2009). The design being analysed is required to stay within its elastic region throughout the application of the load. However, this must be considered in the design of a beam to avoid sudden failure when it is operating under extremely high load. The maximum stress a material withstands when subjected to applied load is defined as the material s ultimate tensile strength (σ u ) which is given as; Dividing the applied load at the point of failure by the original cross sectional area of the beam gives the material s ultimate tensile strength. Where, = Applied load at the point of failure = Original cross sectional area of the beam If the beam is in tension under the influence of applied load, equation 3 can be rewritten as, (7) Under this condition, the load (P) is converted to stress by calculation and A o which is the original area of the beam is given as; (8) (9) Where, d o = Original diameter of the beam Final Design Processes The final design processes adopted for the beam design is as follows Design Modification The 25mm holes remained 2200mm distance to each other and the lugs stayed 600mm to the edge of the beam. The shape of the lug were retained. The connecting edges of the bell crank retained their shapes and sizes all through the re-design. This is basically because they are connection points for 37

7 other parts of the system in which the bell crank functions. The design material remained the same throughout the process. Since the product is expected to be either machined or casted, there were no considerations taken for joining the materials. Result The final design of the beam has a weight of kg which is relatively smaller than the maximum permitted. This implies that the beam design is safe due to the significance it would have if applied on structures, as exceeding the maximum permitted weight may result in unforeseen failure. In the final design, the stress level were below the maximum allowable. This also imply that the beam design in this paper is safe, as the higher the stress on a given material, the higher the chances of failure at increasing load. Analysis of Moment of Inertial for final design is shown in Figure 4. The first load case gave a stress of 102MPa and the second load case gave a stress of 101MPa as shown in Figure 5 and 6. The final beam design is shown in Figure 7. The overall factor of safety for the new design is To further modify the beam without increasing the length, the sectional modulus of the beam may be employed. This can be used in subsequent design of the beam for further studies of the load case. Appendix 1 and 2 represents failed beam design with maximum stress exceeding allowable design stress. It is obvious that the failed design shown in appendix 1 and 2 deformed slightly due to the effect of applied load, which may have resulted from the exceedingly high maximum stresses of about 745 and 344 MPa. Also, comparing the beam design shapes in appendix 1 and 2 to load case 1 and 2 in Figure 5 and 6, it can be concluded that any design operating below the maximum allowable stress will exhibit more threats of stability and longevity compared to a given design operating above the maximum allowable stress. 38

8 Figure 4: Analysis of Moment of Inertial for final design 39

9 Figure 5: Von-Mises of Beam for load case 1 Figure 6: Von-Mises of beam for load case 2 40

10 Figure 7: Final design of the beam Costing The cost of the material for the beam can be estimated using the average pipe of a steel beam of that size. The material cost for the B-pillar assembly is estimated by referring to CES EduPack software, 2014 version. i. 7.5m of 40mm X 40mm X 3mm hollow pipe is from FH Brundle UK. ii. The modified beam is 3.3m. iii. Hence the material for the beam will cost around The overall cost may be a bit higher that this price because of the cost of producing the slugs, cost of machining the beams and cost of wastages that may be incurred. Transportation may also increase the price of the final design. iv. The total cost of the piece may therefore be estimated at GBP. Manufacturing For the new design, the geometry is simple. The design requires that a hollow square beam be cut to size and then welded with a small 5mm bar on the top surface. Rectangular pocket can then be made on the side to reduce weight of the design. Conclusion An appropriate mesh size of 8mm was used in analysing the load cases required in this paper after adequate mesh convergence studies have been carried out. After thorough analysis of the hollow cylindrical pipe in the initial design, the cross-section was changed to a rather stable cross section. For the new design, a solid rectangular beam was used to reinforce the design at the top end. This reinforcement is of same material with the initial beam and can help the beam against bending load. The pivots were also reinforced to ensure compliance with the second load case. The final design has a mass of kg. 41

11 The first load case gives a stress of 102MPa while the second load case gives a stress of 101MPa. The design was done with CATIA and the final drafts are included in this paper. All requirements for the new design have therefore been met. Appendices Appendix 1: Failed Beam Design with Maximum stress Relatively Higher Allowable Design Stress Appendix 2: Failed Beam Design with Maximum stress Exceeding Allowable Design Stress 42

12 Appendix 3: Beam Design Parameters References Bansal, R. K (2010) A Text Book of Strength of Materials, Laxmi Publications, ISBN: Bastien C. (2013) FEA in Continuum, Lecture Note. Coventry University, Bucciarelli, L. L. (2009) Engineering Mechanics for Structures. Dover Publications, Budynas, R. G. and Nisbett, J. K. (2008) Shigley s Mechanical Engineering Design. Eighth Edition, McGraw-Hill, ISBN: Chennu, V. R. (2015) Different Types of Beams, (ME MECHANICAL, 2015). [online] available from < [ 4 January 2015]. 43

13 D. Borst, R. Crisfield, M. A. Remmers and C.V. Verhoosel, Non-Linear Finite Element Analysis of Solids and Structures, Erasmo, C., Gaetano, G. and Marco, P. (2011) Beam Structures: Classical and Advanced Theories. John Wiley & Sons Ltd, ISBN: Frederick, A. L. and Dominic, J. D. (2009) Strength & Stiffness of Engineering Systems. Springer, Lancaster, M. F. Ashby, M. F. (1992) Materials Selection in Mechanical Design. Oxford: Pergamon Press, Nilantha, P. (2015) Column and Beam system in construction, (Basic Civil Engineering). [online] available from < [2 January 2016]. Sankararaj, S. (2013) Beam-Definition and Types, (Mechteacher, 2013). [online] available from < [2 January 2015]. Tyler, H. G. (2007) Handbook of Civil Engineering Calculations. Mc Graw Hill,

SET PROJECT STRUCTURAL ANALYSIS OF A TROUGH MODULE STRUCTURE, IN OPERATION AND EMERGENCY Luca Massidda

SET PROJECT STRUCTURAL ANALYSIS OF A TROUGH MODULE STRUCTURE, IN OPERATION AND EMERGENCY Luca Massidda SET PROJECT STRUCTURAL ANALYSIS OF A TROUGH MODULE STRUCTURE, IN OPERATION AND EMERGENCY Luca Massidda Table of Contents Introduction... 2 Finite element analysis... 3 Model description... 3 Mirrors...

More information

Question Paper Code : 11410

Question Paper Code : 11410 Reg. No. : Question Paper Code : 11410 B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2011 Fourth Semester Mechanical Engineering ME 2254 STRENGTH OF MATERIALS (Common to Automobile Engineering and Production

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK CE 6306 - STRENGTH OF MATERIALS UNIT I STRESS STRAIN DEFORMATION OF SOLIDS PART- A (2 Marks) 1. What is Hooke s Law? 2.

More information

Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing

Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing R. I. Liban, N. Tayşi 1 Abstract This paper deals with a nonlinear finite element analysis to examine the behavior

More information

Gambit Centrum Oprogramowania i Szkoleń Sp. z o.o. Mathcad 14 Roark's Formulas for Stress and Strain

Gambit Centrum Oprogramowania i Szkoleń Sp. z o.o. Mathcad 14 Roark's Formulas for Stress and Strain Mathcad 14 Roark's Formulas for Stress and Strain Table of Contents About Mathcad E-Books Notes on the Organization and Special Features of Roark's Formulas for Stress and Strain Preface by Warren C. Young

More information

Effect of Loading Level and Span Length on Critical Buckling Load

Effect of Loading Level and Span Length on Critical Buckling Load Basrah Journal for Engineering Sciences, vol. 16, no. 1, 2016 15 Effect of Level and Span Length on Critical Buckling Load Marwah A. Mohsen Department of Civil Engineering University of Basrah marwahalfartusy@yahoo.com

More information

MECHANICS OF SOLIDS IM LECTURE HOURS PER WEEK STATICS IM0232 DIFERENTIAL EQUAQTIONS

MECHANICS OF SOLIDS IM LECTURE HOURS PER WEEK STATICS IM0232 DIFERENTIAL EQUAQTIONS COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE MECHANICS OF SOLIDS IM0233 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 96 HOURS OF INDEPENDENT WORK STATICS IM0232

More information

Earthquake Design of Flexible Soil Retaining Structures

Earthquake Design of Flexible Soil Retaining Structures Earthquake Design of Flexible Soil Retaining Structures J.H. Wood John Wood Consulting, Lower Hutt 207 NZSEE Conference ABSTRACT: Many soil retaining wall structures are restrained from outward sliding

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code :Strength of Materials-II (16CE111) Course & Branch: B.Tech - CE Year

More information

Chapter 7. Finite Elements Model and Results

Chapter 7. Finite Elements Model and Results Chapter 7 Finite Elements Model and Results 7.1 Introduction In this chapter, a three dimensional model was presented. The analytical model was developed by using the finite elements method to simulate

More information

FINITE ELEMENT ANALYSIS OF A 2.5 TONNE HYDRAULIC PUNCHING MACHINE

FINITE ELEMENT ANALYSIS OF A 2.5 TONNE HYDRAULIC PUNCHING MACHINE FINITE ELEMENT ANALYSIS OF A 2.5 TONNE HYDRAULIC PUNCHING MACHINE Nikhil Mahajan 1, Prof. S. B. Tuljapure 2 1 M.E. Scholar, 2 Assistant Professor Mechanical Engineering Department Walchand Institute of

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210303 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 MECHANICS OF SOLIDS ( Common to Mechanical Engineering, Mechatronics, Metallurgy & Material Technology, Production

More information

Analysis of Buried Arch Structures; Performance Versus Prediction

Analysis of Buried Arch Structures; Performance Versus Prediction Analysis of Buried Arch Structures; Performance Versus Prediction D.A. Jenkins: Reinforced Earth Pty Ltd, Somersby, NSW, Australia Synopsis: The Reinforced Earth Group introduced the TechSpan arch system

More information

Damage assessment of hollow core reinforced and prestressed concrete slabs subjected to blast loading

Damage assessment of hollow core reinforced and prestressed concrete slabs subjected to blast loading Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 199 (2017) 2476 2481 X International Conference on Structural Dynamics, EURODYN 2017 Damage assessment of hollow core reinforced

More information

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section Proc. Schl. Eng. Tokai Tokai Univ., Univ., Ser. ESer. E 41 (2016) (2016) - 31-37 Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section by Mohammad Hamid ELMY *1 and Shunichi

More information

Design and Analysis of a Connecting Rod

Design and Analysis of a Connecting Rod Design and Analysis of a Connecting Rod Sebastian Antony, Arjun A., Shinos T. K B.Tech. Mechanical Dept. Muthoot Institute of Technology and Science Ernakulam, India Abstract The main function of a connecting

More information

Finite Element Analysis of Litzka Beam

Finite Element Analysis of Litzka Beam Finite Element Analysis of Litzka Beam Saneebamol 1, Soni Syed 2 1, 2 Civil Engineering Department, KMEA Engineering College, Pukkattupady, Ernakulam Abstract: Constant experiments are conducted by structural

More information

CHAPTER 6 FINITE ELEMENT ANALYSIS

CHAPTER 6 FINITE ELEMENT ANALYSIS 105 CHAPTER 6 FINITE ELEMENT ANALYSIS 6.1 INTRODUCTION Several theoretical approaches are considered to analyze the yielding and buckling failure modes of castellated beams. Elastic Finite Element Analysis

More information

Analysis of Plates by using ANSYS

Analysis of Plates by using ANSYS Analysis of Plates by using ANSYS N.V.Divya 1, Syed Rizwan 2 P.G. Student, Department of Structural (Civil) Engineering, Chiranjeevi Reddy Institute of Engg & Tech, Anantapuramu, Andhra Pradesh, India

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Ultimate deformation capacity of reinforced concrete slabs under blast load J.C.A.M. van Doormaal, J. Weeheijm TNO PrinsMaurits Laboratory, P.O. Box 45, 2280 AA Rijswijk, The Netherlands Abstract In this

More information

Sabah Shawkat Cabinet of Structural Engineering 2017

Sabah Shawkat Cabinet of Structural Engineering 2017 3.1-1 Continuous beams Every building, whether it is large or small, must have a structural system capable of carrying all kinds of loads - vertical, horizontal, temperature, etc. In principle, the entire

More information

Structural Analysis of Pylon Head for Cable Stayed Bridge Using Non-Linear Finite Element Method

Structural Analysis of Pylon Head for Cable Stayed Bridge Using Non-Linear Finite Element Method Structural Analysis of Pylon Head for Cable Stayed Bridge Using Non-Linear Finite Element Method Musthafa Akbar a,* and Aditya Sukma Nugraha b a) Department of Mechanical Engineering, Faculty of Engineering,

More information

E APPENDIX. The following problems are intended for solution using finite element. Problems for Computer Solution E.1 CHAPTER 3

E APPENDIX. The following problems are intended for solution using finite element. Problems for Computer Solution E.1 CHAPTER 3 E APPENDIX Problems for Computer Solution The following problems are intended for solution using finite element analysis software. In general, the problems associated with Chapters 3, 4, and 9 can be solved

More information

Level 6 Graduate Diploma in Engineering Structural analysis

Level 6 Graduate Diploma in Engineering Structural analysis 9210-111 Level 6 Graduate Diploma in Engineering Structural analysis Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler, drawing

More information

Journal of Asian Scientific Research EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS

Journal of Asian Scientific Research EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS Journal of Asian Scientific Research journal homepage: http://www.aessweb.com/journals/5003 EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS Kamyar Bagherinejad 1 ---- Emad Hosseinpour

More information

STRENGTH OF PLATES OF RECTANGULAR INDUSTRIAL DUCTS

STRENGTH OF PLATES OF RECTANGULAR INDUSTRIAL DUCTS Available online at www.sciencedirect.com Procedia Engineering 14 (2011) 622 629 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction STRENGTH OF PLATES OF RECTANGULAR INDUSTRIAL

More information

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams 111 Nonlinear Models of Reinforced and Post-tensioned Concrete Beams ABSTRACT P. Fanning Lecturer, Department of Civil Engineering, University College Dublin Earlsfort Terrace, Dublin 2, Ireland. Email:

More information

Influence of material selection on finite element analysis and weight of gear box casing. Prathamesh Dodkar1

Influence of material selection on finite element analysis and weight of gear box casing. Prathamesh Dodkar1 International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 1094 Influence of material selection on finite element analysis and weight of gear box casing Prathamesh Dodkar1

More information

Metal-plate connections loaded in combined bending and tension

Metal-plate connections loaded in combined bending and tension Metal-plate connections loaded in combined bending and tension Ronald W. Wolfe Abstract This study evaluates the load capacity of metal-plate connections under combined bending and axial loads and shows

More information

To have a clear idea about what really happened and to prevent the

To have a clear idea about what really happened and to prevent the Failure Analysis on Skunk-Arm of Electrical Tower Failure Analysis on Skunk-Arm of Electrical Tower ABSTRACT Ahmad Rivai 1, Md Radzai Said 2 1, 2 Faculty of Mechanical Engineering, Universiti Teknikal

More information

Belleville Spring. The relation between the load F and the axial deflection y of each disc. Maximum stress induced at the inner edge

Belleville Spring. The relation between the load F and the axial deflection y of each disc. Maximum stress induced at the inner edge Belleville Spring Disc spring, also called Belleville spring are used where high capacity compression springs must fit into small spaces. Each spring consists of several annular discs that are dished to

More information

NON-LINEAR ANALYSIS OF BURIED ARCH STRUCTURES

NON-LINEAR ANALYSIS OF BURIED ARCH STRUCTURES NON-LINEAR ANALYSIS OF BURIED ARCH STRUCTURES D.A. Jenkins Reinforced Earth Pty Ltd, Hornsby, NSW, Australia SUMMARY Groupe TAI introduced the TechSpan arch system in 1986. Since then over 5 buried precast

More information

Finite Element Analysis of Failure Modes for Cellular Steel Beams

Finite Element Analysis of Failure Modes for Cellular Steel Beams Paper 4 Finite Element Analysis of Failure Modes for Cellular Steel Beams B. Dervinis and A.K. Kvedaras Vilnius Gediminas Technical University Lithuania Civil-Comp Press, 2012 Proceedings of the Eleventh

More information

Non Linear Analysis of Composite Beam Slab Junction with Shear Connectors using Ansys.16

Non Linear Analysis of Composite Beam Slab Junction with Shear Connectors using Ansys.16 International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 5 Issue 4 April 2016 PP.22-29 Non Linear Analysis of Composite Beam Slab Junction with Shear

More information

Strength of Non-Prismatic Composite Self-Compacting Concrete Steel Girders

Strength of Non-Prismatic Composite Self-Compacting Concrete Steel Girders Strength of Non-Prismatic Composite Self-Compacting Concrete Steel Girders *Haitham H. Muteb 1) and Mustafa S. Shaker 2) 1), 2) Department of Civil Engineering, UoB, Hillah 51002, Iraq 1) haithammuteb@gmail.com

More information

ANALYTICAL STUDY OF PUNCHING SHEAR ON WAFFLE SLAB WITH DIFFERENT RIB SIZES

ANALYTICAL STUDY OF PUNCHING SHEAR ON WAFFLE SLAB WITH DIFFERENT RIB SIZES Jr. of Industrial Pollution Control 33(S2)(27) pp 323-327 www.icontrolpollution.com Research Article ANALYTICAL STUDY OF PUNCHING SHEAR ON WAFFLE SLAB WITH DIFFERENT RIB SIZES K. SAKETH*, C. ARUNKUMAR

More information

UNIT I SIMPLE STRESSES AND STRAINS, STRAIN ENERGY

UNIT I SIMPLE STRESSES AND STRAINS, STRAIN ENERGY SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech - ME Regulation:

More information

Structural Behavior of Timber Aluminum Composite Beams Under Impact Loads. Samoel M. Saleh, Nabeel A. Jasim

Structural Behavior of Timber Aluminum Composite Beams Under Impact Loads. Samoel M. Saleh, Nabeel A. Jasim 86 International Journal of Scientific & Engineering Research, Volume, Issue 0, October 04 ISSN 9 8 Structural Behavior of Timber Aluminum Composite Beams Under Impact Loads Samoel M. Saleh, Nabeel A.

More information

Analysis of Shear Wall Transfer Beam Structure LEI KA HOU

Analysis of Shear Wall Transfer Beam Structure LEI KA HOU Analysis of Shear Wall Transfer Beam Structure by LEI KA HOU Final Year Project report submitted in partial fulfillment of the requirement of the Degree of Bachelor of Science in Civil Engineering 2013-2014

More information

CITY AND GUILDS 9210 Unit 130 MECHANICS OF MACHINES AND STRENGTH OF MATERIALS OUTCOME 1 TUTORIAL 1 - BASIC STRESS AND STRAIN

CITY AND GUILDS 9210 Unit 130 MECHANICS OF MACHINES AND STRENGTH OF MATERIALS OUTCOME 1 TUTORIAL 1 - BASIC STRESS AND STRAIN CITY AND GUILDS 910 Unit 130 MECHANICS O MACHINES AND STRENGTH O MATERIALS OUTCOME 1 TUTORIAL 1 - BASIC STRESS AND STRAIN Outcome 1 Explain static equilibrium, Newton's laws, and calculation of reaction

More information

Council on Tall Buildings

Council on Tall Buildings Structure Design of Sino Steel (Tianjin) International Plaza Xueyi Fu, Group Chief Engineer, China Construction Design International 1 1 Brief of Project 2 Location: Tianjin Xiangluowan Business District

More information

PARAMETRIC STUDY OF FLANGE JOINT AND WEIGHT OPTIMIZATION FOR SAFE DESIGN AND SEALABILITY- FEA APPROACH Chavan U. S.* Dharkunde R. B. Dr. Joshi S.V.

PARAMETRIC STUDY OF FLANGE JOINT AND WEIGHT OPTIMIZATION FOR SAFE DESIGN AND SEALABILITY- FEA APPROACH Chavan U. S.* Dharkunde R. B. Dr. Joshi S.V. Research Article PARAMETRIC STUDY OF FLANGE JOINT AND WEIGHT OPTIMIZATION FOR SAFE DESIGN AND SEALABILITY- FEA APPROACH Chavan U. S.* Dharkunde R. B. Dr. Joshi S.V. Address for Correspondence Department

More information

Investigation of the behavior of stiffened steel plate shear walls with Finite element method

Investigation of the behavior of stiffened steel plate shear walls with Finite element method Technical Journal of Engineering and Applied Sciences Available online at www.tjeas.com 2014 TJEAS Journal-2014-4-2/67-73 ISSN 2051-0853 2014 TJEAS Investigation of the behavior of stiffened steel plate

More information

PRIMARY AND SECONDARY REINFORCEMENTS IN CORBELS UNDER COMBINED ACTION OF VERTICAL AND HORIZONTAL LOADINGS

PRIMARY AND SECONDARY REINFORCEMENTS IN CORBELS UNDER COMBINED ACTION OF VERTICAL AND HORIZONTAL LOADINGS 16th International Conference on Composite Structures ICCS 16 A. J. M. Ferreira (Editor) FEUP, Porto, 2011 PRIMARY AND SECONDARY REINFORCEMENTS IN CORBELS UNDER COMBINED ACTION OF VERTICAL AND HORIZONTAL

More information

Anti-fatigue Performance Analysis on Steel Crane Beam

Anti-fatigue Performance Analysis on Steel Crane Beam Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Anti-fatigue Performance Analysis on Steel Crane Beam Yuanmin Xie College of Machinery and Automation, Wuhan University of Science and Technology,

More information

7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS

7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS Jan Hricák, jan.hricak@fsv.cvut.cz WG3 - Michal Jandera, michal.jandera@fsv.cvut.cz WG2 František Wald, wald@fsv.cvut.cz 7 LOCAL BUCKLING OF STEEL CLASS 4 SECTION BEAMS Summary A significant progress in

More information

1.Axial Force, Shear Force and Bending Moment:

1.Axial Force, Shear Force and Bending Moment: 1 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS (Pulchowk, Lalitpur) Subject: Strength of Materials(II/I) (Tutorial ) 1.Axial Force, Shear Force and Bending Moment: 1. Draw AFD, SFD and

More information

Fagà, Bianco, Bolognini, and Nascimbene 3rd fib International Congress

Fagà, Bianco, Bolognini, and Nascimbene 3rd fib International Congress COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL CYCLIC RESPONSE OF ALTERNATIVE COLUMN TO FOUNDATION CONNECTIONS OF REINFORCED CONCRETEC PRECAST STRUCTURES Ettore Fagà, Dr, EUCENTRE, Pavia, Italy Lorenzo

More information

Numerical Modeling of Slab-On-Grade Foundations

Numerical Modeling of Slab-On-Grade Foundations Numerical Modeling of Slab-On-Grade Foundations M. D. Fredlund 1, J. R. Stianson 2, D. G. Fredlund 3, H. Vu 4, and R. C. Thode 5 1 SoilVision Systems Ltd., 2109 McKinnon Ave S., Saskatoon, SK S7J 1N3;

More information

New approach to improving distortional strength of intermediate length thin-walled open section columns

New approach to improving distortional strength of intermediate length thin-walled open section columns New approach to improving distortional strength of intermediate length thin-walled open section columns R. S. Talikoti 1, K. M. Bajoria 2 1 Research Scholar (Email: rstalikoti@iitb.ac.in) 2 Associate Professor

More information

International Journal of Research in Advent Technology Available Online at:

International Journal of Research in Advent Technology Available Online at: DESIGN & OPTIMIZATION OF STEEL STRUCTURE FOR SOLAR ELECTRICAL PANEL Mr. Vijay B. Sarode 1, Prof. Prashant.N. Ulhe 2 1 2 Mechanical Engg Department 1 2 North Maharashtra University 1 Email- vijaysarode1975@gmail.com

More information

Finite Elements Modeling and Analysis of Double Skin Composite Plates

Finite Elements Modeling and Analysis of Double Skin Composite Plates IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 6, Issue 5 (May. - Jun. 2013), PP 14-25 Finite Elements Modeling and Analysis of Double Skin Composite

More information

NLFEA Fire Resistance of 3D System Ceiling Panel

NLFEA Fire Resistance of 3D System Ceiling Panel NLFEA Fire Resistance of 3D System Ceiling Panel Rajai Z. Al-Rousan 1 Department of Civil Engineering, Jordan University of Science and Technology, Irbid, Jordan E-mail: rzalrousn@just.edu.jo 2 Department

More information

STRESS CONCENTRATION AROUND CUT-OUTS IN PLATES AND CYLINDRICAL SHELLS

STRESS CONCENTRATION AROUND CUT-OUTS IN PLATES AND CYLINDRICAL SHELLS VOL. 11, NO. 18, SEPTEMBER 016 ISSN 1819-6608 006-016 Asian Research Publishing Network (ARPN). All rights reserved. STRESS CONCENTRATION AROUND CUT-OUTS IN PLATES AND CYLINDRICAL SHELLS Rohit Chowdhury

More information

Optimization Design of Arm Frame of Folding Arm Type Tower Crane Based on ANSYS Ge-ning XU, Wen-ju LIU * and Yan-fei TAO

Optimization Design of Arm Frame of Folding Arm Type Tower Crane Based on ANSYS Ge-ning XU, Wen-ju LIU * and Yan-fei TAO 2016 International Conference on Applied Mechanics, Mechanical and Materials Engineering (AMMME 2016) ISB: 978-1-60595-409-7 Optimization Design of Arm Frame of Folding Arm Type Tower Crane Based on ASYS

More information

Subject with Code: Strength of Materials(16CE104) Course& Branch: B. Tech - CE Year &Sem : II-B. Tech &I-Sem Regulation: R16

Subject with Code: Strength of Materials(16CE104) Course& Branch: B. Tech - CE Year &Sem : II-B. Tech &I-Sem Regulation: R16 SIDDHARTH INSTITUTE OF ENGINEERING &TECHNOLOGY:: PUTTUR (Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu) (Accredited by NBA & Accredited by NAAC with A Grade) (An ISO 9001:2008 Certified

More information

The designs, depending upon the methods used, may be classified as follows:

The designs, depending upon the methods used, may be classified as follows: Definition Machine Design is the creation of new and better machines and improving the existing ones. A new or better machine is one which is more economical in the overall cost of production and operation.

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Lecture Notes: Dr. Hussam A. Mohammed Al- Mussiab Technical College Ferdinand P. Beer, E. Russell Johnston, Jr., and John T. DeWolf Introduction Concept of Stress The main objective of the study of mechanics

More information

Effect of Flange Width on Flexural Behavior of Reinforced Concrete T-Beam

Effect of Flange Width on Flexural Behavior of Reinforced Concrete T-Beam Effect of Flange Width on Flexural Behavior of Reinforced Concrete T-Beam Ofonime A. Harry Institute for Infrastructure and Environment, University of Edinburgh, UK Department of Civil Engineering Ndifreke

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : DDRCS(13A01502) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

ST7008 PRESTRESSED CONCRETE

ST7008 PRESTRESSED CONCRETE ST7008 PRESTRESSED CONCRETE QUESTION BANK UNIT-I PRINCIPLES OF PRESTRESSING PART-A 1. Define modular ratio. 2. What is meant by creep coefficient? 3. Is the deflection control essential? Discuss. 4. Give

More information

Stress Concentration on Rectangular Plate with Multiple Opposite Semicircular Notches Using Finite Element Analysis

Stress Concentration on Rectangular Plate with Multiple Opposite Semicircular Notches Using Finite Element Analysis Stress Concentration on Rectangular Plate with Multiple Opposite Semicircular Notches Using Finite Element Analysis Babulal K S 1, Ashenafi Adugna 2, I. Vimalkannan 3, A.Pradeep 4 1 Lecturer, Department

More information

Comparison of Sway Analysis of RC Frames using Cracked Moment of Inertia

Comparison of Sway Analysis of RC Frames using Cracked Moment of Inertia Comparison of Sway Analysis of RC Frames using Cracked Moment of Inertia M. Sabbir U. Chowdhury 1 and Tahsin Reza Hossain Abstract Sway of reinforced concrete (RC) frames subjected to lateral load is an

More information

University of Waterloo Department of Mechanical Engineering ME MACHINE DESIGN 1. Fall 2005

University of Waterloo Department of Mechanical Engineering ME MACHINE DESIGN 1. Fall 2005 University of Waterloo Department of Mechanical Engineering ME 322 -- MACHINE DESIGN 1 Fall 2005 Mechanical Design - "the process of formulating workable plans for the construction of machinery, devices

More information

Safety in a Second Guardrail Testing

Safety in a Second Guardrail Testing BMT Fleet Technology Limited 21017.DB01 (Rev. DRAFT01) Safety in a Second Guardrail Testing Reference: 7830.FR (Issue 02) Date: 19 March 2012 BMT Fleet Technology Limited accepts no liability for any errors

More information

ELASTO-PLASTIC BEHAVIOR OF HORIZONTAL HAUNCHED BEAM-TO- COLUMN CONNECTION

ELASTO-PLASTIC BEHAVIOR OF HORIZONTAL HAUNCHED BEAM-TO- COLUMN CONNECTION ELASTO-PLASTIC BEHAVIOR OF HORIZONTAL HAUNCHED BEAM-TO- COLUMN CONNECTION Naoki TANAKA 1, Yoshikazu SAWAMOTO 2 And Toshio SAEKI 3 SUMMARY In response to the 1995 Hyogoken-Nanbu earthquake, horizontal haunched

More information

Torsion in tridimensional composite truss bridge decks

Torsion in tridimensional composite truss bridge decks Torsion in tridimensional composite truss bridge decks André B. Almeida Instituto Superior Técnico Technical University of Lisbon Lisbon, Portugal e-mail: branco.almeida.a@gmail.com Abstract Torsion stiffness

More information

CHAPTER 4 STRENGTH AND STIFFNESS PREDICTIONS OF COMPOSITE SLABS BY FINITE ELEMENT MODEL

CHAPTER 4 STRENGTH AND STIFFNESS PREDICTIONS OF COMPOSITE SLABS BY FINITE ELEMENT MODEL CHAPTER 4 STRENGTH AND STIFFNESS PREDICTIONS OF COMPOSITE SLABS BY FINITE ELEMENT MODEL 4.1. General Successful use of the finite element method in many studies involving complex structures or interactions

More information

MAE Advanced Computer Aided Design. 03. Beams and Trusses. Solution of Beams and Trusses Problems

MAE Advanced Computer Aided Design. 03. Beams and Trusses. Solution of Beams and Trusses Problems MAE 656 - Advanced Computer Aided Design 03. Beams and Trusses Solution of Beams and Trusses Problems Introduction If our structure is made of multiple elements that can be characterized as beams or trusses,

More information

Finite element checking of flange connection in integral hoisting of flare stack

Finite element checking of flange connection in integral hoisting of flare stack International Conference on Advanced Electronic Science and Technology (AEST 2016) Finite element checking of flange connection in integral hoisting of flare stack Xuanyu Sheng1,a, Hongzhi Zhang2 and You

More information

Nonlinear Finite Element Modeling & Simulation

Nonlinear Finite Element Modeling & Simulation Full-Scale Structural and Nonstructural Building System Performance during Earthquakes & Post-Earthquake Fire A Joint Venture between Academe, Industry and Government Nonlinear Finite Element Modeling

More information

Stress Analysis and Optimization of Rolling Mill Housing Using FEA Tool

Stress Analysis and Optimization of Rolling Mill Housing Using FEA Tool ISSN 2395-1621 Stress Analysis and of Rolling Mill Housing Using FEA Tool #1 Akshaya Chavan, #2 M.A. Venkatesh 1 akshayachavan1992@gmail.com 2 mavenka@gmail.com Department of Mechanical Engineering, Savitribai

More information

Reinforced Concrete Design. A Fundamental Approach - Fifth Edition

Reinforced Concrete Design. A Fundamental Approach - Fifth Edition CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition REINFORCED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

Finite Element Analysis of Concrete Filled Steel Tube Flexural Model

Finite Element Analysis of Concrete Filled Steel Tube Flexural Model Finite Element Analysis of Concrete Filled Steel Tube Flexural Model Jiaoyang He School of Civil Engineering & Architecture Southwest Petroleum University, Chengdu Sichuan, 610500, China Abstract In this

More information

Fatigue Life Estimation of Forged Steel and Ductile Iron Crankshaft of Single Cylinder Engine Using Fatigue assessment Techniques

Fatigue Life Estimation of Forged Steel and Ductile Iron Crankshaft of Single Cylinder Engine Using Fatigue assessment Techniques ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Fatigue Life Estimation of Forged Steel and Ductile Iron Crankshaft of Single Cylinder

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 OPTIMIZATION OF A POLYGONAL HOLLOW STRUCTURAL STEEL SECTION IN THE ELASTIC REGION John Samuel Kabanda PhD candidate, Queen s University, Canada Colin MacDougall

More information

D. Y. Abebe 1, J. W. Kim 2, and J. H. Choi 3

D. Y. Abebe 1, J. W. Kim 2, and J. H. Choi 3 Steel Innovations Conference 213 Christchurch, New Zealand 21-22 February 213 HYSTERESIS CHARACTERSTICS OF CIRCULAR PIPE STEEL DAMPER USING LYP225 D. Y. Abebe 1, J. W. Kim 2, and J. H. Choi 3 ABSTRACT

More information

CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS

CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS 87 CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS 7.1 GENERAL With the advances in modern computing techniques, finite element analysis has become a practical and powerful tool for engineering analysis and

More information

UNIT V PLASTIC ANALYSIS

UNIT V PLASTIC ANALYSIS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

5.4 Analysis for Torsion

5.4 Analysis for Torsion 5.4 Analysis for Torsion This section covers the following topics. Stresses in an Uncracked Beam Crack Pattern Under Pure Torsion Components of Resistance for Pure Torsion Modes of Failure Effect of Prestressing

More information

Analysis and Comparison of Mechanical Properties of Epoxy Fiber and Alloy Steel Leaf Spring

Analysis and Comparison of Mechanical Properties of Epoxy Fiber and Alloy Steel Leaf Spring IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 12, 2017 ISSN (online): 2321-0613 Analysis and Comparison of Mechanical Properties of Epoxy Fiber and Alloy Steel Leaf

More information

WEIGHT OPTIMIZATION OF STEERING KNUCKLE FOR FOUR WHEELERS ****

WEIGHT OPTIMIZATION OF STEERING KNUCKLE FOR FOUR WHEELERS **** WEIGHT OPTIMIZATION OF STEERING KNUCKLE FOR FOUR WHEELERS, 1M.Tech (Machine Design), B.L.D.E.A s V. P. Dr.P.G.H College of Engineering and Technology, Vijayapur, Karnataka, India 2Professor, Dept. of Mechanical

More information

Effect of Geometry of Vertical Rib Plate on Cyclic Behavior of Steel Beam to Built-up Box Column Moment Connection

Effect of Geometry of Vertical Rib Plate on Cyclic Behavior of Steel Beam to Built-up Box Column Moment Connection Available online at www.sciencedirect.com Procedia Engineering 14 (2011) 3010 3018 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Effect of Geometry of Vertical Rib

More information

A simple but accurate device and method for bending and stress measurement of metallic structures

A simple but accurate device and method for bending and stress measurement of metallic structures IOSR Journal of Engineering (IOSRJEN) ISSN: 2250-3021 Volume 2, Issue 6 (June 2012), PP 1334-1339 www.iosrjen.org A simple but accurate device and method for bending and stress measurement of metallic

More information

Truss/Cable and Tensegrity structures

Truss/Cable and Tensegrity structures Piet Schreurs Eindhoven University of Technology Department of Mechanical Engineering Materials Technology November, 0 Truss/Cable and Tensegrity structures Truss structures A truss is a conceptual construction

More information

FINITE ELEMENT ANALYSIS FOCUSED ON THE FLANGE PLATES AND CONNECTING BOLTS OF RUBER BEARINGS

FINITE ELEMENT ANALYSIS FOCUSED ON THE FLANGE PLATES AND CONNECTING BOLTS OF RUBER BEARINGS 9 FINITE ELEMENT ANALYSIS FOCUSED ON THE FLANGE PLATES AND CONNECTING BOLTS OF RUBER BEARINGS Mineo TAKAYAMA And Keiko MORITA SUMMARY This paper presents the results of finite element analysis of natural

More information

MULTI-STOREY BUILDINGS - II

MULTI-STOREY BUILDINGS - II 38 MULTI-STOREY BUILDINGS - II 1.0 INTRODUCTION Modern design offices are generally equipped with a wide variety of structural analysis software programs, invariably based on the stiffness matrix method.

More information

Verification Examples

Verification Examples Verification Examples 1 Introduction Gen Verification Examples contain the verified results of various program functions. Each example entails a general verification process witch confirms the validity

More information

EVALUATION OF LAMINATED HOLLOW CIRCULAR ELASTOMERIC RUBBER BEARING

EVALUATION OF LAMINATED HOLLOW CIRCULAR ELASTOMERIC RUBBER BEARING EVALUATION OF LAMINATED HOLLOW CIRCULAR ELASTOMERIC RUBBER BEARING J. Sunaryati 1, Azlan Adnan 2 and M.Z. Ramli 3 1 Dept. of Civil Engineering, Engineering Faculty, Universitas Andalas. Indonesia 2 Professor,

More information

Parameters Affecting Load Capacity of Reinforced Self-Compacted Concrete Deep Beams

Parameters Affecting Load Capacity of Reinforced Self-Compacted Concrete Deep Beams Parameters Affecting Load Capacity of Reinforced Self-Compacted Concrete Deep Beams Khattab Saleem Abdul - Razzaq 1 1 Civil Engineering Department, College of Engineering/ Diyala University, Iraq Alaa

More information

INFLUENCE OF PRSTRESS LEVEL ON SHEAR BEHAVIOR OF SEGMENTAL CONCRETE BEAMS WITH EXTERNAL TENDONS

INFLUENCE OF PRSTRESS LEVEL ON SHEAR BEHAVIOR OF SEGMENTAL CONCRETE BEAMS WITH EXTERNAL TENDONS - Technical Paper - INFLUENCE OF PRSTRESS LEVEL ON SHEAR BEHAVIOR OF SEGMENTAL CONCRETE BEAMS WITH EXTERNAL TENDONS Dinh Hung NGUYEN *1, Ken WATANABE *2, Junichiro NIWA *3 and Tsuyoshi HASEGAWA *4 ABSTRACT

More information

Experimental and Finite Element Analysis of Base Frame for Rigidity

Experimental and Finite Element Analysis of Base Frame for Rigidity Experimental and Finite Element Analysis of Base Frame for Rigidity Amit V. Chavan Pg Student, Mechanical Engineering Department, R.I.T, Sakharale, Maharashtra, India amitchavan22@gmail.com S.S Gawade

More information

that maximum deformation occurs at the centre of crankpin neck surface and maximum stress appears at fillet areas of

that maximum deformation occurs at the centre of crankpin neck surface and maximum stress appears at fillet areas of Structural Static Analysis of Crankshaft B. Mounika 1, Madhuri.R.P 2 1 P.G Student, Mechanical Engineering, Hindustan Institute of Technology and Science, Chennai, India 2 Assistant Professor, Mechanical

More information

How to Design a Singly Reinforced Concrete Beam

How to Design a Singly Reinforced Concrete Beam Time Required: 45 minutes Materials: -Engineering Paper -Calculator -Pencil -Straight Edge Design For Flexural Limit State How to Design a Singly Reinforced Concrete Beam Goal: ΦMn > Mu Strength Reduction

More information

Finite Element Analysis of Slender Composite Column Subjected to Eccentric Loading

Finite Element Analysis of Slender Composite Column Subjected to Eccentric Loading Finite Element Analysis of Slender Composite Column Subjected to Eccentric Loading *Yonas T.Y. 1, Temesgen W. 2, Senshaw F.W. 3 1 Lecturer, School of Civil Engineering and Architecture, Dire Dawa Institute

More information

Ultimate and serviceability limit state optimization of cold-formed steel hat-shaped beams

Ultimate and serviceability limit state optimization of cold-formed steel hat-shaped beams NSCC2009 Ultimate and serviceability limit state optimization of cold-formed steel hat-shaped beams D. Honfi Division of Structural Engineering, Lund University, Lund, Sweden ABSTRACT: Cold-formed steel

More information

EFFECTS OF SHEAR SPAN-DEPTH RATIO ON THE BEHAVIOR OF HYBRID REINFORCED CONCRETE CONTINUOUS STRAIGHT DEEP BEAM

EFFECTS OF SHEAR SPAN-DEPTH RATIO ON THE BEHAVIOR OF HYBRID REINFORCED CONCRETE CONTINUOUS STRAIGHT DEEP BEAM International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 12, December 2018, pp. 985 992, Article ID: IJCIET_09_12_101 Available online at http://www.ia aeme.com/ijciet/issues.asp?jtype=ijciet&vtype=

More information

ENGINEERING MATERIAL 100

ENGINEERING MATERIAL 100 Department of Applied Chemistry Division of Science and Engineering SCHOOL OF ENGINEERING ENGINEERING MATERIAL 100 Experiments 4 and 6 Mechanical Testing and Applications of Non-Metals Name: Yasmin Ousam

More information

EXPERIMENTAL TESTING OF ARCHES WITH RECTANGULAR HOLLOW SECTIONS

EXPERIMENTAL TESTING OF ARCHES WITH RECTANGULAR HOLLOW SECTIONS Author manuscript, published in "Eurosteel 2011, Hungary (2011)" EUROSTEEL 2011, August 31 - September 2, 2011, Budapest, Hungary EXPERIMENTAL TESTING OF ARCHES WITH RECTANGULAR HOLLOW SECTIONS C. Douthe

More information