Natural Gas Hydrate, an Alternative for Transportation of Natural Gas

Size: px
Start display at page:

Download "Natural Gas Hydrate, an Alternative for Transportation of Natural Gas"

Transcription

1 Page 1 of 6 Þ Natural Gas Hydrate, an Alternative for Transportation of Natural Gas J. Javanmardi 1, Kh. Nasrifar 2, S. H. Najibi 3, M. Moshfeghian 4 1 Chemical Engineering Department, Shiraz University, Shiraz, Iran 2 Institute of Petroleum Engineering, Tehran University, Tehran, Iran 3 University of Petroleum Industry, Ahwaz, Iran 4 Chemical Engineering Department, University of Qatar, Doha, Qatar ABSTRACT: A process for conversion of natural gas to Natural Gas Hydrate, NGH, has been proposed. Based on the energy balances for the process reactor, the heat exchangers heat duties, the compressor power, and other operational conditions of the proposed process have been determined. The effects of other operational conditions such as seawater temperature as a cooling media, and the temperature of the feed gas have been studied. The results of this work can be used for feasibility study of natural gas transportation in the hydrate form. KEYWORDS: Natural Gas, Gas Hydrate, Natural Gas Transportation, Energy INTRODUCTION: Gas hydrate is a lattice-like compound. At the appropriate conditions of temperature and pressure, the host water molecules can form cage structures that guest compounds are entrapped in. Small hydrocarbon molecules or some non-hydrocarbon compounds in gas or liquid phases are examples of these guest compounds. In appearance, this compound is like snow or loose ice. This compound, thermodynamically, is solid solutions. The cage structure of this compound is formed because of water molecules hydrogen bonding. Large guest molecules may decompose this structure where this framework can not entrap the small molecules. The main industrial interest in hydrates lies in preventing their formation and subsequent plugging of gas transmission lines. On the other hand, some new industrial applications of gas hydrates are as follows: It is now well known that huge deposits of natural gas in the form of hydrates are present in the marine sediments throughout the world and also in oil deposits and permafrost regions. These are the new source of natural gas and future energy. Removal of carbon dioxide from atmosphere and converting to the hydrate form is another application. However, decomposition of gas hydrates might also enhance the greenhouse effect. Water desalination, [1], [2] and gas separation and storage, [3], are other applications of the hydrate phenomenon. Transportation of natural gas in the form of frozen hydrate is considered by some researchers [4]. The results of this study can be used in economic evaluation of the transportation of natural gas in hydrate form. PROPOSED PROCESS: The proposed process for production of NGH has been given in Figure 1. In this process, natural gas which is consisted of about 95 mole% CH 4, after passing through the dryer is fed to the reactor. The dryer has two roles: it acts as a direct heat exchanger and a pre-cooler for the natural gas stream. The second function of the dryer is reducing the water content of the waternatural gas hydrate slurry which is coming from the separator. The gas stream leaving the dryer is therefore at its water-dew point. The fresh water, which is assumed to be pure at this stage, is also pumped to the reactor. In the reactor the heat of hydrate formation is removed. For this purpose an

2 Page 2 of 6 external refrigeration cycle is used. The reactor operational conditions will be given later. After that, the slurry of the natural gas hydrate and free water are fed to the separator. The free water, after separation, is recycled to the reactor. The free water content of the water-natural gas hydrate slurry fed to the dryer is assumed to be 12 wt%. It has been investigated that to transport the natural gas hydrate at atmospheric pressure, the temperature of the hydrate slurry should be lowered to about -15 C, [5]. In other words, the hydrate needs not be refrigerated down to equilibrium temperature at atmospheric pressure. At this temperature and using the insulated vessels, because of hydrate decomposition a layer of ice is formed around the vessel. The heat of hydrate formation and the cooling duties of the heat exchanger in Figure 1 have been removed using a refrigeration cycle as indicated in this figure. Propane is used as refrigerant in this cycle. The approach temperature equal to 6 C is considered in the heat exchanger and condenser. Assuming temperature of the hydrate phase leaving the exchanger equal to -15 C and using the above approach temperature, the temperature of the refrigeration cycle evaporator and consequently its pressure are determined. Using seawater as a heat sink, temperature and pressure of the condenser have been determined. The turbine efficiency equal to 0.8 is used to simulate the compressor in this cycle. For every mole of natural gas fed to the process the following parameters are introduced: R, moles of water to the moles of natural gas fed to the reactor F, number of natural gas molecules (or moles) per water molecule (or mole) in hydrate phase F is reciprocal of the hydrate number, n, and always is less than unity. Using the free water content of the water-natural gas hydrate slurry fed to the dryer, the parameter R, can be obtained in the following manner: R 1 F =0.12(MwNG 18 +R ) (1)

3 Page 3 of 6 The models developed by Parrish and Prausnitz [8] or Holder et al. [9] could be used to predict the hydrate formation conditions in the presence of pure water. To evaluate the heat exchanger duty in the proposed process, the hydrate heat capacity reported by Rueff et al. [10] has been used. The total duty of the refrigeration cycle, as shown in Figure 1, is consisted of the reactor and heat exchanger duties. A computer program has been prepared for the simulation of the proposed process. RESULTS: For a typical natural gas with the following composition several different operational conditions of the proposed process have been studied. These conditions have been given in Table 1. The results, including the duties of the exchangers, compressor power, and other operational conditions have been given in Tables 2 and 3. The capacity of the plant for all of these cases is 25 MMSCF/D. As shown in Tables 2 and 3, the seawater temperature as a cooling media and the temperature of the stored hydrate have significant effect on the cooling load of the refrigeration cycle and the compressor power. Many investigations have been done on the self-preservation of hydrate at atmospheric pressure

4 Page 4 of 6 and temperatures higher than its equilibrium value, [11]. Recent studies indicate that this temperature may be increased to above ice point depending on the technique of the hydrate formation. So, the selfpreservation of hydrate at higher temperature may decrease the operating and the fixed cost of natural gas transportation considerably; and so, convert this method as an alternative for natural gas transportation. At present, the LNG method is the best especially for long distances; however, it requires a large reserve of natural gas and considerable capital investment. The effect of hydrate storage temperature on the compressor and condenser duties has been given in Figure 2. Figure 3 shows the effect of seawater and the feed water temperature on these terms. Other operational conditions in this figure are the same as the case a in Figure 1. The hydrate structure and so reactor temperature have been affected by the natural gas composition. For

5 Page 5 of 6 example at higher methane concentration as used in the previous cases, the hydrate structure is changed into S-I and the equilibrium temperature at the same pressure is increased about 6 C. To maximize the hydrate formation rate, 2 C as driving force has been considered in the reactor, i.e., its temperature is 2 C lower than equilibrium value. Some inorganic compounds such as acetone have promoting effect on hydrate formation conditions, [12]. In the presence of these compounds, the hydrate formation occurs at more feasible conditions and therefore lower operational costs are needed. CONCLUSIONS: The storage temperature of hydrate has considerable effect on the energy consumption and the cost of natural gas transportation in hydrate form. Moreover, to compare the NGH method with available methods in natural gas transportation such as LNG, the seawater and the feed water temperature have critical roles. ACKNOWLEDGEMENT: The authors appreciate the financial support of Research and Development Branch of National Iranian Gas Company Grant No SYMBOLS: R, moles of water to the moles of natural gas fed to the reactor F, number of natural gas molecules per water molecule in hydrate phase Mw, molecular weight i, ratio of the no. of type i cavities to no. of water molecules mi, fraction of the type m cavities which are occupied by hydrate former i H, heat of formation of hydrate molecule, J/gr mole C P, heat capacity, J/gr mole.k H, enthalpy, J/gr mole P, pressure, kpa T, temperature, K NGH, natural gas hydrate REFERENCE: 1. Knox, W. G., M. Hess, G. E. Jones and H. B. Smith, (1961), "The Hydrate Process", Chem. Eng. Prog., 57 (2), pp Kubota, H., K. Shimizu, Y. Tanaka and T. J. Makita, (1984), "Thermodynamic Properties of R13 (CClF 3 ), R23 (CHF 3 ), R152a (C 2 H 4 F 2 ) and Propane Hydrates for Desalination of Seawater" Chem. Eng. Japan, vol. 17, no. 4, pp Miller, B. and E. K. Strong, (1946), Amer. Gas Assoc. Monthly, 28 (2), p Gudmundsson, J. S., and A. Borrehaug, (1996), Frozen Hydrate for Transportation of Natural Gas, 2 nd International Conference on Natural Gad Hydrate, June, 2-6, Toulouse, France, pp Gudmundsson, J. S., V. Andersson, and O. I. Levik, (1997), Gas Storage and Transport Using Hydrates, Offshore Mediterranean Conference, Ravenna, March,

6 Page 6 of 6 6. Pieroen, A. P. (1955), Gas Hydrates-Approximate Relations Between Heat of Formation, Composition and Equilibrium Temperature Lowering by Inhibitors, Recueil Trav. Chim. 74, pp Javanmardi, J., M. Moshfeghian and R. N. Maddox, (1998), "Simple Method for Predicting Gas-Hydrate-Forming Conditions in Aqueous Mixed-Electrolyte Solutions", The Journal of Energy and Fuels, 12 (2), pp Parrish, W. R. and J. M. Prausnitz, (1972), "Dissociation Pressures of Gas Hydrates Formed by Gas Mixtures", Ind. Eng. Chem. Proc. Dev., 11 (1), pp Holder, G. D., G. Gorbin, and K. D. Papadopoulos, (1980), "Thermodynamic and Molecular Properties of Gas Hydrates from Mixtures Containing Methane, Argon and Krypton", Ind. Eng. Chem. Fund., 19 (3), pp Rueff, R.M., E.D. Sloan, and V.F. Yesavage, (1988) Heat Capacity and Heat of Dissociation of Methane Hydrates, AIChE J. 34, pp Shirota, H., E. D. Sloan, Jr., P. Bollavaram, D. J. Turner, I. Aya, and S. Namie, Measurement of Methane Hydrate Dissociation for Application to Natural Gas Storage and Transportation, Ng, H. J. and D. B. Robinson, (1994), "New Developments in the Measurement and Prediction of Hydrate Formation for Processing Needs", Annals of the New York Academy of Science, vol. 715, p. 450.

NATURAL GAS HYDRATES & DEHYDRATION

NATURAL GAS HYDRATES & DEHYDRATION Training Title NATURAL GAS HYDRATES & DEHYDRATION Training Duration 5 days Training Venue and Dates Natural Gas Hydrates & Dehydration 5 02 26 June $3,750 Abu Dhabi, UAE In any of the 5 star hotels. The

More information

SIMULATION AND SENSITIVITY ANALYSIS OF A MIXED FLUID CASCADE LNG PLANT IN A TROPICAL CLIMATE USING A COMMERCIAL SIMULATOR

SIMULATION AND SENSITIVITY ANALYSIS OF A MIXED FLUID CASCADE LNG PLANT IN A TROPICAL CLIMATE USING A COMMERCIAL SIMULATOR SIMULATION AND SENSITIVITY ANALYSIS OF A MIXED FLUID CASCADE LNG PLANT IN A TROPICAL CLIMATE USING A COMMERCIAL SIMULATOR Gianfranco Rodríguez 1, Fabiana Arias 1, Maria G. Quintas 1, Alessandro Trigilio

More information

HYSYS WORKBOOK By: Eng. Ahmed Deyab Fares.

HYSYS WORKBOOK By: Eng. Ahmed Deyab Fares. HYSYS WORKBOOK 2013 By: Eng. Ahmed Deyab Fares eng.a.deab@gmail.com adeyab@adeyab.com Mobile: 002-01227549943 - Email: adeyab@adeyab.com 1 Flash Separation We have a stream containing 15% ethane, 20% propane,

More information

PREVENTION OF HYDRATE BLOCKAGE OF PIPELINE FOR GAS PRODUCTION

PREVENTION OF HYDRATE BLOCKAGE OF PIPELINE FOR GAS PRODUCTION PREVENTION OF HYDRATE BLOCKAGE OF PIPELINE FOR GAS PRODUCTION Jeong Hwan, Lee, R&D Division, Korea Gas Corporation Young Soon, Baek, R&D Division, Korea Gas Corporation Young Chul, Lee, R&D Division, Korea

More information

Limitations and Challenges Associated with the Disposal of Mercaptan-Rich Acid Gas Streams by Injection A Case Study. 1.

Limitations and Challenges Associated with the Disposal of Mercaptan-Rich Acid Gas Streams by Injection A Case Study. 1. Limitations and Challenges Associated with the Disposal of Mercaptan-Rich Acid Gas Streams by Injection A Case Study Felise Man, Gas Liquids Engineering Ltd., Calgary, AB, Canada John J. Carroll, Gas Liquids

More information

Qualitative Phase Behavior and Vapor Liquid Equilibrium Core

Qualitative Phase Behavior and Vapor Liquid Equilibrium Core 2/22/2017 Qualitative Phase Behavior and Qualitative Phase Behavior Introduction There are three different phases: solid, liquid, and gas (vapor) Energy must be added to melt a solid to form liquid If

More information

Fluid Mechanics, Heat Transfer, and Thermodynamics. Design Project. Production of Acetone

Fluid Mechanics, Heat Transfer, and Thermodynamics. Design Project. Production of Acetone Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project Production of Acetone We are investigating the feasibility of constructing a new, grass-roots, 15,000 metric tons/year, acetone plant.

More information

Partial Oxidation of Methane to Form Synthesis Gas in a Tubular AC Plasma Reactor

Partial Oxidation of Methane to Form Synthesis Gas in a Tubular AC Plasma Reactor Partial Oxidation of Methane to Form Synthesis Gas in a Tubular AC Plasma Reactor T.A. Caldwell, H. Le, L.L. Lobban, and R.G. Mallinson Institute for Gas Utilization and Technologies, School of Chemical

More information

Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland

Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland Vipul Gupta vipul.gupta@tecnico.ulisboa.pt Instituto Superior Técnico,Lisboa, Portugal October 2016 Abstract This work describes

More information

A Study of Methane Hydrate Combustion Phenomenon Using The Porous Cylindrical Burner

A Study of Methane Hydrate Combustion Phenomenon Using The Porous Cylindrical Burner 25 th ICDERS August 2 7, 2015 Leeds, UK A Study of Methane Hydrate Combustion Phenomenon Using The Porous Cylindrical Burner Fang-Hsien Wu 1, Guan-Bang Chen 2, Yueh-Heng Li 1, Yei-Chin Chao 1 1 Department

More information

Experimental Investigation on the Effect of Parameters Influencing the Performance of a Horizontal Styrene-Water Separator

Experimental Investigation on the Effect of Parameters Influencing the Performance of a Horizontal Styrene-Water Separator Iranian Journal of Chemical Engineering Vol. 9, No. 3 (Summer), 2012, IAChE Resea rch note Experimental Investigation on the Effect of Parameters Influencing the Performance of a Horizontal Styrene-Water

More information

Simple Dew Point Control HYSYS v8.6

Simple Dew Point Control HYSYS v8.6 Simple Dew Point Control HYSYS v8.6 Steps to set up a simulation in HYSYS v8.6 to model a simple dew point control system consisting of: Gas chiller Flash separator Liquid stabilizer with gas recycle &

More information

THE CONCEPT OF INTEGRATED CRYOGENIC ENERGY STORAGE FOR LARGE SCALE ELECTRICITY GRID SERVICES. Finland *corresponding author

THE CONCEPT OF INTEGRATED CRYOGENIC ENERGY STORAGE FOR LARGE SCALE ELECTRICITY GRID SERVICES. Finland *corresponding author THE CONCEPT OF INTEGRATED CRYOGENIC ENERGY STORAGE FOR LARGE SCALE ELECTRICITY GRID SERVICES Sakari Kaijaluoto 1, Markus Hurskainen 1,* and Pasi Vainikka 2 1 VTT Technical Research Centre of Finland, Koivurannantie

More information

Enhancement of LNG Propane Cycle through Waste Heat Powered Absorption Cooling

Enhancement of LNG Propane Cycle through Waste Heat Powered Absorption Cooling Enhancement of LNG Propane Cycle through Waste Heat Powered Absorption Cooling A. Mortazavi 1, P. Rodgers 2, S. Al-Hashimi 2, Y. Hwang 1 and R. Radermacher 1 1 Department of Mechanical Engineering, University

More information

Design of Liquefaction Process of Biogas using Aspen HYSYS Simulation

Design of Liquefaction Process of Biogas using Aspen HYSYS Simulation 2, Issue 1 (2018) 10-15 Journal of Advanced Research in Biofuel and Bioenergy Journal homepage: www.akademiabaru.com/arbb.html ISSN: 2600-8459 Design of Liquefaction Process of Biogas using Aspen HYSYS

More information

Transportation of Natural Gas-LPG Mixtures

Transportation of Natural Gas-LPG Mixtures 50c Transportation of Natural Gas-LPG Mixtures Shuncheng Ji and Richard G. Mallinson Institute for Gas Utilization Technologies And School of Chemical Engineering and Materials Science The University of

More information

HYDRATE NON-PIPELINE TECHNOLOGY FOR TRANSPORT OF NATURAL GAS

HYDRATE NON-PIPELINE TECHNOLOGY FOR TRANSPORT OF NATURAL GAS HYDRATE NON-PIPELINE TECHNOLOGY FOR TRANSPORT OF NATURAL GAS Jón S. Gudmundsson, Norwegian University of Science and Technology Oscar F. Graff, Aker Kvaerner Technology AS 1. INTRODUCTION The economics

More information

A Feasibility Study of the Technologies for Deep Ethane Recovery from the Gases Produced in One of the Iran Southern Fields

A Feasibility Study of the Technologies for Deep Ethane Recovery from the Gases Produced in One of the Iran Southern Fields Iranian Journal of Oil & Gas Science and Technology, Vol. 1 (2012), No. 1, pp. 13-24 http://ijogst.put.ac.ir A Feasibility Study of the Technologies for Deep Ethane Recovery from the Gases Produced in

More information

Utilisation of LNG Cold Energy at Maptaput LNG Receiving Terminal

Utilisation of LNG Cold Energy at Maptaput LNG Receiving Terminal Utilisation of LNG Cold Energy at Maptaput LNG Receiving Terminal Phatthi Punyasukhananda 1,2,* and Athikom Bangviwat 1,2 1 The Joint Graduate School of Energy and Environment, King Mongkut s University

More information

Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas

Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas H.M. Chang 1, J.H. Park 1, K.S. Cha 2, S. Lee 2 and K.H. Choe 2 1 Hong Ik University, Seoul, Korea 121-791 2 Korea Gas Corporation,

More information

Chemistry of Petrochemical Processes

Chemistry of Petrochemical Processes Chemistry of Petrochemical Processes ChE 464 Instructor: Dr. Ahmed Arafat, PhD Office: building 45 room 106 E-mail: akhamis@kau.edu.sa www.kau.edu.sa.akhamis files Book Chemistry of Petrochemical Processes

More information

DESIGN ANALYSIS OF A REFRIGERATED WAREHOUSE USING LNG COLD ENERGY

DESIGN ANALYSIS OF A REFRIGERATED WAREHOUSE USING LNG COLD ENERGY , Volume 4, Number 1, p.14-23, 2003 DESIGN ANALYSIS OF A REFRIGERATED WAREHOUSE USING LNG COLD ENERGY K.H. Yang and S.C. Wu Mechanical Engineering Department, National Sun Yat-Sen University, Kaohsiung,

More information

Supercritical Water Coal Conversion with Aquifer-Based Sequestration of CO 2

Supercritical Water Coal Conversion with Aquifer-Based Sequestration of CO 2 Supercritical Water Coal Conversion with Aquifer-Based Sequestration of CO 2 Profs. Reginald Mitchell, 1 Christopher Edwards 1 and Scott Fendorf 2 1 Mechanical Engineering Department 2 Department of Geological

More information

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas 1 P age Module 4 : Hydrogen gas Lecture 29 : Hydrogen gas 2 P age Keywords: Electrolysis, steam reforming, partial oxidation, storage Hydrogen gas is obtained in a very trace amount in atmosphere. It is

More information

Potential Industry Applications Using Gas Hydrate Technology

Potential Industry Applications Using Gas Hydrate Technology J. Rajnauth et al.: Potential Industry Applications Using Gas Hydrate Technology 15 ISSN 0511-5728 The West Indian Journal of Engineering Vol.35, No.2, January 2013, pp.15-21 Potential Industry Applications

More information

Optimized Heat Exchanger Network design of GTL (Gas-To-Liquid) process

Optimized Heat Exchanger Network design of GTL (Gas-To-Liquid) process October 2014, Volume 5, No.5 International Journal of Chemical and Environmental Engineering Optimized Heat Exchanger Network design of GTL (Gas-To-Liquid) process Sangsun Lee a ; Dongju Moon b ; Sungwon

More information

Chemistry Resource Kit

Chemistry Resource Kit This is a chapter from the Chemistry Resource Kit The Qenos Chemistry Resource kit has been developed as an information package for secondary students and others who wish to learn about Qenos, plastics

More information

MOLECULAR GATE TECHNOLOGY FOR (SMALLER SCALE) LNG PRETREATMENT

MOLECULAR GATE TECHNOLOGY FOR (SMALLER SCALE) LNG PRETREATMENT MOLECULAR GATE TECHNOLOGY FOR (SMALLER SCALE) LNG PRETREATMENT Presented at the 2010 Gas Processors 89 th Annual Convention Austin, TX March, 2010 Michael Mitariten, P.E. Guild Associates, Inc. Dublin,

More information

What is gas hydrates?

What is gas hydrates? 서유택 Flow Assurance What is gas hydrates? : An ice-like solid that forms when i) Sufficient water is present ii) Hydrate former is present (i.e. C1, C2, and C3) iii) Right combination of Pressure and Temperature

More information

Water Plasma Generation under Atmospheric Pressure for Waste Treatment

Water Plasma Generation under Atmospheric Pressure for Waste Treatment Water Plasma Generation under Atmospheric Pressure for Waste Treatment Shigehiro Shimbara and Takayuki Watanabe Research Laboratory for Nuclear Reactors Tokyo Institute of Technology Email: watanabe@nr.titech.ac.jp

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION Exam Type: X Examiner: J.S. Wallace You may use your copy of the

More information

An Offshore Natural Gas Transmission Pipeline Model and Analysis for the Prediction and Detection of Condensate/Hydrate Formation Conditions

An Offshore Natural Gas Transmission Pipeline Model and Analysis for the Prediction and Detection of Condensate/Hydrate Formation Conditions IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736.Volume 10, Issue 3 Ver. I (Mar. 2017), PP 33-39 www.iosrjournals.org An Offshore Natural Gas Transmission Pipeline Model and Analysis for

More information

Thermodynamic modeling of inhibitors role in preventing from gas hydrate formation in the pipelines

Thermodynamic modeling of inhibitors role in preventing from gas hydrate formation in the pipelines 86 Ciência enatura, Santa Maria, v. 37 Part 1 2015, p. 86 92 ISSN impressa: 0100-8307 ISSN on-line: 2179-460X Thermodynamic modeling of inhibitors role in preventing from gas hydrate formation in the pipelines

More information

CO 2 Enhanced Oil Recovery Or How to Get Filthy Rich in the Oil Industry

CO 2 Enhanced Oil Recovery Or How to Get Filthy Rich in the Oil Industry University of Missouri-Columbia Department of Chemistry Organic Cume, December 8, 2007 Dr. Rainer Glaser CO 2 Enhanced Oil Recovery Or How to Get Filthy Rich in the Oil Industry Leading Reference Effects

More information

Natural Gas Processing Unit Modules Definitions

Natural Gas Processing Unit Modules Definitions Natural Gas Processing Unit Modules Definitions Alberta Climate Change Office Draft Version 1.0 December 2018 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

More information

Reprinted from HydrocarbonEngineering December

Reprinted from HydrocarbonEngineering December A case for dehydration Adrian Finn and Terry Tomlinson, Costain Oil, Gas & Process Ltd, UK, discuss process technology to meet water and hydrocarbon dew point specifications on natural gas storage installations.

More information

3 3 Cycles of Matter

3 3 Cycles of Matter 3 3 Cycles of Matter Recycling in the Biosphere Energy - one way flow matter - recycled within and between ecosystems. biogeochemical cycles matter Elements, chemical compounds, and other forms passed

More information

Heat Pump Efficiencies simulated in Aspen HYSYS and Aspen Plus

Heat Pump Efficiencies simulated in Aspen HYSYS and Aspen Plus Heat Pump Efficiencies simulated in Aspen HYSYS and Aspen Plus Lars Erik Øi 1 Irene Yuste Tirados 1 1 Department of Process, Energy and Environmental Technology, Telemark University College, Norway lars.oi@hit.no

More information

An Exergy Analysis on a Crude Oil Atmospheric Distillation Column

An Exergy Analysis on a Crude Oil Atmospheric Distillation Column An Exergy Analysis on a Crude Oil Atmospheric Distillation Column Amir Hossein Tarighaleslami 1 *, Mohammad Reza Omidkhah 2, Soroush Younessi Sinaki 3 1 Chemical Engineering Faculty, Islamic Azad University,

More information

Furnace. 1. (10 points) mol/s 53.5% H2O CO2

Furnace. 1. (10 points) mol/s 53.5% H2O CO2 MEEBAL Exam 3 December 2012 Show all work in your blue book. Points will be deducted if steps leading to answers are not shown. No work outside blue books (such as writing on the flow sheets) will be considered.

More information

Design Project Energy Balances and Numerical Methods Styrene Manufacture

Design Project Energy Balances and Numerical Methods Styrene Manufacture Design Project Energy Balances and Numerical Methods Styrene Manufacture Styrene is the monomer used to make polystyrene, which has many uses [1]. In the current process, styrene is produced by the dehydrogenation

More information

ASSISTED METHANE HYDRATE FORMATION WITH THE ADDITION OF PROMOTERS. Keywords: Methane hydrate/tbab/ Cyclopentane/Hydrate formation

ASSISTED METHANE HYDRATE FORMATION WITH THE ADDITION OF PROMOTERS. Keywords: Methane hydrate/tbab/ Cyclopentane/Hydrate formation ASSISTED METHANE HYDRATE FORMATION WITH THE ADDITION OF PROMOTERS Chutikan Jaikwang a, Pramoch Rungsunvigit* a,b, Santi Kulprathipanja c a The Petroleum and Petrochemical College, Chulalongkorn University,

More information

Refrigeration Cycle. Definitions , , 11-46, 11-49,

Refrigeration Cycle. Definitions , , 11-46, 11-49, Refrigeration Cycle Reading Problems - -7, -9 -, -46, -49, -03 Definitions the st law of thermodynamics tells us that heat flow occurs from a hot source to a cooler sink, therefore, energy in the form

More information

Green FSRU for the future

Green FSRU for the future Green FSRU for the future Presentation at GREEN4SEA Athens April 6 th 2016 Dr. John Kokarakis Vice President Technology & Business Development, Africa, S. Europe Hellenic, Black Sea & Middle East Zone

More information

Problems in chapter 9 CB Thermodynamics

Problems in chapter 9 CB Thermodynamics Problems in chapter 9 CB Thermodynamics 9-82 Air is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300 K, and a turbine inlet

More information

INCREASING THE CAPACITY OF NGL RECOVERY TRAINS. Stéphane MESPOULHES XVI CONVENCIÓN INTERNACIONAL DE GAS Caracas de Mayo de 2004

INCREASING THE CAPACITY OF NGL RECOVERY TRAINS. Stéphane MESPOULHES XVI CONVENCIÓN INTERNACIONAL DE GAS Caracas de Mayo de 2004 INCREASING THE CAPACITY OF NGL RECOVERY TRAINS Stéphane MESPOULHES XVI CONVENCIÓN INTERNACIONAL DE GAS Caracas WHO IS TECHNIP? 2 World Class Engineering & Construction Group in Oil & Gas Public Company

More information

S.E. (Chemical) (First Semester) EXAMINATION, 2012 PROCESS CALCULATIONS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (First Semester) EXAMINATION, 2012 PROCESS CALCULATIONS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4162]-185 S.E. (Chemical) (First Semester) EXAMINATION, 2012 PROCESS CALCULATIONS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

More information

Eutectic freeze crystallization: Application to process streams and waste water purification

Eutectic freeze crystallization: Application to process streams and waste water purification Chemical Engineering and Processing 37 (1998) 207 213 Eutectic freeze crystallization: Application to process streams and waste water purification F. van der Ham *, G.J. Witkamp, J. de Graauw, G.M. van

More information

COMBINED HEAT AND POWER SYSTEMS IN LIQUEFIED NATURAL GAS (LNG) REGASIFICATION PROCESSES

COMBINED HEAT AND POWER SYSTEMS IN LIQUEFIED NATURAL GAS (LNG) REGASIFICATION PROCESSES http://dx.doi.org/10.7494/drill.2014.31.1.91 * * * COMBINED HEAT AND POWER SYSTEMS IN LIQUEFIED NATURAL GAS (LNG) REGASIFICATION PROCESSES 1. INTRODUCTION ing place in the neighborhood of natural gas deposits.

More information

Solubility of Methane, Ethane, and Propane in Pure Water Using New Binary Interaction Parameters

Solubility of Methane, Ethane, and Propane in Pure Water Using New Binary Interaction Parameters Iranian Journal of Oil & Gas Science and Technology, Vol. 4 (2015), No. 3, pp. 51-59 http://ijogst.put.ac.ir Solubility of Methane, Ethane, and Propane in Pure Water Using New Binary Interaction Parameters

More information

DYNAMICS OF BASELOAD LIQUEFIED NATURAL GAS PLANTS ADVANCED MODELLING AND CONTROL STRATEGIES

DYNAMICS OF BASELOAD LIQUEFIED NATURAL GAS PLANTS ADVANCED MODELLING AND CONTROL STRATEGIES DYNAMICS OF BASELOAD LIQUEFIED NATURAL GAS PLANTS ADVANCED MODELLING AND CONTROL STRATEGIES Dr. Matthew J. Okasinski, P.E. Principal Engineer Air Products and Chemicals, Inc. Allentown, Pennsylvania, USA

More information

Small-Scale Natural Gas Hydrate Virtual Pipeline. Development and Applications

Small-Scale Natural Gas Hydrate Virtual Pipeline. Development and Applications Small-Scale Natural Gas Hydrate Virtual Pipeline Development and Applications Natural Gas Virtual Pipelines Currently only two virtual pipeline delivery methods: Compressed Natural Gas (CNG) Liquid Natural

More information

Simple Dew Point Control HYSYS v10. When the simulation is set up the overall PFD should look like the following figure.

Simple Dew Point Control HYSYS v10. When the simulation is set up the overall PFD should look like the following figure. Simple Dew Point Control HYSYS v10 Steps to set up a simulation in HYSYS v10 to model a simple dew point control system consisting of: Gas chiller Flash separator Liquid stabilizer with gas recycle & compression

More information

Design Considerations for Generating Ammonia from Urea for NOx Control with SCRs

Design Considerations for Generating Ammonia from Urea for NOx Control with SCRs Design Considerations for Generating Ammonia from Urea for NOx Control with SCRs Paper #835 Herbert W. Spencer III EC&C Technologies, Inc., 26017 Huntington Lane suite B, Santa Clarita, CA 91355, H. James

More information

Keywords: GTL, Fisher-Tropsch, natural gas, synthesis gas, steam reforming NCPO, auto-thermal reforming. UNESCO EOLSS

Keywords: GTL, Fisher-Tropsch, natural gas, synthesis gas, steam reforming NCPO, auto-thermal reforming. UNESCO EOLSS GASES TO LIQUIDS (GTL) H. K. Abdel-Aal NRC, Cairo, Egypt Keywords: GTL, Fisher-Tropsch, natural gas, synthesis gas, steam reforming NCPO, auto-thermal reforming. Contents 1. Introduction 2. Exploitation

More information

Synergistic Energy Conversion Processes Using Nuclear Energy and Fossil Fuels

Synergistic Energy Conversion Processes Using Nuclear Energy and Fossil Fuels Synergistic Energy Conversion Processes Using Energy and Fossil Fuels Masao Hori Systems Association, Japan Email: mhori@mxb.mesh.ne.jp ABSTRACT This paper reviews the methods of producing energy carriers,

More information

THE PROSPECT OF USING LNG REGASIFICATION AS A HEAT SINK FOR SEAWATER DESALINATION

THE PROSPECT OF USING LNG REGASIFICATION AS A HEAT SINK FOR SEAWATER DESALINATION THE PROSPECT OF USING LNG REGASIFICATION AS A HEAT SINK FOR SEAWATER DESALINATION Shaik Salim 1, Ooi Thomas Ho 2, Pehkonen Simo O. 3 1. Research Engineer, Institute of Chemical Engineering Sciences, 1

More information

Membrane Technologies for Tritium Recovering in the Fusion Fuel Cycle

Membrane Technologies for Tritium Recovering in the Fusion Fuel Cycle Membrane Technologies for Tritium Recovering in the Fusion Fuel Cycle S. Tosti 1), L. Bettinali 1), C. Rizzello 2), V. Violante 1) 1) Euratom-ENEA Fusion Association, C. R. ENEA Frascati, 00044 Frascati

More information

Study evaluates two amine options for gas sweetening

Study evaluates two amine options for gas sweetening Study evaluates two amine options for gas sweetening 08/07/2006 A study of two methods for removing H 2S and CO 2 from natural gas has concluded that an arrangement of methyl diethanolamine (MDEA) and

More information

Combined replacement and depressurization methane hydrate recovery method

Combined replacement and depressurization methane hydrate recovery method Original Article Combined replacement and depressurization methane hydrate recovery method Energy Exploration & Exploitation 2016, Vol. 34(1) 129 139! The Author(s) 2016 Reprints and permissions: sagepub.co.uk/journalspermissions.nav

More information

GAS CONDITIONING FOR GAS STORAGE INSTALLATIONS

GAS CONDITIONING FOR GAS STORAGE INSTALLATIONS GAS CONDITIONING FOR GAS STORAGE INSTALLATIONS Grant Johnson, Adrian Finn and Terry Tomlinson, Costain Oil, Gas & Process Ltd., UK, discuss process technology to meet water and hydrocarbon dew point specifications

More information

SYNTHESIS AND OPTIMIZATION OF DEMETHANIZER FLOWSHEETS FOR LOW TEMPERATURE SEPARATION PROCESSES

SYNTHESIS AND OPTIMIZATION OF DEMETHANIZER FLOWSHEETS FOR LOW TEMPERATURE SEPARATION PROCESSES Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice SYNTHESIS AND OPTIMIZATION OF DEMETHANIZER FLOWSHEETS FOR LOW

More information

Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process

Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process Muhammad A. Al-Arfaj * Chemical Engineering Department King Fahd University of Petroleum and Minerals, Dhahran,

More information

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction Improvement of distillation column efficiency by integration with organic Rankine power generation cycle Dmitriy A. Sladkovskiy, St.Petersburg State Institute of Technology (technical university), Saint-

More information

3 3 Cycles of Matter Slide 1 of 33

3 3 Cycles of Matter Slide 1 of 33 1 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within and between ecosystems.

More information

Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant

Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant J.-M. Amann 1, M. Kanniche 2, C. Bouallou 1 1 Centre Énergétique et Procédés (CEP), Ecole Nationale Supérieure des Mines

More information

Table of Contents. iii. vi Tables. Figures. viii Foreword. ix Acknowledgments

Table of Contents. iii. vi Tables. Figures. viii Foreword. ix Acknowledgments Figures vi Tables viii Foreword ix Acknowledgments xi About the authors xiii Chapter 1. Fundamentals 1 Fluid Properties 1 Temperature 2 Pressure 3 Gravity and Miscibility 3 Solubility 4 The Ideal Gas Law

More information

Faculty of Petroleum & Renewable Energy Engineering. Engineering. Sem 2 (2013/14) Faculty of Petroleum & Renewable Energy Engineering.

Faculty of Petroleum & Renewable Energy Engineering. Engineering. Sem 2 (2013/14) Faculty of Petroleum & Renewable Energy Engineering. FACULTY OF PETROLEUM & RENEWABLE ENERGY ENGINEERING Topic Learning Outcomes CHAPTER 3.5 3.6 At the end of this course students will be able to Material Balances on Multiple-Unit Processes with Recycle

More information

Changes to the Atmosphere

Changes to the Atmosphere Changes to the Atmosphere 49 minutes 49 marks Page of 24 Q. The amount of carbon dioxide in the Earth s atmosphere has changed since the Earth was formed. The amount of carbon dioxide continues to change

More information

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max.

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. SET - 1 1. a) Discuss about PMM I and PMM II b) Explain about Quasi static process. c) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity. d) What is steam quality? What

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

Fluid Mechanics, Heat Transfer, and Thermodynamics Fall Design Project. Production of Dimethyl Ether

Fluid Mechanics, Heat Transfer, and Thermodynamics Fall Design Project. Production of Dimethyl Ether Fluid Mechanics, Heat Transfer, and Thermodynamics Fall 2001 Design Project Production of Dimethyl Ether We are investigating the feasibility of constructing a new, grass-roots, 50,000 tonne/y, (1 tonne

More information

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem?

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem? 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the

More information

Combustion of Methane Hydrate

Combustion of Methane Hydrate 23 rd ICDERS July 24-29, 2011 Irvine, USA Combustion of Methane Hydrate Melika Roshandell 1, Jordan Glassman 2, Matt Khalil 2, Peter Taborek 2, and Derek Dunn-Rankin 1 1 Department of Mechanical and Aerospace

More information

Example SPC-2: Effect of Increasing Column P on a C3 splitter

Example SPC-2: Effect of Increasing Column P on a C3 splitter Example SPC-2: Effect of Increasing Column P on a C3 splitter Consider the separation of a mixture of 50 mol/hr of propane C 3 H 8 (1) and 50 mol/hr propene, C 3 H 6 (2) at a pressure of 1.1 bar and a

More information

Training Venue and Dates REF Gas Dehydration & Booster Station Utilities Nov $5,750 PE038

Training Venue and Dates REF Gas Dehydration & Booster Station Utilities Nov $5,750 PE038 Training Title GAS DEHYDRATION & BOOSTER STATION UTILITIES RESPONSIBILIT Training Duration 5 days Training Venue and Dates REF Gas Dehydration & Booster Station Utilities 5 4-8 Nov $5,750 PE038 Vienna,

More information

Fluid Mechanics, Heat Transfer, Thermodynamics Design Project. Production of Formalin

Fluid Mechanics, Heat Transfer, Thermodynamics Design Project. Production of Formalin Fluid Mechanics, Heat Transfer, Thermodynamics Design Project Production of Formalin Your assignment is to continue evaluating the details of a process to produce 50,000 tonne/y of formalin. Formalin is

More information

Gas Hydrates in Low Water Content Gases: Experimental Measurements and Modelling Using the CPA EoS

Gas Hydrates in Low Water Content Gases: Experimental Measurements and Modelling Using the CPA EoS Gas Hydrates in Low Water Content Gases: Experimental Measurements and Modelling Using the CPA EoS Antonin Chapoy, Hooman Haghighi, Rod Burgass and Bahman Tohidi Hydrafact Ltd. & Centre for Gas Hydrate

More information

Carbon Capture Options for LNG Liquefaction

Carbon Capture Options for LNG Liquefaction Carbon Capture Options for LNG Liquefaction ME-Tech 25 January 2011, Dubai Chris Sharratt Manager, Midstream Business Solutions Group Images: Courtesy of Woodside Energy Ltd Outline LNG liquefaction sources

More information

Study Of A Basic Mcfc Unit For Modular Multi-Mw Systems

Study Of A Basic Mcfc Unit For Modular Multi-Mw Systems Study Of A Basic Mcfc Unit For Modular Multi-Mw Systems Danilo Marra, Barbara Bosio University of Genoa Department of Civil, Environmental and Architectural Engineering Via Opera Pia, 15 16145 Genoa, Italy

More information

Heat Effects in Gas Systems

Heat Effects in Gas Systems Heat Effects in Gas Systems Günter Wagner, LIWACOM and Zdeněk Vostrý, Simone Research Group Paper presented at the 9 th SIMONE Congress, Dubrovnik, Croatia, 15.-17. October 2008 Introduction This paper

More information

NUTRIENT CYCLES (How are nutrients recycled through ecosystems?)

NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) Why? We have learned the importance of recycling our trash. It allows us to use something again for another purpose and prevents the loss

More information

NUTRIENT CYCLES. (How are nutrients recycled through ecosystems?)

NUTRIENT CYCLES. (How are nutrients recycled through ecosystems?) NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) Why? We have learned the importance of recycling our trash. It allows us to use something again for another purpose and prevents the loss

More information

Eng Thermodynamics I - Examples 1

Eng Thermodynamics I - Examples 1 Eng3901 - Thermodynamics I - Examples 1 1 pdv Work 1. Air is contained in a vertical frictionless piston-cylinder. The mass of the piston is 500 kg. The area of the piston is 0.005 m 2. The air initially

More information

ADVANCED PROCESS CONTROL QATAR GAS ONE YEAR EXPERIENCE

ADVANCED PROCESS CONTROL QATAR GAS ONE YEAR EXPERIENCE ADVANCED PROCESS CONTROL QATAR GAS ONE YEAR EXPERIENCE Bouchebri El-Hadi Senior Process Engineer Benmouley Abdelkader Head of Process Qatar Liquefied Gas Company Limited. Ras Laffan Industrial Area, Doha,

More information

ISSN : Investigation of effect of process parameters variation in an Iranian natural gas dehydration plant

ISSN : Investigation of effect of process parameters variation in an Iranian natural gas dehydration plant ISSN : 0974-7443 Volume 10 Issue 1 CTAIJ 10(1) 2015 [033-042] Investigation of effect of process parameters variation in an Iranian natural gas dehydration plant Ali Nemati Roozbahani 1, Mahmoud Bahmani

More information

Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project. Production of Acrylic Acid

Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project. Production of Acrylic Acid Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project Production of Acrylic Acid We are investigating the feasibility of constructing a new, grass-roots, 50,000 metric tons/year, acrylic acid

More information

Eng Thermodynamics I - Examples 1

Eng Thermodynamics I - Examples 1 Eng3901 - Thermodynamics I - Examples 1 1 pdv Work 1. Air is contained in a vertical frictionless piston-cylinder. The mass of the piston is 500 kg. The area of the piston is 0.005 m 2. The air initially

More information

A CFD Analysis of the Operating Conditions of a Multitube Pd Membrane for H 2 Purification

A CFD Analysis of the Operating Conditions of a Multitube Pd Membrane for H 2 Purification A CFD Analysis of the Operating Conditions of a Multitube Pd Membrane for H 2 Purification B. Castro-Dominguez 1*, R. Ma 1, A.G Dixon 1 and Y. H. Ma 1 1 Worcester Polytechnic Institute, Department of Chemical

More information

Ciência e Natura ISSN: Universidade Federal de Santa Maria Brasil

Ciência e Natura ISSN: Universidade Federal de Santa Maria Brasil Ciência e Natura ISSN: 0100-8307 cienciaenaturarevista@gmail.com Universidade Federal de Santa Maria Brasil Mosavi Kakavand, Fateme Sadat; Asachi, Reihaneh Thermodynamic modeling of inhibitors role in

More information

Analysis of Different Pressure Thermally Coupled Extractive Distillation Column

Analysis of Different Pressure Thermally Coupled Extractive Distillation Column Send Orders for Reprints to reprints@benthamscience.net 12 The Open Chemical Engineering Journal, 2014, 8, 12-18 Open Access Analysis of Different Pressure Thermally Coupled Extractive Distillation Column

More information

HELIUM AS A DRIVER FOR GAS FIELD DEVELOPMENT

HELIUM AS A DRIVER FOR GAS FIELD DEVELOPMENT HELIUM AS A DRIVER FOR GAS FIELD DEVELOPMENT Duncan Seddon*, Michael Clarke and Greg Ambrose DUNCAN SEDDON & ASSOCIATES PTY. LTD 116 KOORNALLA CR. MOUNT ELIZA VICTORIA 3930 AUSTRALIA Email: seddon@ozemail.com.au

More information

9/12/2018. Course Objectives MSE 353 PYROMETALLURGY. Prerequisite. Course Outcomes. Forms of Assessment. Course Outline

9/12/2018. Course Objectives MSE 353 PYROMETALLURGY. Prerequisite. Course Outcomes. Forms of Assessment. Course Outline Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 353 PYROMETALLURGY Course Objectives Understand the fundamental concepts of pyrometallurgy Understand the concepts of materials and energy

More information

A Novel LNG and Oxygen Stoichiometric Combustion Cycle without CO 2 Emission

A Novel LNG and Oxygen Stoichiometric Combustion Cycle without CO 2 Emission Proceedings of the International Gas urbine Congress 2003 okyo November 2-7, 2003 IGC2003okyo S-087 A Novel LNG and Oxygen Stoichiometric Combustion Cycle without CO 2 Emission Wei WANG, Ruixian CAI, Na

More information

ENERGY-SAVING CHARACTERISTICS OF HEAT INTEGRATED DISTILLATION COLUMN TECHNOLOGY APPLIED TO MULTI-COMPONENT PETROLEUM DISTILLATION

ENERGY-SAVING CHARACTERISTICS OF HEAT INTEGRATED DISTILLATION COLUMN TECHNOLOGY APPLIED TO MULTI-COMPONENT PETROLEUM DISTILLATION ENERGY-SAVING CHARACTERISTICS OF HEAT INTEGRATED DISTILLATION COLUMN TECHNOLOGY APPLIED TO MULTI-COMPONENT PETROLEUM DISTILLATION Kimpei Horiuchi 1, Kiro Yanagimoto 2, Kunio Kataoka 3, Masaru Nakaiwa,

More information

Design Parameters Affecting the Commercial Post Combustion CO 2 Capture Plants

Design Parameters Affecting the Commercial Post Combustion CO 2 Capture Plants Available online at www.sciencedirect.com Energy Procedia 37 (2013 ) 1517 1522 GHGT-11 Design Parameters Affecting the Commercial Post Combustion CO 2 Capture Plants Ahmed Aboudheir * and Walid Elmoudir

More information

Final DRAFT API TECHNICAL REPORT. Carbon Content, Sampling, & Calculation

Final DRAFT API TECHNICAL REPORT. Carbon Content, Sampling, & Calculation Final DRAFT API TECHNICAL REPORT Carbon Content, Sampling, & Calculation Final Draft: August 27, 2012 This document is not an API Standard; it is under consideration within an API technical committee but

More information

An examination of the prediction of hydrate formation conditions in sour natural gas

An examination of the prediction of hydrate formation conditions in sour natural gas An examination of the prediction of hydrate formation conditions in sour natural gas John J. Carroll Gas Liquids Engineering, Ltd. #300, 2749-39 Avenue NE Calgary, Alberta CANADA T1Y 4T8 ABSTRACT It is

More information

Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant

Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant International Journal of Engineering and Technology Volume 3 No. 1, January, 2013 Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant Wordu, A. A, Peterside, B Department

More information

Investigation of Separator Parameters in Kalina Cycle Systems

Investigation of Separator Parameters in Kalina Cycle Systems Research Article International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347-56 24 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Investigation

More information