Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

Size: px
Start display at page:

Download "Discharge Characteristics of DC Arc Water Plasma for Environmental Applications"

Transcription

1 Plasma Science and Technology, Vol.14, No.12, Dec Discharge Characteristics of DC Arc Water Plasma for Environmental Applications LI Tianming ( ), Sooseok CHOI, Takayuki WATANABE Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Yokohama , Japan Abstract A water plasma was generated by DC arc discharge with a hafnium embedded rodtype cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process. Keywords: thermal plasma, water plasma torch, arc movement, restrike frequency PACS: Hn DOI: / /14/12/11 1 Introduction Thermal plasma technology has been established as playing an important role in many industrial fields such as plasma cutting and welding, plasma spraying, waste treatment, and synthesis of nanoparticles [1 4]. The most widely used thermal plasma source is the DC plasma torch operated in the non-transferred arc mode at atmospheric pressure. A conventional nontransferred arc is generated with the injection of plasma-forming gas between a rod-type cathode and a nozzle-type anode, which has to be cooled sufficiently with water to avoid the melting problem on the anode surface caused by a strong heat flux from the arc discharge [5]. For this reason the typical thermal plasma generation system requires complex equipment such as a gas supply unit for the plasma forming gas and a coolant circulation unit for preventing electrode melting. Thus, an efficient and simple plasma-generation system is required for the practical applications of a thermal plasma. A new plasma torch used in the present work generates 100% water plasma without any additional steam generator [6,7]. The way of generating plasma supporting steam in the water plasma torch is that water in the reservoir is heated up and evaporated in the anode region by strong heat transferred from the arc discharge. At the same time, the electrodes are cooled by the evaporated water. Therefore, such an electrode configuration and plasma forming gas generation do not require additional water cooling and gas supply units. In addition, the distinctive steam-generation method provides the portable lightweight plasma generation system with a significantly high energy efficiency of more than 86% [6]. These unique features of the proposed plasma-generation method have not been readily achieved by other methods, and they allow simple and efficient water plasma generation. The water plasma is a kind of thermal plasma which provides high enthalpy to enhance reaction kinetics and chemical reactivity. Moreover, the water plasma is sustained by 100% steam as the plasma forming gas which is suitable for waste treatment in the industrial field due to its abundant oxygen and hydrogen radicals [6]. The purpose of this study was to investigate the discharge characteristics of DC water plasma in order to find the proper operating conditions for the waste treatment process. Special attention was devoted to the examination of the dynamic behavior of the arc discharge and restrike frequency of the water plasma system. Those show the unique characteristics different from the conventional non-transferred DC plasma torch. 2 Experiment The experimental setup of the water plasma generation system is shown in Fig. 1. In the cathode, a small hafnium rod with 1 mm in diameter was embedded into the main copper rod, and the nozzle-type copper anode was a 1.5 mm in inner diameter. The arc current

2 Plasma Science and Technology, Vol.14, No.12, Dec was set between 5 A and 7 A, and the arc voltage was recorded within a range of between 100 V and 300 V fluctuating strongly. Since the arc discharge was unstable in the early stage of the plasma generation according to the water feeding rate, it was fixed after 30 min from the moment of arc ignition to obtain a stable arc discharge and reliable experimental data. plasma torch. The axial movement of the arc was confirmed from the pictures taken by the high speed camera. The arc was bent in the axial direction and an anodic arc root appeared on the nozzle surface when the arc came out from the water plasma torch interior. According to these high speed images, the water plasma has a unique arc voltage fluctuation mechanism that is different from the conventional non-transferred plasma torch. The spot of arc attachment on the anode surface is moved by the drag force lengthening the arc column, and it causes an increase in the arc voltage in the typical non-transferred plasma torch [5]. On the other hand, the anodic arc spot of the water plasma is fixed on the nozzle exit surface after the arc comes out from the inner chamber of the water plasma torch. Instead of movement of the anodic arc spot, the arc column is more bent, increasing its length and the arc voltage until it reaches a maximum length. Fig.1 Experimental setup of the water plasma system (color online) The arc voltage was recorded by a digital oscilloscope (KEYENCE, GR-7000) at a sufficiently high sample rate of s 1 considering the arc fluctuation frequency of several tens of kilohertz. A high speed video camera (NAC, MEMRECAM GX-8) was used to observe the arc movement at the nozzle exit with a high frame rate of s 1. A thermocouple was inserted into the water reservoir to monitor the water temperature during the experiment because the vapor pressure which affects the stability of steam supply would change along with the water temperature. Optical emission spectrometry (OES) of the DC arc water plasma jet was performed to measure the chemical radicals which are useful in the waste treatment process. In the OES measurement, a spectrometer and an optical system were used instead of the high-speed camera. The measurement point on the central axis of the plasma jet above the nozzle exit had been focused using a lens and an optical fiber which was 200 µm in diameter. The spectrometer (ihr 550, HORIBA) was set for a 0.02 mm resolution with a grating of 150 mm 1 and 1800 mm In the voltage waveform presented in Fig. 3, a periodic sawtooth shape is clearly found. The arc voltage fluctuation indicates the dynamic behavior of the arc discharge in the DC arc plasma torch. The arc movement is influenced by two forces; the gas drag force pulling the arc outside the torch is caused by the incoming gas flow and the electromagnetic Lorentz force pushing the arc inside the torch is caused by the arc current density and self-induced magnetic field [8,9]. However, the arc column has been mainly operated by the drag force in the water plasma torch due to a significantly small arc current in contrast to the typical DC Results and discussion Arc movement The side views of the plasma arc ejected from the nozzle exit are shown in Fig. 2. The time interval between photographs was 3.3 µs. In order to obtain a clear image of the arc in the plasma torch exterior, a relatively high arc current of 13 A and accordingly a high water feeding rate of 500 ml/h were used to generate a strong arc discharge, cooling down the water 1098 Fig.2 Images of the periodic variation of the plasma arc from a side view at the nozzle exit at time intervals of 3.3 µs with torch operation of 13 A and 500 ml/h for arc current and water feeding rate, respectively Fig.3 Voltage waveform at an arc current of 13 A and water feeding rate of 500 ml/h

3 LI Tianming et al.: Discharge Characteristics of DC Arc Water Plasma for Environmental Applications plasma torch operated with several hundred amperes. Therefore, the arc voltage is increased until the maximum point without remarkably disturbing the Lorentz force in a piece of the sawtooth. The periodic frequency of the arc voltage from valley to peak is several tens of kilohertz according to the data recorded by the oscilloscope, and it is in good agreement with the photographs of the plasma arc column in Fig. 2. Therefore, it has been clarified that the drag force of the gas flow enhances the arc length and increases the arc voltage as shown in Fig. 4. plasma becomes larger at a higher arc current. The picture of the water plasma jet consists of pixels and each pixel has 8 bits. Luminescent areas for different arc current conditions are presented in Fig. 6 after calculations in binary for the water plasma jet pictures with a threshold at 220 in brightness. It is considered that high brightness indicates high temperature. An enhanced high temperature area by increasing the arc current is important in the waste treatment process. A high decomposition rate for organic waste treatment had been obtained under high-arc-current conditions due to a large high-temperature area of the water plasma jet [2]. Fig.5 Photographs of the water plasma jet according to the arc current at a water feeding rate of 248 ml/h (color online) Fig.4 Arc movement mechanism (color online) From the measured voltage waveform, it is found that the ratio between the maximum value from valley to peak and the mean voltage is more than 100%. Therefore, the arc discharge of the water plasma can be defined as the restrike mode [10]. In the restrike mode, the anodic arc spot is first placed at a point closest to the cathode inside the water plasma torch. At this time, the arc voltage reaches its minimum value, because the arc length between the cathode and anode is the shortest. Then, the arc column is lengthened by the drag force of the steam flow in the axial direction towards the nozzle exit, causing an increase in the arc voltage. Finally, the arc voltage reaches the highest point with the largest curvature and the longest column length. An electric field is provided between the edge of the arc column and the anode wall, and a breakdown process may occur when the given electric field is higher than a critical field at the longest arc column, which distributes the highest electrical potential between the cathode tip and the anode wall [5]. Therefore, the reattachment of a new arc column is created between the cathode tip and the anode surface with a short length of the arc column. In this way, the arc repeats the movement with a periodic voltage fluctuation. 3.2 Effect of arc current The photographs of the plasma jet at different arc currents are shown in Fig. 5. The arc jet of the water Fig.6 Luminance area of the water plasma jet according to the arc current at a water feeding rate of 248 ml/h The voltage waveforms at different arc currents are also shown in Fig. 7. This figure indicates that the period between the valley and peak of the arc voltage is shortened by increasing the arc current, and such an effect of the arc current on the fluctuation frequency of the arc voltage is directly shown in Fig. 8. The arc frequency increases with the arc current, because the higher Joule heating acting on the water to be evaporated leads more easily to an enhancement of the steam drag force, thus the higher arc current increases the arc length in a relatively short time. In a conventional plasma torch, the arc frequency is decreased by increasing the arc current owing to the increase in the electromagnetic force which prevents the growth of the arc column. In our water plasma torch, however, the effect of the arc current on the restrike frequency is directly 1099

4 Plasma Science and Technology, Vol.14, No.12, Dec contrary to the conventional plasma torch due to the enhanced steam pressure in high-arc-current conditions. The fluctuation of the electrical arc discharge causes non-uniform heating and transport of the injected plasma-forming gas. Since the temperature and velocity fields of the plasma jet are changed more slowly than the dynamic movement of the arc discharge, the high restrike frequency stabilizes the thermal plasma characteristics [8,9]. Therefore, the water plasma torch operating at a high current can provide a uniform hightemperature flame to obtain high decomposition efficiency with a reliable waste treatment process. because water had been dissociated into H and OH radicals in the plasma flame region. In addition, the excitation temperature of the water plasma was expected to be 4000 K in the nozzle exit [5]. The abundant radicals of H and OH at high temperature led to active chemical reactions. These features of the water plasma are very important for practical applications including organic waste treatment and efficient conversion of nondegradable hazardous waste into benign materials. Fig.9 Emission spectra of water plasma at an arc current of 6 A and a water feeding rate of 350 ml/h 4 Conclusions Fig.7 Measured voltage waveform according to the arc current at a water feeding rate of 248 ml/h (color online) Fig.8 Restrike frequency of the arc discharge according to the arc current at a water feeding rate of 248 ml/h 3.3 Spectroscopic characteristics The spectral lines of the water plasma jet were clearly observed at H γ (434.0 nm), H β (486.1 nm), H α (656.3 nm) and OH (306.4 nm) as shown in Fig. 9, The arc voltage of the DC arc water plasma is varied periodically by the axial movement of the arc column in the restrike mode. This fluctuation can be controlled by the operating parameter of the arc current which influences the steam drag force in the water plasma system. The restrike frequency is increased at the high arc current due to enhanced water evaporation, while it is decreased in the conventional plasma torch. The larger arc jet volume is obtained at the higher arc current, because the higher enthalpy is transferred into the steam increasing the gas pressure. An efficient and reliable waste-treatment process is expected by understanding the relationship between the thermal plasma characteristics and the operation parameter of the DC arc water plasma torch. References 1 Fauchais P. 2004, J. Phys. D: Appl. Phys., 37: 86 2 Narengerile, Yuan M H, Watanabe T. 2011, Chem. Eng. J., 168: Narengerile, Saito H, Watanabe T. 2009, Thin Solid Films, 518:

5 LI Tianming et al.: Discharge Characteristics of DC Arc Water Plasma for Environmental Applications 4 Yuan M H, Narengerile, Watanabe T, et al. 2010, Env. Sci. Technol., 44: Moreau E, Chazelas C, Mariaux G, et al. 2006, J. Therm. Spray Technol., 15: Watanabe T. 2005, ASEAN J. Chem. Eng., 5: 30 7 Watanabe T, Shimbara S. 2003, High Temp. Mater. Processes, 7: Leblanc L, Moreau C. 2001, J. Therm. Spray Technol., 11: Trelles J P, Pfender E, Heberlein J V R. 2007, J. Phys. D: Appl. Phys., 40: Duan Z, Heberlein J. 2002, J. Therm. Spray Techol., 11: 45 (Manuscript received 3 November 2011) (Manuscript accepted 6 January 2012) address of corresponding author Takayuki WATANABE: watanabe@chemenv.titech.ac.jp 1101

Water Plasma Generation under Atmospheric Pressure for Waste Treatment

Water Plasma Generation under Atmospheric Pressure for Waste Treatment Water Plasma Generation under Atmospheric Pressure for Waste Treatment Shigehiro Shimbara and Takayuki Watanabe Research Laboratory for Nuclear Reactors Tokyo Institute of Technology Email: watanabe@nr.titech.ac.jp

More information

AJChE 2005, Val. 5, No.1, 30-34

AJChE 2005, Val. 5, No.1, 30-34 AJChE 2005, Val. 5, No.1, 30-34 Takayuki Watanabe Research. Laboratory for Nuclear Reactors Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 JAPAN Email: watanabe@nr.titech.ac.jp

More information

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 32, NO. 2, APRIL

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 32, NO. 2, APRIL IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 32, NO. 2, APRIL 2004 473 Effects of Anode Nozzle Geometry on Ambient Air Entrainment Into Thermal Plasma Jets Generated by Nontransferred Plasma Torch Sooseok

More information

Crystallization of Amorphous Silicon Thin Film. by Using a Thermal Plasma Jet. Hyun Seok Lee, Sooseok Choi, Sung Woo Kim, and Sang Hee Hong*

Crystallization of Amorphous Silicon Thin Film. by Using a Thermal Plasma Jet. Hyun Seok Lee, Sooseok Choi, Sung Woo Kim, and Sang Hee Hong* Crystallization of Amorphous Silicon Thin Film by Using a Thermal Plasma Jet Hyun Seok Lee, Sooseok Choi, Sung Woo Kim, and Sang Hee Hong* Department of Nuclear Engineering, Seoul National University Seoul

More information

Thermal Plasma Analysis for the Pyrolysis of PFCs on a Large Scale

Thermal Plasma Analysis for the Pyrolysis of PFCs on a Large Scale Journal of the Korean Physical Society, Vol. 55, No. 5, November 2009, pp. 1819 1824 Thermal Plasma Analysis for the Pyrolysis of PFCs on a Large Scale Sooseok Choi, Hyun Seok Lee, Sungwoo Kim and Sang

More information

Electrothermal efficiency, temperature and thermal conductivity of plasma jet in a DC plasma spray torch

Electrothermal efficiency, temperature and thermal conductivity of plasma jet in a DC plasma spray torch PRAMANA cfl Indian Academy of Sciences Vol. 61, No. 6 journal of December 2003 physics pp. 1109 1119 Electrothermal efficiency, temperature and thermal conductivity of plasma jet in a DC plasma spray torch

More information

Investigation of Anode Attachment Area in Water/Argon Stabilized Plasma Arc

Investigation of Anode Attachment Area in Water/Argon Stabilized Plasma Arc WDS'15 Proceedings of Contributed Papers Physics, 245 251, 2015. ISBN 978-80-7378-311-2 MATFYZPRESS Investigation of Anode Attachment Area in Water/Argon Stabilized Plasma Arc P. Ondáč, 1,2 A. Mašláni,

More information

Fundamental Characteristics of a New Type Plasma Generator

Fundamental Characteristics of a New Type Plasma Generator Fundamental Characteristics of a New Type Plasma Generator KOBAYASHI Akira *and ISHIBASHI Norifumi ** Abstract Plasma jet at atmospheric pressure has the advantage of cost, because there is no need to

More information

Shrouding of Thermal Plasma Jets Generated by Gas-Water Torch

Shrouding of Thermal Plasma Jets Generated by Gas-Water Torch WDS'05 Proceedings of Contributed Papers, Part II, 337 342, 2005. ISBN 80-86732-59-2 MATFYZPRESS Shrouding of Thermal Plasma Jets Generated by Gas-Water Torch T. Kavka, M. Hrabovsky, O. Chumak, and V.

More information

Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure

Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure KOBAYASHI Akira*, TAKAO Yoshiyuki**, KOMURASAKI Kimiya*** Abstract The microwave discharge plasma

More information

Dynamic Plasma-Liquid System with Discharge in Reverse Vortex Flow of Tornado Type

Dynamic Plasma-Liquid System with Discharge in Reverse Vortex Flow of Tornado Type 20 International Journal of Plasma Environmental Science & Technology, Vol.5, No.1, MARCH 2011 Dynamic Plasma-Liquid System with Discharge in Reverse Vortex Flow of Tornado Type O. A. Nedybaliuk, V. Ya.

More information

Experimental study on the jet characteristics of a steam plasma torch

Experimental study on the jet characteristics of a steam plasma torch Plasma Science and Technology PAPER Experimental study on the jet characteristics of a steam plasma torch To cite this article: Fangyuan LIU et al 2018 Plasma Sci. Technol. 20 125401 View the article online

More information

STATISTICAL PROCESSING OF PLASMA JET IMAGES FOR VISUALIZATION OF FLOW INSTABILITIES

STATISTICAL PROCESSING OF PLASMA JET IMAGES FOR VISUALIZATION OF FLOW INSTABILITIES STATISTICAL PROCESSING OF PLASMA JET IMAGES FOR VISUALIZATION OF FLOW INSTABILITIES Oleksiy Chumak Institute of Plasma Physics, Thermal Plasma Department The structure and stability of a thermal plasma

More information

Decomposition of Nitrogen Trifluoride Using Low Power Arc Plasma

Decomposition of Nitrogen Trifluoride Using Low Power Arc Plasma Plasma Science and Technology, Vol.15, No.9, Sep. 2013 Decomposition of Nitrogen Trifluoride Using Low Power Arc Plasma Jee-Hun KO 1, Sooseok CHOI 2, Hyun-Woo PARK 1, and Dong-Wha PARK 1 1 Department of

More information

Generation and Spectroscopic Investigation of an Atmospheric Pressure Water Vapour Plasma Jet

Generation and Spectroscopic Investigation of an Atmospheric Pressure Water Vapour Plasma Jet Generation and Spectroscopic Investigation of an Atmospheric Pressure Water Vapour Plasma Jet Viktorija Grigaitiene, Andrius Tamosiunas, Pranas Valatkevicius, Vitas Valincius Lithuanian Energy Institute

More information

Development of controlled micro-discharge at the atmospheric pressure

Development of controlled micro-discharge at the atmospheric pressure Weld World (214) 58:47 54 DOI 1.17/s4194-13-92-9 RESEARCH PAPER Development of controlled micro-discharge at the atmospheric pressure Mingon Park & Yoshinori Hirata & Tatsumasa Urabe Received: 18 December

More information

Microstructure and property of Al 2 O 3 coating microplasma-sprayed using a novel hollow cathode torch

Microstructure and property of Al 2 O 3 coating microplasma-sprayed using a novel hollow cathode torch Materials Letters 58 (2003) 179 183 www.elsevier.com/locate/matlet Microstructure and property of Al 2 O 3 coating microplasma-sprayed using a novel hollow cathode torch Chang-Jiu Li*, Bo Sun Key State

More information

Ozone and by-products generation characteristics by novel air-fed ozone generator which combines homogeneous discharge and filamentary discharge

Ozone and by-products generation characteristics by novel air-fed ozone generator which combines homogeneous discharge and filamentary discharge nd International Symposium on Plasma Chemistry July 5-, 15; Antwerp, Belgium Ozone and by-products generation characteristics by novel air-fed ozone generator which combines homogeneous discharge and filamentary

More information

Continuous Synthesis of Carbon Nanoclusters Using Well-Controlled Thermal Plasmas

Continuous Synthesis of Carbon Nanoclusters Using Well-Controlled Thermal Plasmas Continuous Synthesis of Carbon Nanoclusters Using Well-Controlled Thermal Plasmas T. Ohishi*, Y. Yoshihara and O. Fukumasa Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai,

More information

Analysis of Surface Properties of Al 2 O 3 Coating over Mild Steel Using Plasma Spray Process

Analysis of Surface Properties of Al 2 O 3 Coating over Mild Steel Using Plasma Spray Process Analysis of Surface Properties of Al 2 O 3 Coating over Mild Steel Using Plasma Spray Process I Arul raj 1, S Ramachandran 2 Research scholar, Faculty of Mechanical Engineering, Sathyabama University,

More information

Studies on Atmospheric Non-Thermal Plasma Jet Device

Studies on Atmospheric Non-Thermal Plasma Jet Device Int. J. New. Hor. Phys. 3, No. 1, 1-6 (2016) 1 International Journal of New Horizons in Physics http://dx.doi.org/10.18576/ijnhp/030101 Studies on Atmospheric Non-Thermal Plasma Jet Device H. A. El-sayed*,

More information

Spectroscopic Characterization of Smart Spraying Plasmas for Thermal Barrier Coatings Preparation

Spectroscopic Characterization of Smart Spraying Plasmas for Thermal Barrier Coatings Preparation Spectroscopic Characterization of Smart Spraying Plasmas for Thermal Barrier Coatings Preparation ZHANG Jialiang * and KOBAYASHI Akira ** Abstract Thermal Barrier Coatings (TBCs) are frequently prepared

More information

Simulation of arc root fluctuation in a DC non-transferred plasma torch with three dimensional modeling

Simulation of arc root fluctuation in a DC non-transferred plasma torch with three dimensional modeling Simulation of arc root fluctuation in a DC non-transferred plasma torch with three dimensional modeling R. Huang, H. Fukanum, Sai ama/j, Y. Uesugi and Y. Tanaka, Kanazawa/Japan It has been well known that

More information

Conversion of Hydrocarbons into Syn-Gas Stimulated by Non-thermal Atmospheric Pressure Plasma

Conversion of Hydrocarbons into Syn-Gas Stimulated by Non-thermal Atmospheric Pressure Plasma Conversion of Hydrocarbons into Syn-Gas Stimulated by Non-thermal Atmospheric Pressure Plasma Alexander Fridman, Alexander Gutsol Young I Cho, Chiranjeev Kalra Plasma Catalysis Vs. Plasma Processing Methane

More information

Plasma arc cutting technology: simulation and experiments

Plasma arc cutting technology: simulation and experiments Journal of Physics: Conference Series Plasma arc cutting technology: simulation and experiments To cite this article: G Cantoro et al 2011 J. Phys.: Conf. Ser. 275 012008 View the article online for updates

More information

Journal of Chemical and Pharmaceutical Research, 2014, 6(2): Research Article

Journal of Chemical and Pharmaceutical Research, 2014, 6(2): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(2): 512-519 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Analyzing the Temperature Field of Combined Plasma

More information

Advance on non-equilibrium plasma jets

Advance on non-equilibrium plasma jets Advance on non-equilibrium plasma jets XinPei Lu luxinpei@hotmail.com College of EEE, HUST Outline Overview of the status of Cold Plasma Jets Recent Progress on plasma jet research in our lab A single

More information

Introduction. Single-Jet Studies

Introduction. Single-Jet Studies 2014 Princeton Instruments, Inc. All rights reserved. A new gating technology exclusive to the highly advanced PI-MAX4 ICCD camera platform... combines the higher sensitivity of the conventional image

More information

USN. Hosur : 6A/6B/6C 10ME665. Discuss briefly. 1 a.

USN. Hosur : 6A/6B/6C 10ME665. Discuss briefly. 1 a. USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Mechanical Engineering INTERNAL ASSESSMENT TEST 3 Solutions Subject & Code : NTM 10ME665 Name

More information

High Rate Zinc Oxide Film Deposition by Atmospheric TPCVD Using Ar/Air Plasma Jets

High Rate Zinc Oxide Film Deposition by Atmospheric TPCVD Using Ar/Air Plasma Jets High Rate Zinc Oxide Film Deposition by Atmospheric TPCVD Using Ar/Air Plasma Jets ANDO Yasutaka*, KOBAYASHI Akira**, TOBE Shogo* and TAHARA Hirokazu*** Abstract In order to develop a functional film deposition

More information

Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications

Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications Luke T. Gritter 1, Jeffrey S. Crompton *1, and Kyle C. Koppenhoefer 1 1 AltaSim Technologies, LLC 130 E. Wilson Bridge Rd, Suite

More information

Spectroscopic Characterization of Smart Spraying Plasmas for Thermal Barrier Coatings Preparation. Kobayashi, Akira; Ishibashi, Norifumi

Spectroscopic Characterization of Smart Spraying Plasmas for Thermal Barrier Coatings Preparation. Kobayashi, Akira; Ishibashi, Norifumi Title Author(s) Spectroscopic Characterization of Smart Spraying Plasmas for Thermal Barrier Coatings Preparation Kobayashi, Akira; Ishibashi, Norifumi Citation Transactions of JWRI. 34(1) P.25-P.30 Issue

More information

Proposal of Treatment for Hazardous Wastes Using the Highly Concentrated Radiation from Torch Plasma

Proposal of Treatment for Hazardous Wastes Using the Highly Concentrated Radiation from Torch Plasma , pp. 275 279 Proposal of Treatment for Hazardous Wastes Using the Highly Concentrated Radiation from Torch Plasma Toru IWAO, Hirokazu MIYAZAKI, Takayuki ISHIDA, Yafang LIU and Tsuginori INABA The Graduate

More information

Investigation of ozone yield of air fed ozonizer by high pressure homogeneous dielectric barrier discharge

Investigation of ozone yield of air fed ozonizer by high pressure homogeneous dielectric barrier discharge Investigation of ozone yield of air fed ozonizer by high pressure homogeneous dielectric barrier discharge 2 N. OsawaP P, UY. YoshiokaUP P, R. HanaokaP P Center for Electric, Optic and Energy applications,

More information

published at the ISPC 14, Prague, CZ, August 2 nd - 6 th 1999

published at the ISPC 14, Prague, CZ, August 2 nd - 6 th 1999 published at the ISPC 14, Prague, CZ, August 2 nd - 6 th 1999 In-situ characterization of plasma chemical reactions during the deposition of Si-C (-N) coatings in a D.C. plasma jet by means of emission

More information

The principle Of Tungsten Inert Gas (TIG) Welding Process

The principle Of Tungsten Inert Gas (TIG) Welding Process The principle Of Tungsten Inert Gas (TIG) Welding Process This chapter presents the principle of tungsten inert gas (TIG) welding process besides important components of TIG welding system and their role.

More information

Plasma Reforming of Diesel Fuel. L. Bromberg, A. Rabinovich, N. Alexeev,and D.R. Cohn. March 1999

Plasma Reforming of Diesel Fuel. L. Bromberg, A. Rabinovich, N. Alexeev,and D.R. Cohn. March 1999 PSFC/JA-99-4 Plasma Reforming of Diesel Fuel L. Bromberg, A. Rabinovich, N. Alexeev,and D.R. Cohn March 1999 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 To

More information

Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform

Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform ICCM2015, 14-17 th July, Auckland, NZ Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform *G. Song¹, J.Wang¹,

More information

Supplementary Information

Supplementary Information Supplementary Information Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing Samuel Yick, Zhao Jun Han and Kostya (Ken)

More information

Experimental Observation on Single Fuel Droplets Burning in the Fields of a Specific Wave Number at Far Infrared Ray

Experimental Observation on Single Fuel Droplets Burning in the Fields of a Specific Wave Number at Far Infrared Ray 50 154 2008 340-344 Journal of the Combustion Society of Japan Vol.50 No.154 (2008) 340-344 TECHNICAL REPORT Experimental Observation on Single Fuel Droplets Burning in the Fields of a Specific Wave Number

More information

Hydrogen Production by Non Thermal Plasma Steam Reforming of alkanes and ethanol

Hydrogen Production by Non Thermal Plasma Steam Reforming of alkanes and ethanol Hydrogen Production by Non Thermal Plasma Steam Reforming of alkanes and ethanol A. Khacef, F. Ouni, E. El Ahmar, O. Aubry, and J. M. Cormier GREMI-Polytech'Orléans, 14 rue d'issoudun, BP 6744, 4567 Orléans

More information

TECHNIQUES OF INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROMETER S. KARTHIKEYAN SSA CENTRAL POLLUTION CONTROL BOARD SOUTH ZONE OFFICE BANGALORE

TECHNIQUES OF INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROMETER S. KARTHIKEYAN SSA CENTRAL POLLUTION CONTROL BOARD SOUTH ZONE OFFICE BANGALORE TECHNIQUES OF INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROMETER By S. KARTHIKEYAN SSA CENTRAL POLLUTION CONTROL BOARD SOUTH ZONE OFFICE BANGALORE INTRODUCTION ICP-OES is a sophisticated instrument

More information

Blown Arc Plasma Source for the Elaboration of Finely Structured Coatings

Blown Arc Plasma Source for the Elaboration of Finely Structured Coatings The Open Plasma Physics Journal, 2009, 2, 133-149 133 Open Access Blown Arc Plasma Source for the Elaboration of Finely Structured Coatings Vincent Rat *, Jean-François Coudert, Alain Denoirjean and Ghislain

More information

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding This chapter presents the influence of process parameters of pulse TIG welding process on the development of sound weld joint. Further, the

More information

Improvement of Spatial Uniformity of Nanosecond-Pulse Diffuse Discharges in a Multi-Needle-to-Plane Gap

Improvement of Spatial Uniformity of Nanosecond-Pulse Diffuse Discharges in a Multi-Needle-to-Plane Gap Plasma Science and Technology, Vol.18, No.3, Mar. 2016 Improvement of Spatial Uniformity of Nanosecond-Pulse Diffuse Discharges in a Multi-Needle-to-Plane Gap GU Jianwei ( ) 1,3, ZHANG Cheng ( ) 1,2, WANG

More information

Experimental study of plasma window 1*

Experimental study of plasma window 1* Submitted to Chinese Physics C' Experimental study of plasma window 1* SHI Ben-Liang( 史本良 ), HUANG Sheng( 黄胜 ), ZHU Kun( 朱昆 ) 1), LU Yuan-Rong( 陆元荣 ) State Key Laboratory of Nuclear Physics and Technology,

More information

Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet

Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet Korean J. Chem. Eng., 17(3), 299-303 (2000) Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet Seung-Min Oh and Dong-Wha Park Department of Chemical Engineering, Inha University, 253 Yonghyun-Dong,

More information

[20a] Development of Liquid Fuel Reformer Using Low Energy Pulse (LEP) Discharge at Room Temperature

[20a] Development of Liquid Fuel Reformer Using Low Energy Pulse (LEP) Discharge at Room Temperature [2a] Development of Liquid Fuel Reformer Using Low Energy Pulse (LEP) Discharge at Room Temperature Yasushi Sekine, Masahiko Matsukata, Eiichi Kikuchi, Shigeru Kado Waseda Univ. 55S62, Okubo, Shinjyuku

More information

Integrated Robotic Plasma Spraying System for Advanced Materials Processing

Integrated Robotic Plasma Spraying System for Advanced Materials Processing PIERS ONLINE, VOL. 4, NO. 8, 2008 876 Integrated Robotic Plasma Spraying System for Advanced Materials Processing Weisheng Xia 1,2, Haiou Zhang 2, Gui-Lan Wang 1, Yunzhen Yang 1, Guangchao Han 3, and Haiping

More information

Different forces acting in a typical welding arc zone

Different forces acting in a typical welding arc zone Different forces acting in a typical welding arc zone This chapter presents the different forces acting in a typical welding arc zone and their effect on welding. Further, influence of electrode polarity

More information

Investigation of Atmospheric Pressure Plasma Source for CO 2 Dissociation

Investigation of Atmospheric Pressure Plasma Source for CO 2 Dissociation Investigation of Atmospheric Pressure Plasma Source for CO Dissociation Laura Spencer, A. D. Gallimore University of Michigan, Ann Arbor, MI, United States Abstract: This work experimentally investigates

More information

High Quality Ceramic Coatings Sprayed by High Efficiency Hypersonic Plasma Spraying Gun Sheng Zhu, Binshi Xu and JiuKun Yao

High Quality Ceramic Coatings Sprayed by High Efficiency Hypersonic Plasma Spraying Gun Sheng Zhu, Binshi Xu and JiuKun Yao Materials Science Forum Online: 2005-01-15 ISSN: 1662-9752, Vols. 475-479, pp 3981-3984 doi:10.4028/www.scientific.net/msf.475-479.3981 2005 Trans Tech Publications, Switzerland High Quality Ceramic Coatings

More information

HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS

HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS PSFC/RR-01-1 HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS L. Bromberg, D.R. Cohn, A. Rabinovich and N. Alexeev December 11, 2000 * Plasma Science and Fusion Center

More information

Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor

Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Manabu Shimada, 1 Kikuo Okuyama, 1 Yutaka Hayashi, 1 Heru Setyawan, 2 and Nobuki Kashihara 2 1 Department

More information

Influence of Spraying Conditions on Properties of Zr-Based Metallic Glass Coating by Gas Tunnel Type Plasma Spraying

Influence of Spraying Conditions on Properties of Zr-Based Metallic Glass Coating by Gas Tunnel Type Plasma Spraying Influence of Spraying Conditions on Properties of Zr-Based Metallic Glass by Gas Tunnel Type Plasma Spraying KOBAYASHI Akira *, KURODA Toshio *, KIMURA Hisamichi ** and INOUE Akihisa ** Abstract Metallic

More information

Electron Temperature and Density Measurement of Plasma Jet in Atmospheric Pressure

Electron Temperature and Density Measurement of Plasma Jet in Atmospheric Pressure Electron Temperature and Density Measurement of Plasma Jet in Atmospheric Pressure Kadhim A. Aadim 1, Ali A-K. Hussain 2, Nisreen Kh.Abdalameer 3, Hasan Ali Tawfeeq 4, Hamid H. Murbat 5 1, 2, 4 University

More information

DUE TO the unique features of high temperature or high

DUE TO the unique features of high temperature or high IEEE TRANSACTIONS ON PASMA SCIENCE, VO. 37, NO. 7, JUY 2009 1129 Volt Ampere and Thermal Characteristics of a Direct-Current Dual-Jet Plasma Generator Hao Zhang, Gui-Qing Wu, He-Ping i, Member, IEEE, and

More information

Potential of Electrically Conductive Chemical Vapor Deposited Diamond as an Electrode for Micro-Electrical Discharge Machining in Oil and Water

Potential of Electrically Conductive Chemical Vapor Deposited Diamond as an Electrode for Micro-Electrical Discharge Machining in Oil and Water A. New Sharma Diamond et al. and Frontier Carbon Technology 181 Vol. 15, No. 4 2005 MYU Tokyo NDFCT 487 Potential of Electrically Conductive Chemical Vapor Deposited Diamond as an Electrode for Micro-Electrical

More information

Manufacturing Process - I Prof. Dr. D.K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Manufacturing Process - I Prof. Dr. D.K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Manufacturing Process - I Prof. Dr. D.K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 3 Lecture - 11 Tungsten Inert Gas Welding Part 1 Welcome

More information

High performance radio frequency generator technology for the Thermo Scientific icap 7000 Plus Series ICP-OES

High performance radio frequency generator technology for the Thermo Scientific icap 7000 Plus Series ICP-OES TECHNICAL NOTE 43334 High performance radio frequency generator technology for the Thermo Scientific icap 7000 Plus Series ICP-OES Keywords Free-running, Plasma, RF generator, Solid-state Using inductively

More information

Exercises in Welding Process and Equipment --- Part 4: Cutting Process and Equipment ---

Exercises in Welding Process and Equipment --- Part 4: Cutting Process and Equipment --- JICA_OHJI Exercises in Welding Process and Equipment --- Part 4: Cutting Process and Equipment --- Takayoshi OHJI Professor Emeritus, Osaka University Dr. of Engineering VIRTUAL WELD CO.,LTD t-ohji@alvec.co.jp

More information

MAGNUM-PSI, a Plasma Generator for Plasma-Surface Interaction Research in ITER-like Conditions

MAGNUM-PSI, a Plasma Generator for Plasma-Surface Interaction Research in ITER-like Conditions 1 FT/P7-21 MAGNUM-PSI, a Plasma Generator for Plasma-Surface Interaction Research in ITER-like Conditions W.J. Goedheer 1), G.J. van Rooij 1), V. Veremiyenko 1), Z. Ahmad 1), C.J. Barth 1), S. Brezinsek

More information

THERMAL SPRAY COATINGS

THERMAL SPRAY COATINGS THERMAL SPRAY COATINGS THERMAL SPRAY is a group of processes in which metals, alloys, ceramics, plastics and composite materials in the form of powder, wire, or rod are fed to a torch or gun with which

More information

Experimental Evaluation of Methane Fuel Reformation Feasibility

Experimental Evaluation of Methane Fuel Reformation Feasibility 23 6937 Experimental Evaluation of Methane Fuel Reformation Feasibility C.M. Roseberry*, J.M. Meyers*, F.K. Lu and D.R. Wilson University of Texas at Arlington, Arlington, TX 7619 Y.M. Lee MSE Inc., Butte,

More information

Characterizing the coating and size-resolved oxidative stability of carbon-coated aluminum nanoparticles by single-particle mass-spectrometry

Characterizing the coating and size-resolved oxidative stability of carbon-coated aluminum nanoparticles by single-particle mass-spectrometry Journal of Nanoparticle Research (2006) 8: 455 464 Ó Springer 2006 DOI 10.1007/s11051-005-9012-2 Characterizing the coating and size-resolved oxidative stability of carbon-coated aluminum nanoparticles

More information

published at the ITSC 2005, Basel, CH, May 2 nd - 4 th 2005 Modified Supersonic nozzles for the Vacuum Plasma Spraying

published at the ITSC 2005, Basel, CH, May 2 nd - 4 th 2005 Modified Supersonic nozzles for the Vacuum Plasma Spraying published at the ITSC 2005, Basel, CH, May 2 nd - 4 th 2005 Modified Supersonic nozzles for the Vacuum Plasma Spraying A. Schwenk, S. Mihm, G. Nutsch, Ilmenau / D, A. Wank, Chemnitz / D, H. Gruner, Mägenwil

More information

Electrical and spectroscopic diagnostic of an atmospheric double arc argon plasma jet

Electrical and spectroscopic diagnostic of an atmospheric double arc argon plasma jet IOP PUBLISHING Plasma Sources Sci. Technol. 16 (2007) 803 812 PLASMA SOURCES SCIENCE AND TECHNOLOGY doi:10.1088/0963-0252/16/4/016 Electrical and spectroscopic diagnostic of an atmospheric double arc argon

More information

PARAMETER OPTIMIZATION ON EDM

PARAMETER OPTIMIZATION ON EDM http:// PARAMETER OPTIMIZATION ON EDM Anil S. Kapse Department of Mechanical Engineering PLITMS, Buldhana (India) ABSTRACT Spark erosion is a non-traditional machining process which is used to work hard

More information

Arc plasma devices: Evolving mechanical design from numerical simulation

Arc plasma devices: Evolving mechanical design from numerical simulation PRAMANA c Indian Academy of Sciences Vol. 80, No. 4 journal of April 2013 physics pp. 685 699 Arc plasma devices: Evolving mechanical design from numerical simulation S GHORUI and A K DAS Laser and Plasma

More information

Is atmospheric plasma potential-free?

Is atmospheric plasma potential-free? Is atmospheric plasma potential-free? This article deals with the question of how to estimate whether certain electronic assemblies sensitive to electrostatic discharge effects (ESDs) can safely be treated

More information

Linear Plasma Sources for Surface Modification and Deposition for Large Area Coating

Linear Plasma Sources for Surface Modification and Deposition for Large Area Coating Linear Plasma Sources for Surface Modification and Deposition for Large Area Coating Dr Tony Williams Gencoa Ltd, UK Victor Bellido-Gonzalez, Dr Dermot Monaghan, Dr Joseph Brindley, Robert Brown SVC 2016,

More information

Titanium Welding Technology

Titanium Welding Technology UDC 669. 295 : 621. 791. 754 Titanium Welding Technology Tadayuki OTANI* 1 Abstract In order to establish titanium welding technology TIG arc weldability and MIG arc weldability were surveyed. For TIG

More information

Droplet Temperature Measurement in Metal Inert Gas Welding. Process by Using Two Color Temperature Measurement Method*

Droplet Temperature Measurement in Metal Inert Gas Welding. Process by Using Two Color Temperature Measurement Method* [ 溶接学会論文集第 35 巻第 2 号 p. 160s-164s (2017)] Droplet Temperature Measurement in Metal Inert Gas Welding Process by Using Two Color Temperature Measurement Method* by Sarizam Bin Mamat**, ***, Titinan Methong**,

More information

CHALLENGES TO MINIATURIZATION IN MICRO EDM

CHALLENGES TO MINIATURIZATION IN MICRO EDM CHALLENGES TO MINIATUIZATION IN MICO EDM Masanori Kunieda Department of Mechanical Systems Engineering Tokyo University of Agriculture and Technology Koganei, Tokyo, Japan INTODUCTION In electrical discharge

More information

Comparison between micrometer and millimetre sized metal and ceramic lamellas, for a better understanding of the spray process.

Comparison between micrometer and millimetre sized metal and ceramic lamellas, for a better understanding of the spray process. Comparison between micrometer and millimetre sized metal and ceramic lamellas, for a better understanding of the spray process. S. Goutier, M. Vardelle, and P. Fauchais SPCTS Laboratory, University of

More information

DEVELOPMENT OF IN-SITU MONITORING SYSTEM FOR SINTERING OF CERAMICS USING LASER AE TECHNIQUE

DEVELOPMENT OF IN-SITU MONITORING SYSTEM FOR SINTERING OF CERAMICS USING LASER AE TECHNIQUE DEVELOPMENT OF IN-SITU MONITORING SYSTEM FOR SINTERING OF CERAMICS USING LASER AE TECHNIQUE S. NISHINOIRI and M. ENOKI Department of Materials Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo,

More information

Nanoparticle Generation by Confront Electrode Type Plasma Jet

Nanoparticle Generation by Confront Electrode Type Plasma Jet Nanoparticle Generation by Confront Electrode Type Plasma Jet TAKAO Yoshiyuki*, NAGAI Shinobu*, KUGIMIYA Akihiro*, TAKIKAWA Hirofumi**, and KOBAYASHI Akira*** Abstract Nanotechnology is expected to improve

More information

NONTRADITIONAL MANUFACTURING PROCESSES

NONTRADITIONAL MANUFACTURING PROCESSES NONTRADITIONAL MANUFACTURING PROCESSES Lasers & Laser Beam Machining Basic NTM Process Groups: * Thermal NTM Processes - Laser Beam Machining (LBM) - Electron Beam Machining (EBM) - Plasma Arc Machining

More information

PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES

PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES 10.1149/1.2794473, The Electrochemical Society PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES S. Yim a, C. Bonhôte b, J. Lille b, and T. Wu b a Dept. of Chem. and Mat. Engr., San

More information

Use of levitating liquid micro-droplets as tracers to study the evaporation in the vicinity of the contact line

Use of levitating liquid micro-droplets as tracers to study the evaporation in the vicinity of the contact line Use of levitating liquid micro-droplets as tracers to study the evaporation in the vicinity of the contact line Dmitry Zaitsev 1,2*, Dmitry Kirichenko 1,3, and Oleg Kabov 1,2 1 Institute of Thermophysics,

More information

Preparation of Nano-Sized Silicon Carbide Powder Using Thermal Plasma

Preparation of Nano-Sized Silicon Carbide Powder Using Thermal Plasma Korean J. Chem. Eng., 19(5), 903-907 (2002) Preparation of Nano-Sized Silicon Carbide Powder Using Thermal Plasma Seung-Min Oh, Mark. Cappelli* and Dong-Wha Park Department of Chemical Engineering, Inha

More information

Dilute Trichloroethylene Decomposition by Non-Thermal Plasma Catalyst and Humidity Effect, and OH Radical Be- havior-

Dilute Trichloroethylene Decomposition by Non-Thermal Plasma Catalyst and Humidity Effect, and OH Radical Be- havior- Proc. 212 Joint Electrostatics Conference 1 Dilute Trichloroethylene Decomposition by Non-Thermal Plasma Catalyst and Humidity Effect, and OH Radical Be- havior- Yusuke Nakagawa, Yuta Tomimura, Ryo Ono

More information

Development of a new atmospheric pressure cold plasma jet generator and application in sterilization

Development of a new atmospheric pressure cold plasma jet generator and application in sterilization Vol 15 No 7, July 2006 c 2006 Chin. Phys. Soc. 1009-1963/2006/15(07)/1544-5 Chinese Physics and IOP Publishing Ltd Development of a new atmospheric pressure cold plasma jet generator and application in

More information

Plasma spheroidization of nickel powders in a plasma reactor

Plasma spheroidization of nickel powders in a plasma reactor Bull. Mater. Sci., Vol. 27, No. 5, October 2004, pp. 453 457. Indian Academy of Sciences. Plasma spheroidization of nickel powders in a plasma reactor G SHANMUGAVELAYUTHAM and V SELVARAJAN* Department

More information

Low temperature formation of nc-si by ICP-CVD with internal antenna. A. Tomyo, H. Kaki, E. Takahashi, T. Hayashi, K. Ogata

Low temperature formation of nc-si by ICP-CVD with internal antenna. A. Tomyo, H. Kaki, E. Takahashi, T. Hayashi, K. Ogata Low temperature formation of nc-si by ICP-CVD with internal antenna A. Tomyo, H. Kaki, E. Takahashi, T. Hayashi, K. Ogata Process Research Center, R & D Laboratories, Nissin Electric Co., Ltd., Umezu,

More information

GMAW (MIG) / FCAW / MCAW

GMAW (MIG) / FCAW / MCAW Welding Processes GMAW () / FCAW / MCAW Gas Metal Arc Welding (GMAW), Flux Cored Arc Welding (FCAW) and Metal Cored Arc Welding (MCAW) Gas Metal Arc Welding (GMAW) GMA commonly referred to as Metal Inert

More information

Plasma Cutting & Gouging

Plasma Cutting & Gouging Plasma Cutting & Gouging By Leif Andersen, Technical Product Manager Welding, WSS Plasma cutting & gouging can be performed on all current carrying materials simply by utilising the compressed air onboard

More information

Conversion of Methane to Hydrogen via Pulsed Corona Discharge

Conversion of Methane to Hydrogen via Pulsed Corona Discharge Journal of Natural Gas Chemistry 13(2004)82 86 Conversion of Methane to Hydrogen via Pulsed Corona Discharge Lekha Nath Mishra, Kanetoshi Shibata, Hiroaki Ito, Noboru Yugami and Yasushi Nishida Energy

More information

Probe Temperature Measurements and Optical Emission Spectroscopy in Vacuum Plasma Spraying Process Control

Probe Temperature Measurements and Optical Emission Spectroscopy in Vacuum Plasma Spraying Process Control ISSN 139 130 MATERIALS SCIENCE (MEDŽIAGOTYRA). Vol. 13, No. 4. 007 Probe Temperature Measurements and Optical Emission Spectroscopy in Vacuum Plasma Spraying Process Control Tomas GRINYS 1,, Sigitas TAMULEVIČIUS

More information

DEPOSITION OF ALUMINA (ALUMINUMOXIDE) NANOLAYER USING PLASMA TORCH

DEPOSITION OF ALUMINA (ALUMINUMOXIDE) NANOLAYER USING PLASMA TORCH DEPOSITION OF ALUMINA (ALUMINUMOXIDE) NANOLAYER USING PLASMA TORCH *Yousefzadeh M. 1, Sobhanian S. 2 and Naghshara H. 3 1 Department of Physics, East Azarbaijan Sience and Research Branch, Islamic Azad

More information

PLASMA-ASSISTED COMBUSTION SYNTHESIS OF HYDROGEN

PLASMA-ASSISTED COMBUSTION SYNTHESIS OF HYDROGEN PLASMA-ASSISTED COMBUSTION SYNTHESIS OF HYDROGEN Alexander Fridman, Drexel University Hydrogen Production from Hydrocarbons, H2O and H2S, Stimulated by Non-Thermal Atmospheric Pressure Plasma Plasma-Chemical

More information

Experimental Analysis of Plasma Arc Cutting Process for SS 316l Plates

Experimental Analysis of Plasma Arc Cutting Process for SS 316l Plates IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 75-80 www.iosrjournals.org Experimental Analysis of Plasma Arc Cutting Process for SS 316l Plates S.

More information

Modification of Glass Surface by Atmospheric Pressure Plasma

Modification of Glass Surface by Atmospheric Pressure Plasma WDS'7 Proceedings of Contributed Papers, Part II, 124 128, 27. ISBN 978-8-7378-24-1 MATFYZPRESS Modification of Glass Surface by Atmospheric Pressure Plasma T. Homola, A. Buček, A. Zahoranová Comenius

More information

Gliding arc in tornado using a reverse vortex flow

Gliding arc in tornado using a reverse vortex flow REVIEW OF SCIENTIFIC INSTRUMENTS 76, 025110 2005 Gliding arc in tornado using a reverse vortex flow Chiranjeev S. Kalra, Young I. Cho, a Alexànder Gutsol, and Alexander Fridman Department of Mechanical

More information

Title Using Neutron Radiography and Liqui. Author(s) Ito, Daisuke; Saito, Yasushi; Kawab. Citation Physics Procedia (2015), 69:

Title Using Neutron Radiography and Liqui. Author(s) Ito, Daisuke; Saito, Yasushi; Kawab. Citation Physics Procedia (2015), 69: Title Hybrid Two-phase Flow Measurements Using Neutron Radiography and Liqui Author(s) Ito, Daisuke; Saito, Yasushi; Kawab Citation Physics Procedia (2015), 69: 570-57 Issue Date 2015 URL http://hdl.handle.net/2433/215123

More information

Oxidative corrosion potential vs. ph diagram for single-walled carbon

Oxidative corrosion potential vs. ph diagram for single-walled carbon Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI) Oxidative corrosion potential vs. ph diagram for

More information

Gas Flame and Arc Processes

Gas Flame and Arc Processes Gas Flame and Arc Processes Chapter 31 31.1 Oxyfuel-Gas Welding Oxyacetylene Welding Torch FIGURE 31-1 Typical oxyacetylene welding torch and cross-sectional schematic. (Courtesy of Victor Equipment Company,

More information

Modelling of plasma heating of the substrate

Modelling of plasma heating of the substrate Modelling of plasma heating of the substrate Kandasamy Ramachandran Centre for Research in Material Sciences & Thermal Management Karunya University, Coimbatore 641 114 Plasma spraying Quality of the coatings

More information

MATHEMATICAL MODELING OF PLASMA TECHNOLOGY FOR TiO 2 FINE POWDER PRODUCTION

MATHEMATICAL MODELING OF PLASMA TECHNOLOGY FOR TiO 2 FINE POWDER PRODUCTION Digest Journal of Nanomaterials and Biostructures Vol. 9, No. 3, July - September 2014, p. 1233-1240 MATHEMATICAL MODELING OF PLASMA TECHNOLOGY FOR TiO 2 FINE POWDER PRODUCTION V. FROLOV *, D. IVANOV,

More information

Section 4.0: The Virginia Tech Plasma Torch Design

Section 4.0: The Virginia Tech Plasma Torch Design Section 4.0: The Virginia Tech Plasma Torch Design The Virginia Tech Plasma Torch was originally designed by Stouffer (1989) in 1988-89. It was designed to operate with argon, nitrogen, hydrogen and mixtures

More information