WATER MANAGEMENT in FORMER URANIUM MINES. UMREG 2014 MEETING FREIBERG Philippe CROCHON AREVA Mines

Size: px
Start display at page:

Download "WATER MANAGEMENT in FORMER URANIUM MINES. UMREG 2014 MEETING FREIBERG Philippe CROCHON AREVA Mines"

Transcription

1 WATER MANAGEMENT in FORMER URANIUM MINES UMREG 2014 MEETING FREIBERG Philippe CROCHON AREVA Mines

2 Part 1 Quality of uranium mine water Water management in former U mines P. Crochon / UMREG - p.2 2

3 The three classical components of former mining sites Uranium production sites like other former mining sites present three major source terms for water contamination Flooded mine voids (open pit or underground) Waste rock piles Tailings (milling residues) disposals Each one of these source terms is a geochemical reactor with peculiar: Rock/mineral reactive matrix Water inflow Geochemical processes Hydrodynamic regime Mine discharge Waste rock Waste rock pile Rate of evolution Each source term contributes to the overall impact on the hydrogeological environment Underground or open pit mine effluent Ore Treatment plant Tailings concentrate Tailings repository effluent Water management in former U mines P. Crochon / UMREG - p.3

4 Underground mine and open pit discharge water quality (1/3) Characteristics of the mine void reactor: Reactive matrix Host rock and residual/marginal ore with generally reactive U +4 minerals and often sulfides Inflow: Meteoric water and host rock groundwater Hydrodynamic regime: Unsaturated during flooding Saturated (±) in post-mine conditions Constant (but site specific) water renewal Main geochemical process Dissolution of residual ore minerals écoulement flow puits well TMS rivière river Water management in former U mines P. Crochon / UMREG - p.4

5 Underground mine and open pit discharge water quality (2/3) The initial (post-flooding) water quality reflects: Oxidation of reactive phases in unsaturated conditions Sulfides Uranium oxides/silicates During operation AND post-mine flooding The resulting initial water quality is poor AIR ph, SO4, dissolved U and RN, Initial U concentration may vary from a few mg/l to x 10 mg/l Water management in former U mines P. Crochon / UMREG - p.5

6 Concentration en Zn (mg/l) Underground mine and open pit discharge water quality (3/3) Short-term evolution depends on water renewal Q (outflow) vs V (mine water volume) Stabilization is observed after about 8 renewals of mine water Duration may vary between a few months to a few years Temps (mois) Long-term quality of discharge depends on The oxygen content of water inflow and its ability to leach reactive minerals The process will go on for a very long time Meteoric/oxidizing vs deep/reducing groundwater inflow Water management in former U mines P. Crochon / UMREG - p.6

7 Evolution of waste rock piles and effluent quality (1/2) Characteristics of the waste rock reactor: Reactive matrix Host rock and residual/marginal ore Secondary (weathering minerals) Up to 200 ppm U Coarse material Water inflow: Essentially meteoric (seepage) water Hydrodynamic regime: Unsaturated flow Main geochemical process Acid mine drainage oxidative dissolution of sulfide minerals and subsequent U solubilisation Water management in former U mines P. Crochon / UMREG - p.7

8 Evolution of waste rock piles and effluent quality (2/2) Main characteristics of early effluents Very low ph (0.9 to 2) Very high sulfate (up to 15 g/l), Al, Fe and often base metals High dissolved U (up to 800 mg/l) But low dissolved Ra Strong seasonal variation of effluent quality Significant annual attenuation Duration influenced by Thickness of waste disposal Climatology (rainfall and T ) Presence of peculiar elements (fluorine, arsenic) Water management in former U mines P. Crochon / UMREG - p.8

9 Behavior of U tailings and effluent quality (1/3) Characteristics of the tailings reactor Reactive matrix Very fine grained material (milling) Residual gangue and ore minerals Secondary minerals (process specific) Water inflow: Initial interstitial process solution Groundwater and minor meteoric water Hydrodynamic regime: Initial fluid expulsion Very low permeability Mainly peripheral leaching Main geochemical process Internal re equilibration Slow leaching of soluble phases, including RN bearing phases Water management in former U mines P. Crochon / UMREG - p.9

10 Behavior of U tailings and effluent quality (2/3) Early evolution and re equilibration of interstitial water Strong attenuation (x ¼) of uranium, sulfate, and radium Return to anoxic conditions Timescale 5 to 10 years Early evolution of peripheral drain water Similar attenuation of contaminants Timescale 2 to 4 years Probably expulsion / rinsing of initial process water Water management in former U mines P. Crochon / UMREG - p.10

11 Behavior of U tailings and effluent quality (3/3) Internal part of tailings Internal part of tailings very close to geochemical equilibrium (interstitial water and solid phase) No sizeable evolution Periphery of tailings repository Under saturated dilute waters Oxidized in topmost horizons Peripheral leaching confirmed by flow modeling Long term evolution of tailings effluents Probably very slow (but strong noise ) Not well documented, especially for RN retention (current research) m 100 m Water management in former U mines P. Crochon / UMREG - p.11

12 Part 2 Water treatment Water management in former U mines P. Crochon / UMREG - p.12 12

13 Water treatement objectives Longwall mining Open pit mining Waste rocks or tailings Mine water Run-off water Water treatment plant To limit the particulate & dissolved pollution caused by suspended particles, U & Ra, acid ph, Fe River or stream Water management in former U mines P. Crochon / UMREG - p.13

14 Regulation Quality of the collected water expected or modelized evolution Stopping of water treatment planified comparison French main regulations for water discharge limits for mining sites : U < 1.8 mg/l (22 Bq/l) Ra < 3.7; 0.74 or 0.37 Bq/l (100; 20 or 10 pg/l) 5.5 < ph < 8.5 if it exceeds 1 limit Water treatment plant (re)built or maintained Based on the technical costs/efficiency ratios of that time Mainly focused on radiological impact Water management in former U mines P. Crochon / UMREG - p.14

15 Water treatment processes at mine closure Useful process : Physico-chemical process New processes Active processes Ion exchange (implemented in Lodève in 1999) Biosorption Membrane technologies (ultra and nanofiltration, reverse osmosis ) Passive processes Trapping of U & Ra by iron oxides Limestone drains (implemented in Beaurepaire, Cérilly and Le Cellier) Artificial wetlands and other biosorption techniques Each process has advantages and drawbacks on economical, environmental and maintenance aspects Water management in former U mines P. Crochon / UMREG - p.15

16 Physico chemical process Most useful technique Barium -> Radium : Add of barium chloride (BaCl 2 ) (10 50 g/m3) with sulfates Ra 2+ + Ba 2+ + SO 4 2- RaBa(SO 4 ) 2 Aluminium sulfate + soda -> Uranium : Add of aluminium sulfate (Al 2 (SO 4 ) 3 ) or clairtan (FeClSO 4 at g/m 3 ) and ph adjustment with soda (NaOH) : part of U sol U insol Floculant for decantation Cleaning of settling ponds (sludge production) Settling pond Collecting pond & baffles Settling pond Tailings pond (pumping system if sewage) Drainage water Monitoring phmeter Treated release Bois Noirs water treatment plant Water management in former U mines P. Crochon / UMREG - p.16

17 Coagulation/flocculation Determination of better coagulant concentration Use of flocculant to increase flocs size (better settling) Use of neutralizant Augères water treatment plant Water management in former U mines P. Crochon / UMREG - p.17

18 Advantages/drawbacks of physico chemical process Advantages : Good experience feedback Good performances for high grade waters Adapted to fluctuations of waters flows and grades Disposal of muds Drawbacks : Muds Salting out of particles Use of chemical reagents Monitoring Cost (energy, reagents, monitoring) Years Bellezane : Release levels / Treatment plant inlet levels Sludge production Water management in former U mines P. Crochon / UMREG - p.18

19 Ion exchange station de traitement des eaux Resins Uranium recovery and valorisation Water management in former U mines P. Crochon / UMREG - p.19 Lodève water treatment plant

20 Limestone drains To treat aluminum : Al precipitates in the form of hydroxides In a passive way (without using energy nor reagents) through ph treatment Acid waters Peristaltic pump Laboratory experiments Column filled with limestone rocks sampling Beaurepaire water treatment plant Water management in former U mines P. Crochon / UMREG - p.20

21 Passive treatment Artificial wetlands and others biosorption technique (peat) Results Adsorption of 60% of U Adsorption of 40% of Ra Not for important flows Plugging problem Water management in former U mines P. Crochon / UMREG - p.21

22 Others processes Ion exchange resins : High grade waters, pretreatment (MeS, Fe), U valorisation but important investment, regular flows Biosorption (barks) : Cheap,no chemical reagents,regular flows,management of barks, no current use Reversis osmosis : Important investment, management of concentrate Precipitation on fluided bed (Metclean) : Non adapted for mining waters, not better efficiency Ultra/nanofiltration : Chemical treatment to avoid plugging of filters Water management in former U mines P. Crochon / UMREG - p.22

23 CONCLUSION Water management in former U mines P. Crochon / UMREG - p.23 23

24 Conclusion Long term management of mining waters is required Physico chemical process : Effective, proven,adaptable,muds Passive process : Limited performance New regulatory evolution for water discharge limits underway Chemical impacts, applying in the river (not at the discharge point anymore), U limit (0.3 µg/l) R&D Water management in former U mines P. Crochon / UMREG - p.24

25 Thank you for your attention! Questions? Water management in former U mines P. Crochon / UMREG - p.25

26 ANNEXES Water management in former U mines P. Crochon / UMREG - p.26 26

27 Source terms for contaminants in Uranium production legacy sites The ideal case Geochemical and hydraulic independency of source-terms Individual monitoring The real case Generally complex mine sites with interaction of the different source terms (mixing and cross feeding) ruissellement Run-off MCO B TMS BD apports Direct meteoric météo water directs A difficulty to monitor individual source terms and for planning / evaluating remediation actions Complex modeling required for this purpose Encaissant granitique remblais MCO TMS arrosage Watering Q(MCO), C(MCO) R 570 Q(TMS), C(TMS) constants Water management in former U mines P. Crochon / UMREG - p.27

28 Trapping of U & Ra by iron oxides ph influence : ph = 6-7 : iron oxides positively charged Fe + U : mainly negatively loaded => attracted by positive loads (U - iron oxides) complexes created Ra in Ra 2+ form is not fixed UO 2 (OH) ph = 9-10 : iron oxides negatively charged Ra Ra : presented as Ra 2+ => attracted by negative loads - Fe - (Ra - iron oxides) complexes created The ph is not natural => addition of soda ash or an other chemical base is necessary : It is no more a passive treatment Water management in former U mines P. Crochon / UMREG - p.28

Chemical treatment of acid mine drainage. Anna Gulkova, Water and Environmental Engineering, Aalto University

Chemical treatment of acid mine drainage. Anna Gulkova, Water and Environmental Engineering, Aalto University Chemical treatment of acid mine drainage Anna Gulkova, Water and Environmental Engineering, Aalto University 1 Contents Acid mine drainage formation Problems associated with acid mine drainage Treatment

More information

Inert Atmosphere Systems A New Approach to controlling AMD Discharges from Underground Mines

Inert Atmosphere Systems A New Approach to controlling AMD Discharges from Underground Mines Inert Atmosphere Systems A New Approach to controlling AMD Discharges from Underground Mines Nic Bourgeot1, John A. Muchan1, Andrew Sampaklis2, Nick Staheyeff2 and Jeff R. Taylor1 1Earth Systems Pty. Ltd.

More information

Golden Sunlight Mine Bio-Treatment of Acid Producing Waste. By Rory Tibbals Operations Superintendent

Golden Sunlight Mine Bio-Treatment of Acid Producing Waste. By Rory Tibbals Operations Superintendent Golden Sunlight Mine Bio-Treatment of Acid Producing Waste By Rory Tibbals Operations Superintendent Golden Sunlight Mine Gold Producing Mine 2.5 Million Ounces Produced 20 Year Operation Ore and All

More information

PHYSICAL-CHEMICAL TREATMENT OF METALS AND RADIONUCLIDES IN THE SATURATED ZONE USING COLLOIDAL BUFFERS EOS Remediation, LLC.

PHYSICAL-CHEMICAL TREATMENT OF METALS AND RADIONUCLIDES IN THE SATURATED ZONE USING COLLOIDAL BUFFERS EOS Remediation, LLC. PHYSICAL-CHEMICAL TREATMENT OF METALS AND RADIONUCLIDES IN THE SATURATED ZONE USING COLLOIDAL BUFFERS - 12515 Yenjung Lai 1, Robert C. Borden 1, Ed Alperin 2 1 North Carolina State University, Raleigh,

More information

Understanding Pretreatment. WesTech Engineering, Inc. Salt Lake City, Utah, USA

Understanding Pretreatment. WesTech Engineering, Inc. Salt Lake City, Utah, USA Understanding Pretreatment WesTech Engineering, Inc. Salt Lake City, Utah, USA Industrial Water Usage Water is required in almost every industry For: Cooling Boiler feed Process Drinking Cleaning In 2005

More information

AD26 Systems for Iron, Manganese, Sulfide and Arsenic Removal

AD26 Systems for Iron, Manganese, Sulfide and Arsenic Removal AD26 Systems for Iron, Manganese, Sulfide and Arsenic Removal Technical Bulletin 2004-02 rev0707 Q: What is the AdEdge AD26 System? A: The AD26 system is a pre-engineered, packaged treatment system specifically

More information

George E. King SPE GCS 27 October 2011

George E. King SPE GCS 27 October 2011 Treating Produced Water For Shale Fracs A U S T R A L I A A R G E N T I N A C A N A D A E G Y P T N O R T H S E A U. S. C E N T R A L U. S. G U L F George E. King SPE GCS 27 October 2011 Horn River 5000

More information

Water supplied by Marafiq does not meet the process requirements.

Water supplied by Marafiq does not meet the process requirements. WATER TREATMENT In Industries Water is used for: a. Drinking b. Cleaning c. Cooling d. Producing Steam e. Process requirement Why we need to treat water? For human consumption a. Water to be purified (Make

More information

ENNTEC. TREATMENT SOlUTioNS. Water Treatment in Mining Industry

ENNTEC. TREATMENT SOlUTioNS. Water Treatment in Mining Industry ENNTEC WATER TREATMENT SOlUTioNS Water Treatment in Mining Industry Contaminated mine water is generated when rock containing sulphidic minerals is exposed to water and oxygen, resulting in the production

More information

Environmental characterisation and mine water monitoring

Environmental characterisation and mine water monitoring T. Kauppila Environmental characterisation and mine water monitoring Päivi Kauppila GTK Mine Water Management and Treatment From Planning of Mine Operations to Mine Closure 24. 25.9.2013 Technopolis, Kuopio

More information

Treatment Technologies

Treatment Technologies Treatment Technologies Precipitation Softening INTRODUCTION CHEMISTRY OF PRECIPITATION SOFTENING COLD LIME SOFTENING WARM LIME SOFTENING HOT PROCESS SOFTENING SILICA REDUCTION REDUCTION OF OTHER CONTAMINANTS

More information

PIT LAKES LIABILITY OR LEGACY? David Allen (MBS Environmental) Karen Ganza (MBS Environmental) Rob Garnham (Groundwater Resource Management)

PIT LAKES LIABILITY OR LEGACY? David Allen (MBS Environmental) Karen Ganza (MBS Environmental) Rob Garnham (Groundwater Resource Management) PIT LAKES LIABILITY OR LEGACY? David Allen (MBS Environmental) Karen Ganza (MBS Environmental) Rob Garnham (Groundwater Resource Management) PRESENTATION OUTLINE Introduction Examples of Pit Lakes Important

More information

Passive Treatment System for Arsenic, Manganese, & Iron. Presented by, Neal Gallagher, Golder Associates Inc.

Passive Treatment System for Arsenic, Manganese, & Iron. Presented by, Neal Gallagher, Golder Associates Inc. Passive Treatment System for Arsenic, Manganese, & Iron Presented by, Neal Gallagher, Golder Associates Inc. Agenda Site Background Passive Treatment System (PTS) Design PTS Performance Conclusions Future

More information

Base Metal and Iron Ore Mining

Base Metal and Iron Ore Mining Multilateral Investment Guarantee Agency Environmental Guidelines for Base Metal and Iron Ore Mining Industry Description and Practices This document addresses the mining of base metal ores (copper, lead

More information

Meeting SB1 Requirements and TP Removal Fundamentals

Meeting SB1 Requirements and TP Removal Fundamentals Meeting SB1 Requirements and TP Removal Fundamentals June 5, 2017 Agenda SB1 requirements for P TP removal mechanisms Biological removal Chemical removal SB No. 1 Requirements for Phosphorus ** WWTP /

More information

Membrane Processes for the Treatment of UMM Radwastes M. Isabel F. Paiva, Ph.D Nuclear and Technological Institute Department of Radiological Protection and Nuclear Safety IAEA Technical Meeting on Uranium

More information

Passive treatment of mine drainage: Options, challenges, and possible future developments

Passive treatment of mine drainage: Options, challenges, and possible future developments Passive treatment of mine drainage: Options, challenges, and possible future developments Adam P Jarvis Newcastle University, UK Definitions Active Treatment is the improvement of water quality by methods

More information

Innovative Method to Reduce Land Area and Cost in the Treatment of Acid mine Drainage by

Innovative Method to Reduce Land Area and Cost in the Treatment of Acid mine Drainage by Presented at the 2001 National Association of Abandoned Mine Lands Conference, August 19-22, 2001, Athens, Ohio Innovative Method to Reduce Land Area and Cost in the Treatment of Acid mine Drainage by

More information

Post Uranium Mining: The activities of the Groupe d Expertise Pluraliste in Limousin (France)

Post Uranium Mining: The activities of the Groupe d Expertise Pluraliste in Limousin (France) Groupe d Expertise Pluraliste Post Uranium Mining: The activities of the Groupe d Expertise Pluraliste in Limousin (France) UMREG Meeting - Freiberg, 17 Sept. 2008 Yves Marignac GEP Coordinator Didier

More information

July 1977 Subject: Technical Letter 26 Removal of Water Supply Contaminants Chlorophenoxy Acid Herbicides

July 1977 Subject: Technical Letter 26 Removal of Water Supply Contaminants Chlorophenoxy Acid Herbicides STATE OF ILLINOIS Department of Registration and Education JOAN G. ANDERSON DIRECTOR. SPRINGFIELD BOARD OF NATURAL RESOURCES AND CONSERVATION JOAN G. ANDERSON CHAIRMAN BIOLOGY THOMAS PARK CHEMISTRY H.

More information

A New Technology for. Acid Mine Drainage Treatment

A New Technology for. Acid Mine Drainage Treatment A New Technology for Acid Mine Drainage Treatment J. Ming Zhuang, Tony Walsh NORAM Engineering and Constructors Ltd. NORAM Engineering & Constructors Ltd. Specializes in the development and commercialization

More information

Radioactive Water Treatment at a United States. John C Beckman, US Army Corps of Engineers, Baltimore District, Baltimore, MD 21201

Radioactive Water Treatment at a United States. John C Beckman, US Army Corps of Engineers, Baltimore District, Baltimore, MD 21201 ABSTRACT Radioactive Water Treatment at a United States Environmental Protection Agency Superfund Site - 12322 John C Beckman, US Army Corps of Engineers, Baltimore District, Baltimore, MD 21201 A water

More information

Virtual Curtain Limited

Virtual Curtain Limited Virtual Curtain Limited Superior outcomes for treatment of contaminated & mine acid drainage water 1. Removes radionuclides and heavy metals 2. Reduces sludge volume by up to 90% 3. Long term stable repository

More information

A Preliminary Assessment of Potential Impacts of Uranium Mining in Virginia on Drinking Water Sources

A Preliminary Assessment of Potential Impacts of Uranium Mining in Virginia on Drinking Water Sources A Preliminary Assessment of Potential Impacts of Uranium Mining in Virginia on Drinking Water Sources EXECUTIVE SUMMARY January 28, 2011 ES-0 Executive Summary A large uranium reserve, estimated to be

More information

WEF Collection Systems Conference Evaluation of High ph Infiltration Water and Recycled Bedding Material

WEF Collection Systems Conference Evaluation of High ph Infiltration Water and Recycled Bedding Material Evaluation of High ph Infiltration Water and Recycled Bedding Material Keith Hobson, PE, BCEE, FOX Engineering Associates, Inc. ABSTRACT The purpose of this evaluation was to determine the cause and source

More information

CTB3365x Introduction to Water Treatment

CTB3365x Introduction to Water Treatment CTB3365x Introduction to Water Treatment D4a Groundwater treatment Doris van Halem Ever wondered where your drinking water comes from? Well, chances are that you are sitting on it as we speak. Welcome

More information

Wastewater Treatment of high total dissolved solids and acidity in Cerro de Pasco mining wastewater

Wastewater Treatment of high total dissolved solids and acidity in Cerro de Pasco mining wastewater Wastewater Treatment of high total dissolved solids and acidity in Cerro de Pasco mining wastewater Presented by Melissa Rhodes Golder Associates, Inc. Presentation Outline Project Overview Influent Design

More information

Design and Management of CDFs Effluent and Runoff Quality Assessment

Design and Management of CDFs Effluent and Runoff Quality Assessment Design and Management of CDFs Effluent and Runoff Quality Assessment Susan Bailey US Army ERDC, Vicksburg, MS Susan.E.Bailey@usace.army.mil Topics Regulatory definition & requirements Environmental concerns

More information

BENEFICIAL USE OF PRODUCED WATER SOUNDS SIMPLE ENOUGH. Rick McCurdy, Ground Water Protection Council s Annual UIC Conference February 21-23, 2017

BENEFICIAL USE OF PRODUCED WATER SOUNDS SIMPLE ENOUGH. Rick McCurdy, Ground Water Protection Council s Annual UIC Conference February 21-23, 2017 BENEFICIAL USE OF PRODUCED WATER SOUNDS SIMPLE ENOUGH Rick McCurdy, Ground Water Protection Council s Annual UIC Conference February 21-23, 2017 BUT FIRST A MOST PRECIOUS COMMODITY AGENDA What s In Produced

More information

HEAP LEACHING TECHNOLOGY Moving the frontier for treatment

HEAP LEACHING TECHNOLOGY Moving the frontier for treatment HEAP LEACHING TECHNOLOGY Moving the frontier for treatment Applications in Niger and Namibia Jacques THIRY Sergio BUSTOS Technical Direction AREVA MINES FRANCE IAEA, Vienna, June 2014 Titre présentation

More information

The Wismut environmental rehabilitation project The 2013 Status. Michael Paul, Stefan Mann Wismut GmbH, Chemnitz, Jagdschänkenstraße 29

The Wismut environmental rehabilitation project The 2013 Status. Michael Paul, Stefan Mann Wismut GmbH, Chemnitz, Jagdschänkenstraße 29 The Wismut environmental rehabilitation project The 2013 Status Michael Paul, Stefan Mann Wismut GmbH, 09117 Chemnitz, Jagdschänkenstraße 29 UMREG Meeting, Dolní Rožínka, August 27-28, 2013 2 Presentation

More information

PURPOSE PROCESS PAYOFF

PURPOSE PROCESS PAYOFF Water Reuse 4/04/13 PURPOSE PROCESS PAYOFF Water Water Everywhere but not a drop to drink! Seawater versus Water Reuse UF - RO for brackish waste water streams: 0.81.2 kw h/m3 MBR RO for brackish waste

More information

Groundwater 3/16/2010. GG22A: GEOSPHERE & HYDROSPHERE Hydrology

Groundwater 3/16/2010. GG22A: GEOSPHERE & HYDROSPHERE Hydrology GG22A: GEOSPHERE & HYDROSPHERE Hydrology Definitions Groundwater Subsurface water in soil or rock that is fully saturated. Aquifer Contains enough saturated material to yield significant quantities of

More information

WATER TREATMENT PLANTS AND NORM - CZECH EXPERIENCE

WATER TREATMENT PLANTS AND NORM - CZECH EXPERIENCE WATER TREATMENT PLANTS AND NORM - CZECH EXPERIENCE M. Neznal 1, I. Ženatá 2, R. Šináglová 3, J. Hůlka 4 and J. Vlček 5 1 RADON v.o.s., Novákových 6, 180 00 Praha 8, Czech Republic 2 State Office for Nuclear

More information

ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF

ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF LEARNING OUTCOMES Define the concept and process of water treatment. Describe the concept of coagulation, flocculation, and sedimentation

More information

ARD Treatment in a Case Study on a Millennium of Mining

ARD Treatment in a Case Study on a Millennium of Mining ARD Treatment in a Case Study on a Millennium of Mining Falu Gruva, Sweden Presented by: Mike Bratty Golder Vancouver Contrubutors:Torsten Andersson - Falu Rödfärg, Stora Enso, Henning Holmstrom, Golder

More information

Electrocoagulation. Achieving clean, clear, treated and reusable water: The process, technology and benefits. CALL US (631)

Electrocoagulation. Achieving clean, clear, treated and reusable water: The process, technology and benefits.   CALL US (631) Electrocoagulation Achieving clean, clear, treated and reusable water: The process, technology and benefits. WWW.AWWTCORP.COM CALL US (631) 213-1324 SEWAGE WASTE Clean water is vital to virtually all living

More information

Commercial Case Studies of Life Cycle Cost Reduction of ARD Treatment with Sulfide Precipitation

Commercial Case Studies of Life Cycle Cost Reduction of ARD Treatment with Sulfide Precipitation Commercial Case Studies of Life Cycle Cost Reduction of ARD Treatment with Sulfide Precipitation David Kratochvil 1, Songlin Ye 1, and Oscar Lopez 2 1. BioteQ Environmental Technologies, Canada 2. BioteQ

More information

Science Exploration. DHRITI BHATTACHARJEE Class : VII/C Roll No : 31

Science Exploration. DHRITI BHATTACHARJEE Class : VII/C Roll No : 31 Science Exploration DHRITI BHATTACHARJEE Class : VII/C Roll No : 31 INTRODUCTION TO WATER TREATMENT PLANTS Visit to Nimeta Water Treatment Plant, Vadodara INDEX 1. Introduction to Water Treatment Plants

More information

A Framework for improving the ability to understand and predict the performance of heap leach piles

A Framework for improving the ability to understand and predict the performance of heap leach piles A Framework for improving the ability to understand and predict the performance of heap leach piles M. O Kane O Kane Consultants Inc. 232 111 Research Drive Saskatoon, Saskatchewan, Canada S7N 3R2 S.L.

More information

Unit Treatment Processes in Water and Wastewater Engineering

Unit Treatment Processes in Water and Wastewater Engineering Unit Treatment Processes in Water and Wastewater Engineering T J Casey AQUAVARRA RESEARCH LIMITED 22A Brookfield Avenue Blackrock Co. Dublin. October 2006 Author s Note Water and wastewater treatment technology

More information

Approaches to Treatment of Very High Acidity Wastewater

Approaches to Treatment of Very High Acidity Wastewater Approaches to Treatment of Very High Acidity Wastewater AIChE International Society for Water Solutions Industrial Water Use and Reuse Workshop Strategies for Sustainable Water Management for Mining Kevin

More information

Bioremediation Technologies In Mining

Bioremediation Technologies In Mining Lecture 39 Bioremediation Technologies In Mining Keywords: Active Remediation, Passive Remediation, Sulfate Reducing Bacteria Passive AMD treatment options [245-246] Aerobic wetlands Anaerobic wetlands

More information

13. High Rate Filtration Process

13. High Rate Filtration Process 13.High Rate Filtration Process N. Horie 1, M.Kabata 2, K.Sano 3, S.Kanamori 4 Director, Chief Researcher,Senior Researcher 3, Researcher 4 First Research Department Japan Institute of Wastewater Engineering

More information

The Application of Produced Water Treatment and Water Blending in Shale Resource Development

The Application of Produced Water Treatment and Water Blending in Shale Resource Development The Application of Produced Water Treatment and Water Blending in Shale Resource Development Authors: J. D. Arthur, P.E., SPEC; and David Alleman New York Water Environment Association 2013 Spring Technical

More information

Mining Impacts. Metal Recycling. Reading Today: Ch. 12 pp , also Ch. 16 pp Wed: Ch. 13

Mining Impacts. Metal Recycling. Reading Today: Ch. 12 pp , also Ch. 16 pp Wed: Ch. 13 Mining Impacts Reading Today: Ch. 12 pp. 306-309, also Ch. 16 pp. 424-426 Wed: Ch. 13 Metal Recycling Benefits resource conservation less land disturbed by mining saves landfill space reduces energy consumption

More information

Metal Recycling. Mining Impacts. Recycling of other mineral resources. Hazardous Work

Metal Recycling. Mining Impacts. Recycling of other mineral resources. Hazardous Work Mining Impacts Reading Today: Ch. 12 pp. 306-309, also Ch. 16 pp. 424-426 Wed: Ch. 13 Metal Recycling Benefits resource conservation less land disturbed by mining saves landfill space reduces energy consumption

More information

Results from a Bench Scale Passive Treatment System Designed for Removing Sulfate at a Site on Vancouver Island, BC

Results from a Bench Scale Passive Treatment System Designed for Removing Sulfate at a Site on Vancouver Island, BC Results from a Bench Scale Passive Treatment System Designed for Removing Sulfate at a Site on Vancouver Island, BC Presented by, Eric Blumenstein, PE, Golder Associates Inc. Presentation Overview Site

More information

Water Solutions for the Mining Industry

Water Solutions for the Mining Industry Water Solutions for the Mining Industry Resourcing the world WATER TECHNOLOGIES Creating water solutions for the mining industry Veolia Water Technologies can provide specialised water systems thanks to

More information

Removing Heavy Metals from Wastewater

Removing Heavy Metals from Wastewater Removing Heavy Metals from Wastewater Engineering Research Center Report David M. Ayres Allen P. Davis Paul M. Gietka August 1994 1 Removing Heavy Metals From Wastewater Introduction This manual provides

More information

Succeed at Removing Metals and Other Contaminants from Water

Succeed at Removing Metals and Other Contaminants from Water Succeed at Removing Metals and Other Contaminants from Water The MAR Systems Vision Cleaner Water to Benefit the World s Present and Future Generations What We Do Manufacturer of comprehensive adsorbent

More information

Selenium Removal. Caroline Dale

Selenium Removal. Caroline Dale Selenium Removal Caroline Dale > Selenium in the Environment 2 Environmental Concerns olisted as a Priority Toxic Pollutant ono Human Health Based Criteria Available ou.s. EPA regulates selenium in WW

More information

USE OF FLUIDIZED BED SLAG REACTORS FOR PASSIVE TREATMENT OF ACID MINE DRAINAGE

USE OF FLUIDIZED BED SLAG REACTORS FOR PASSIVE TREATMENT OF ACID MINE DRAINAGE USE OF FLUIDIZED BED SLAG REACTORS FOR PASSIVE TREATMENT OF ACID MINE DRAINAGE Final Report Guy Riefler Department of Civil Engineering Ohio University Athens, Ohio 4571 Problem and Research Statement

More information

Case Studies in ARD Management and Mine Closure

Case Studies in ARD Management and Mine Closure Case Studies in ARD Management and Mine Closure Rio Tinto US Sites Rich Borden and Vicky Peacey Rio Tinto April 2012 Environment in Rio Tinto 1 Proactive ARD Management for Mine Closure Proactive ARD management

More information

Semi-Passive Bioreactors and RCTS Lime Treatment of Acid Mine Drainage

Semi-Passive Bioreactors and RCTS Lime Treatment of Acid Mine Drainage Semi-Passive Bioreactors and RCTS Lime Treatment of Acid Mine Drainage Timothy K. Tsukamoto, Ph.D. TKT Consulting, LLC TKTtim@gmail.com Bridging the Gap Between Passive and Active PASSIVE ACTIVE Limestone

More information

BRITANNIA MINE REMEDIATION PROJECT Water Management. Gerry O Hara P.Eng., Golder Associates Ltd Dr. Ross Hammett, P.Eng., Golder Associates Ltd

BRITANNIA MINE REMEDIATION PROJECT Water Management. Gerry O Hara P.Eng., Golder Associates Ltd Dr. Ross Hammett, P.Eng., Golder Associates Ltd BRITANNIA MINE REMEDIATION PROJECT Water Management Gerry O Hara P.Eng., Golder Associates Ltd Dr. Ross Hammett, P.Eng., Golder Associates Ltd Scope of Presentation Overview of the Britannia Mine Remediation

More information

Economical Approach to Treatment of Soluble and Particulate As, Cu, Zn, and Cr in Stormwater Runoff to Meet BCWQGs AW

Economical Approach to Treatment of Soluble and Particulate As, Cu, Zn, and Cr in Stormwater Runoff to Meet BCWQGs AW Economical Approach to Treatment of Soluble and Particulate As, Cu, Zn, and Cr in Stormwater Runoff to Meet BCWQGs AW Presented by Elena Ranyuk, PhD MBA October 12, 2017 RemTech 2017 Banff, AB 1 Overview

More information

NICO Tailings and Mine Rock Co-disposal Facility (CDF) Design Concept

NICO Tailings and Mine Rock Co-disposal Facility (CDF) Design Concept NICO Tailings and Mine Rock Co-disposal Facility (CDF) Design Concept Open pit and underground mine The project has 31 Mt of ore reserve Ore to be processed at a rate of 4,650 t/d Life of mine is 20 years

More information

What companies are asking from researchers?

What companies are asking from researchers? Mineral and Energy Economy Research Institute, Polish Academy of Sciences What companies are asking from researchers? dr Joanna Kulczycka AMD long term problem Acid mine drainage (AMD) is a major environmental

More information

ADVANCES IN THE PREDICTION AND CONTROL OF ACID MINE DRAINAGE 1

ADVANCES IN THE PREDICTION AND CONTROL OF ACID MINE DRAINAGE 1 ADVANCES IN THE PREDICTION AND CONTROL OF ACID MINE DRAINAGE 1 By P.F. Ziemkiewicz 2 ABSTRACT. Over the past five years a research team at West Virginia University has developed a mathematical model: the

More information

Backfilled Pits Laboratory-scale Tests for Assessing Impacts on Groundwater Quality

Backfilled Pits Laboratory-scale Tests for Assessing Impacts on Groundwater Quality Page 1 This paper was first presented at AusIMM Life-of-Mine Conference in Brisbane, Australia on 28-30 September, 2016. Introduction Closure options under consideration at some sites include backfilling

More information

Industrial Waste Water Treatment. Unit 5

Industrial Waste Water Treatment. Unit 5 Industrial Waste Water Treatment Unit 5 Outline Levels of treatment methods 1 Biological wastewater treatment Caste study Heavy metals Biological wastewater treatment Treatment Methods employed Biological

More information

Hybrid RO & Softening Birjand Water Treatment Plant

Hybrid RO & Softening Birjand Water Treatment Plant Hybrid RO & Softening Birjand Water Treatment Plant Ali Farahmand 1 *, Nassir Gifani 1, and Mohsen Farivar 1 1 ToossAb Consulting Engineers Co., Tehran, Iran (*correspondence: farahmandali@yahoo.com) FORMAT:

More information

Worldwide Pollution Control Association

Worldwide Pollution Control Association Worldwide Pollution Control Association WPCA-Southern Company Wastewater Treatment Seminar April 16 & 17, 2013 All presentations posted on this website are copyrighted by the Worldwide Pollution Control

More information

Copies: Mark Hildebrand (NCA) ARCADIS Project No.: April 10, Task A 3100

Copies: Mark Hildebrand (NCA) ARCADIS Project No.: April 10, Task A 3100 MEMO To: Jeff Pelz (West Yost) Kathryn Gies (West Yost) Copies: Mark Hildebrand (NCA) ARCADIS U.S., Inc. 200 Harvard Mills Square Suite 430 Wakefield Massachusetts 01880 Tel 781 224 4488 Fax 781 224 3033

More information

Magino Project Environmental Impact Statement. Technical Support Document Water Management Plan

Magino Project Environmental Impact Statement. Technical Support Document Water Management Plan EIS Techni cal Support Document 20-12 Magino Project Environmental Impact Statement Technical Support Document 20-12 Rev. No. Revision Date Approved 0 Document issued for EIS Table of Contents SECTION

More information

Influent preheating (note that the heat will be recovered before discharge);

Influent preheating (note that the heat will be recovered before discharge); TO Rick Schryer - Fortune Minerals Limited DATE 23 February 2012 CC Jen Gibson FROM Bridgette Hendricks, Kevin Conroy PROJECT No. 09-1373-1004.9600 UNDERTAKING #1 EFFLUENT TREATMENT SYSTEM INFORMATION

More information

HYDROGEOCHEMISTRY AND TREATMENT OF ACID MINE DRAINAGE IN SOUTHERN CHINA' by Guo Fang2 and Yu Hong 2

HYDROGEOCHEMISTRY AND TREATMENT OF ACID MINE DRAINAGE IN SOUTHERN CHINA' by Guo Fang2 and Yu Hong 2 HYDROGEOCHEMISTRY AND TREATMENT OF ACID MINE DRAINAGE IN SOUTHERN CHINA' by Guo Fang2 and Yu Hong 2 Abstract. Coal mines and various sulfide ore deposits are widely distributed in Southern China. Acid

More information

Geochemical Conceptual Site Models Validated by Speciation Data to Support In Situ Treatment Strategies for Metals

Geochemical Conceptual Site Models Validated by Speciation Data to Support In Situ Treatment Strategies for Metals Geochemical Conceptual Site Models Validated by Speciation Data to Support In Situ Treatment Strategies for Metals Miranda Logan Jeff Gillow, Ph.D. Richard Murphy, Ph.D. Imagine the result Geochemical

More information

ISL Mining in Kazakhstan and Technology Development Vienna, IAEA, April 2013

ISL Mining in Kazakhstan and Technology Development Vienna, IAEA, April 2013 ISL Mining in Kazakhstan and Technology Development Vienna, IAEA, 15-18 April 2013 O. Gorbatenko Uranium resources in Kazakhstan Kazakhstan Identified Resources of uranium amount to 900 thousand tons,

More information

Heavy Metals Removal

Heavy Metals Removal Heavy Metals Removal Enhancing the Co-Precipitation Process for Heavy Metal Industrial Waste Treatment By Daniel Christodoss Ph.D., Stephen A. Veale, and Terry L. Bires Science Applications International

More information

Extracting uranium from its ores

Extracting uranium from its ores Nuclear fuel cycle' Extracting uranium from its ores g by D.C. Seidel* The development of the uranium mining and ore processing industry is unique. In the space of a little less than 10 years it grew from

More information

Dredged Material and Acid Sulfate Soils

Dredged Material and Acid Sulfate Soils Dredged Material and Acid Sulfate Soils Biogeochemistry of Upland Placement of Dredged Sediments on Delta Peatland Soils Sediment ph and Attenuation of Arsenic, Copper, TDS/salinity, Nitrate Nitrogen,

More information

WASTE WATER TREATMENT REFINERIES

WASTE WATER TREATMENT REFINERIES WASTE WATER TREATMENT REFINERIES Introduction REFINING PROCESS Petroleum industry, have had considerable role in generation and release of waste materials into the environment. A variety of waste products

More information

Evaluation of Alternate Process Chemistries for the Removal of Arsenic and Fluoride from Industrial Wastewater

Evaluation of Alternate Process Chemistries for the Removal of Arsenic and Fluoride from Industrial Wastewater Evaluation of Alternate Process Chemistries for the Removal of Arsenic and Fluoride from Industrial Wastewater Background Southeastern industrial client discharges process wastewater containing arsenic

More information

Evaluation of Abandoned Mine Drainage as a water supply for hydraulic fracturing

Evaluation of Abandoned Mine Drainage as a water supply for hydraulic fracturing Evaluation of Abandoned Mine Drainage as a water supply for hydraulic fracturing E. Barbot, M. Li, K. Gregory, R. Vidic University of Pittsburgh Carnegie Mellon University Project funded by the US Department

More information

Direct extraction lithium processes: The challenges of spent brine disposal

Direct extraction lithium processes: The challenges of spent brine disposal Direct extraction lithium processes: The challenges of spent brine disposal Tailings & Mine Waste 18 Ignacio Ezama iezama@srk.com.ar Camilo de los Hoyos cdeloshoyos@srk.com.ar Pablo Cortegoso pcortegoso@srk.com

More information

Product Models & Specifications

Product Models & Specifications water Treatment Technology for the Upstream Oil & Gas Industry Business Philosophy The AquaTex COG product line is proprietary reclamation, pretreatment, advanced treatment and recycling technology designed

More information

FEDERICO II SULFATE-REDUCING ANAEROBIC IFBR FOR HEAVY METALS REMOVAL FROM WASTEWATER AT LOW PH. Università degli Studi di Napoli RELATORI:

FEDERICO II SULFATE-REDUCING ANAEROBIC IFBR FOR HEAVY METALS REMOVAL FROM WASTEWATER AT LOW PH. Università degli Studi di Napoli RELATORI: Università degli Studi di Napoli FEDERICO II SULFATE-REDUCING ANAEROBIC IFBR FOR HEAVY METALS REMOVAL FROM WASTEWATER AT LOW PH RELATORI: prof. ing. Francesco Pirozzi CANDIDATA: Raffaella Maestro prof.

More information

Impact of uranium mines water treatment on the uranium and radium behaviour

Impact of uranium mines water treatment on the uranium and radium behaviour Impact of uranium mines water treatment on the uranium and radium behaviour Charlotte Cazala ; Christian Andrès 2 ; Jean-louis Decossas 3 ; Michel Cathelineau 4 ; Chantal Peiffert 4 IRSN/DEI/SARG/BRN,

More information

Glen Hall Falconbridge Ltd., Sudbury Operations Sudbury, Ontario

Glen Hall Falconbridge Ltd., Sudbury Operations Sudbury, Ontario A NEW APPROACH TO TAILINGS MANAGEMENT: THE GRANULAR COVER SYSTEM Glen Hall Falconbridge Ltd., Sudbury Operations Sudbury, Ontario Linda C. M. Elliott, Lakefield Research Ltd., PO Box 4300, 185 Concession

More information

Kashi Banerjee Ph.D.; P.E.; BCEE. Moon Township, PA Andrea Laybauer

Kashi Banerjee Ph.D.; P.E.; BCEE. Moon Township, PA Andrea Laybauer Metals Precipitation Kashi Banerjee Ph.D.; P.E.; BCEE Veolia Water Solutions & Technologies Moon Township, PA 15108 Andrea Laybauer Introduction Metals in Mining Wastes Type of Mines and Ore Characteristics

More information

New York State Regulatory/Permitting Process and Practical Considerations for Publicly Owned Treatment Works (POTWs) to Treat Flowback Water

New York State Regulatory/Permitting Process and Practical Considerations for Publicly Owned Treatment Works (POTWs) to Treat Flowback Water New York State Regulatory/Permitting Process and Practical Considerations for Publicly Owned Treatment Works (POTWs) to Treat Flowback Water Presented by: Elizabeth M. Davis Rodney L. Aldrich, P.E. Sterling

More information

#Disrupt Mining: Integrated Extraction and Recovery System for Complex. Ores and Wastes"

#Disrupt Mining: Integrated Extraction and Recovery System for Complex. Ores and Wastes #Disrupt Mining: Integrated Extraction and Recovery System for Complex Ores and Wastes" The Process. Supplemental Information The proposed integrated process covers both extraction and recovery of many

More information

Uranium ISL Operation and Water Management under the Arid Climate Conditions at Beverley, Australia

Uranium ISL Operation and Water Management under the Arid Climate Conditions at Beverley, Australia Uranium ISL Operation and Water Management under the Arid Climate Conditions at Beverley, Australia Ben Jeuken a), Horst Märten a,b), Richard Phillips a) a) Heathgate Resources Pty. Ltd., Level 4, 25 Grenfell

More information

Membrane Protection Resins Ion Exchange Resins and Reverse Osmosis in Partnership

Membrane Protection Resins Ion Exchange Resins and Reverse Osmosis in Partnership Membrane Protection Resins Ion Exchange Resins and Reverse Osmosis in Partnership By Francis Boodoo The Purolite Company Brian Windsor Purolite International Ltd Classical Ion Exchange in Partnership with

More information

TREATMENT OF WATER. A.Sateesh Chemist State Level Laboratory

TREATMENT OF WATER. A.Sateesh Chemist State Level Laboratory TREATMENT OF WATER A.Sateesh Chemist State Level Laboratory Treatment The aim of water treatment is to convert raw water from it s contaminate laden state to as aesthetically acceptable and hygienically

More information

ACID ROCK DRAINAGE (ARD)

ACID ROCK DRAINAGE (ARD) (ARD) Formerly Acid Mine Drainage (AMD) Not restricted to mines Weathering of sulfide minerals, particularly pyrite Rio Tinto, Spain (photo) Sulfur Creek, Global liability from ARD now exceeds $100 B (2011)

More information

Environmental remediation and radioactivity monitoring of uranium mining legacy in Portugal

Environmental remediation and radioactivity monitoring of uranium mining legacy in Portugal IAEA, URAM 2009 Environmental remediation and radioactivity monitoring of uranium mining legacy in Portugal Fernando P. Carvalho Nuclear and Technological Institute Department of Radiological Protection

More information

Water Treatment for Uranium at the U.S. Department of Energy s Legacy Management Sites 9438

Water Treatment for Uranium at the U.S. Department of Energy s Legacy Management Sites 9438 ABSTRACT Water Treatment for Uranium at the U.S. Department of Energy s Legacy Management Sites 9438 J. Dayvault, R. Bush, T. Ribeiro U.S. Department of Energy, 2597 B ¾ Road, Grand Junction, CO 81503

More information

Kirill Ukhanov, GE Water & Process Technologies, Russia, describes how advanced membrane technology is helping a Russian refinery to meet stringent

Kirill Ukhanov, GE Water & Process Technologies, Russia, describes how advanced membrane technology is helping a Russian refinery to meet stringent Kirill Ukhanov, GE Water & Process Technologies, Russia, describes how advanced membrane technology is helping a Russian refinery to meet stringent wastewater requirements. In Russia, there are strict

More information

ACID MINE DRAINAGE TREATMENT VIA ALKALINE INJECTION TECHNOLOGY 1

ACID MINE DRAINAGE TREATMENT VIA ALKALINE INJECTION TECHNOLOGY 1 ACID MINE DRAINAGE TREATMENT VIA ALKALINE INJECTION TECHNOLOGY 1 G.A. Canty and J.W. Everett 2 Abstract. The Oklahoma Conservation Commission conducted a demonstration project to investigate the feasibility

More information

APPLICATION OF ION EXCHANGE RESINS TO RECOVER URANIUM FROM ACID MINE DRAINAGE.

APPLICATION OF ION EXCHANGE RESINS TO RECOVER URANIUM FROM ACID MINE DRAINAGE. Proceedings of the 13 th International Conference of Environmental Science and Technology Athens, Greece, 5-7 September 2013 APPLICATION OF ION EXCHANGE RESINS TO RECOVER URANIUM FROM ACID MINE DRAINAGE.

More information

Enhanced Mobility of Arsenic and Molybdenum in a Tailings Pond in Response to Nitrate Depletion

Enhanced Mobility of Arsenic and Molybdenum in a Tailings Pond in Response to Nitrate Depletion Enhanced Mobility of Arsenic and Molybdenum in a Tailings Pond in Response to Nitrate Depletion Alan J. Martin, John Dockrey, Scott Jackson and Justin Stockwell Lorax Environmental Services Ltd. Cody Meints

More information

Innovative Activated Iron Solids Treatment and Iron Oxide Recovery from Various High Flow AMD

Innovative Activated Iron Solids Treatment and Iron Oxide Recovery from Various High Flow AMD Innovative Activated Iron Solids Treatment and Iron Oxide Recovery from Various High Flow AMD By Jon Dietz, Ph.D. Iron Oxide Technologies, LLC dietzetal@adelphia.net www.dgengr.com AIS Pilot Study Locations

More information

Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines

Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines Min Jang, Jung Sung Hwang, Sang Il Choi Introduction

More information

Removal. and Reuse of Metal Sulfides from Water Using a Fixed- Water Workshop WATER QUALITY - Seite 1. Bryniok, 0

Removal. and Reuse of Metal Sulfides from Water Using a Fixed- Water Workshop WATER QUALITY - Seite 1. Bryniok, 0 Contaminated Sediments an Ecological Bomb Removal and Reuse of Metal Sulfides from Water Using a Fixed- Loop bed Anaerobic Bioreactor Dr. Werner Sternad and Dr. Dieter Bryniok Water Workshop WATER QUALITY

More information

Assessing Options for On-site Leachate and Groundwater Management Strategies at Florida Landfills

Assessing Options for On-site Leachate and Groundwater Management Strategies at Florida Landfills Assessing Options for On-site Leachate and Groundwater Management Strategies at Florida Landfills Timothy Townsend, Professor Department of Environmental Engineering Sciences Engineering School for Sustainable

More information

The Geochemical and Biological Recovery of a Gold Mine Polishing Pond (Balmer Lake, Ontario)

The Geochemical and Biological Recovery of a Gold Mine Polishing Pond (Balmer Lake, Ontario) The Geochemical and Biological Recovery of a Gold Mine Polishing Pond (Balmer Lake, Ontario) Alan J. Martin, Lorax Environmental Services Ltd. David Gelderland, Goldcorp Red Lake Gold Mines Tom Pedersen,

More information

Acid Mine Water Reclamation using the ABC Process. Abstract. Introduction

Acid Mine Water Reclamation using the ABC Process. Abstract. Introduction 1 Acid Mine Water Reclamation using the ABC Process M de Beer 1, J. P Maree 2, J. Wilsenach 1, S Motaung 1, L Bologo 1, V Radebe 1 1 Natural Resources and the Environment, CSIR, P O Box 395, Pretoria,

More information