DEFLAGRATION TO DETONATION TRANSITION (DDT) IN JET IGNITED HYDROGEN-AIR MIXTURES: LARGE SCALE EXPERIMENTS AND FLACS CFD PREDICTIONS

Size: px
Start display at page:

Download "DEFLAGRATION TO DETONATION TRANSITION (DDT) IN JET IGNITED HYDROGEN-AIR MIXTURES: LARGE SCALE EXPERIMENTS AND FLACS CFD PREDICTIONS"

Transcription

1 DEFLAGRATION TO DETONATION TRANSITION (DDT) IN JET IGNITED HYDROGEN-AIR MIXTURES: LARGE SCALE EXPERIMENTS AND FLACS CFD PREDICTIONS Prankul Middha 1, Olav R. Hansen 1 and Helmut Schneider 2 1 GexCon AS, P.O. Box 6015, Postterminalen, NO-5892 Bergen, Norway; prankul@gexcon.com 2 Fraunhofer Institut Chemische Technology, Joseph von Fraunhoferstr. 7, Pfinztal, Germany As a result of a long history of model development and experimental validation, FLACS is established as a CFD-tool for simulating hydrocarbon gas deflagrations with reasonable precision. FLACS is widely used in petrochemical industry and elsewhere for explosion predictions for input to risk assessments and design load specifications. In recent years the focus on predicting hydrogen explosions has increased. A dedicated project was carried out between 2001 and 2004 to improve the modelling and validation of hydrogen explosions wherein many small and largescale experiments were simulated [1]. With the latest release of FLACS, the validation status for hydrogen explosions is therefore considered good. For hydrogen explosions, deflagration to detonation transition (DDT) can be a significant threat. Recently, FLACS has been extended to indicate the possibility of DDT in realistic situations. As a part of the study, four practical scenarios were simulated and the simulation results were found to compare well with experimental data [2]. The model has now been developed further and used to simulate the experimental investigations performed by Fraunhofer Institute of Chemical Technology. These concerned the transition of a deflagration into a detonation in jet ignited hydrogen air mixtures within a partial confinement [3]. The background for this project was the investigation of the potential hazards for a nuclear power plant, whose process heat is used for the operation of an adjacent chemical plant (e.g. for the gasification of coal), which should be located close to the nuclear plant to minimize heat losses. The test set up consisted of a rectangular container (3 m 1.5 m 1.5 m) with an opening on its front side. The container was followed by 2 parallel walls at a distance of 3 m with a length of 12 m and a height of 3 m. The whole volume was filled with a hydrogen air mixture, enclosed within a very thin PE-foil. The mixture was ignited at the rear side of the container. The experiments observed very high pressures and transition to detonation due to the high turbulence generated by a jet flame shooting into a large, reactive gas cloud followed by reflections of the high speed combustion front from the ground and the walls. The experiments observed DDT for 21% hydrogen concentration, but not for mixtures less sensitive than that [4]. The modeling results are able to capture the experimental observations, including pressure traces and locations of DDT, reasonably well. The possibility of DDT is indicated in terms of a spatial pressure gradient across the flame front. The effect of geometrical dimensions on the observation of DDT is also discussed by comparison with the detonation cell size. The flame speeds of the detonation front are somewhat lower than those observed in the experiments but the development of a shock ignition model is ongoing which is expected to resolve this difference. KEYWORDS: DDT, hydrogen, CFD, FLACS, large scale experiments INTRODUCTION As a result of a more than 25-year history of model development and validation on the basis of experimental results at GexCon, FLACS is established as a CFD-tool for simulating hydrocarbon gas deflagrations with reasonable precision. An extensive knowledge database has been compiled using both experimental and theoretical studies under the aegis of a series of Gas Safety programs (GSPs) that started in This information has been implemented in the CFD tool FLACS, which was first released in Today, FLACS is used widely in petrochemical industry and elsewhere for explosion predictions for input to risk assessments and design load specifications. In recent years, there has been a lot of focus on predicting gas explosions involving hydrogen. This is driven by an increasing interest from the nuclear industry, and the ongoing development of hydrogen-fuelled vehicles, which are deemed to be the symbol of a future hydrogen economy. A dedicated project was carried out between 2001 and 2004 to improve the modelling and validation of hydrogen explosions in FLACS wherein many small and large-scale experiments were carried out, combined with simulations and model improvements (Hansen, et al., 2005). Therefore, the validation status of FLACS for hydrogen explosions is considered good. For hydrogen explosions, deflagration to detonation transition (DDT) can be a significant threat. Transition to detonation can occur in a variety of situations, many of which are commonly employed in industrial settings. These include flame acceleration as a result of repeated obstacles (e.g. Peraldi, et al., 1986) and jet ignition (e.g. 1

2 Knystaus, et al., 1979). There has been a strong debate on the mechanisms underlying the transition to detonation and it is still an active research area. Detailed description of all processes following ignition that may lead to DDT is extremely challenging. This is due to a complicated interaction of compressible flow, chemical reaction, and turbulence that needs to be described at very high spatial and temporal resolution. Much theoretical effort has been focused on development of criteria for DDT (Breitung, et al., 2000) but these criteria and scaling arguments are difficult to apply in a process facility. Although the validation of the current version of FLACS in simulating flame acceleration and high-speed deflagrations is good, a detonation model is lacking. We are currently involved in an activity sponsored by Norwegian Research Council that aims at predicting the extent to which DDT may be expected using FLACS. As a part of this work, FLACS has been extended to indicate the possibility of DDT in realistic situations. Previously, many practical scenarios have been simulated and the simulation results have been found to compare well with experimental data (Middha, et al., 2006). The model has now been developed further and used to simulate the large scale experiments carried out by Fraunhofer Institut Chemische Technology (Fh-ICT) which concerned the transition of a deflagration into a detonation in jet ignited hydrogen air mixtures within a partial confinement (Pförtner and Schneider, 1984; Schneider, 2005). Comparisons have been performed in terms of pressure traces, location and time of DDT, and the possibility of propagation of a detonation front. BRIEF DESCRIPTION OF FLACS FLACS is a computational fluid dynamics (CFD) code that solves the compressible Navier-Stokes equations on a 3-D Cartesian grid. The basic equations used in the FLACS model as well as the explosion experiments to develop and validate FLACS initially have been published (Hjertager, 1985; Hjertager, et al., 1988). A model for development of the flame that describes how the local reactivity changes with parameters like concentration, temperature, pressure, turbulence, etc. is implemented. A good description of geometry and the coupling of geometry to the flow, turbulence, and flame is one of the key elements in the modelling. The real flame area is described properly and corrected for curvature at scales equal to and smaller than the reaction zone. All flame wrinkling at scales less than the grid size is represented by sub-grid models, which is important for flame interaction with objects smaller than the grid size. FLACS uses a standard k-1 model for turbulence. However, some modifications are implemented, the most important being a model for generation of turbulence behind sub-grid objects and a model for flame folding around them (Arntzen, 1998). With the close coupling between sub-grid modelling and turbulence model, it is not believed that using a more advanced turbulence model with more equations and constants will give much added value for the typical simulations carried out with FLACS. The representation of geometry using a distributed porosity concept is one of the key advantages of FLACS compared to several other CFD tools. The geometry is represented with area and volume porosities, as well as wake generating sub-grid object areas in all flow directions. FLACS can therefore be used to simulate all kinds of complicated geometries using a Cartesian grid. Large objects and walls will be represented on-grid; smaller objects will be represented sub-grid. Sub-grid objects will contribute to flow resistance, turbulence generation, and flame folding (for explosions). More details on FLACS can be found elsewhere (Hansen, et al., 2005). DESCRIPTION OF EXPERIMENTS This section provides a short description of the experiments that were conducted at Fh-ICT in 1984 (Pförtner and Schneider, 1984). The background for this project was the investigation of the potential hazards for a nuclear power plant, whose process heat is used for the operation of an adjacent chemical plant (e.g. for the gasification of coal), which should be located close to the nuclear plant to minimize heat losses. The test set up consisted of a driver section that was a rectangular container (3 m 1.5 m 1.5 m). In the front side of the driver section there is a square spaced opening with blocking ratio 0.1 (tests IA1, IA2, IA3) and 0.3 (tests IA4 and IA5). The container was followed by a lane which consisted of 2 parallel walls at a distance of 3 m with a length of 12 m and a height of 3 m (see Figure 2 for details). The whole volume was filled with H 2 -air mixture, enclosed within a very thin PE-foil. The mixture was ignited at the Figure 1. For explosion and dispersion studies representation of the detailed geometry is important for the quality of the predictions. In FLACS this is handled with a porosity concept 2

3 Figure 2. Test facility, with details of sensors and cameras. The tubes were not installed in test IA1 rear side of the container with 5 pyrotechnic igniters, distributed over the area. In tests IA2 IA5, 2 vertical tubes (diameter 14 cm) were installed, respectively, with a distance of 5 cm from the wall each in the middle and at the end of the lane. It was ensured that the mixture is homogeneous by mixing and sampling. We simulated all experiments, except IA3, and the relevant scenario parameters are presented in Table 1. More information, including all results is presented in Pförtner and Schneider (1984). The experiments observed very high pressures and transition to detonation due to the high turbulence generated by a jet flame shooting into a large, reactive gas cloud followed by reflections of the high speed combustion front from the ground and the walls. The experiments observed DDT for 21% hydrogen concentration, but not for less sensitive mixtures, with the exception of test IA1 where no tubes were installed. Also, DDT was observed to occur near the tube for test IA2 but near the ground for test IA4. No detonation was seen for test IA5. RESULTS This section presents some of the key results of the simulations, and comparisons with experimental data. The simulation domain was resolved by around 3.25 million grid cells with a grid resolution of 5 cm. The grid was according to the FLACS guidelines for explosion Table 1. Relevant scenario parameters for the four tests considered Parameters IA1 IA2 IA4 IA5 Ambient Temp. (K) Ambient pressure (bar) H 2 concentration in driver unit (%) H 2 concentration in lane (%) simulations. The simulations were carried out on a LINUX PC with 1 2 processors and 3 4 GB RAM, and took 2 days to complete. The possibility of DDT is indicated in terms of a spatial pressure gradient across the flame front (DPDX) as it is hypothesized that this parameter is able to visualize when the flame front captures the pressure front, which is the case in situations when fast deflagrations transition to detonation (Middha, et al., 2006). The effect of geometrical dimensions on the observation of DDT is also discussed by comparison with the detonation cell size. Figure 3 presents the comparison of simulated pressure traces for selected sensors at different distances inside the geometry with experimental observations for test IA2. It is seen that the simulations agree reasonably well with measurements, and similar agreement was observed for other sensors. The arrival times of the pressure peaks were consistent with those seen in the experiments, while some discrepancies were seen in peak pressures. Similar comparisons were seen for other tests. Detailed results were not presented for all tests due to lack of space. The maximum simulated pressure in test IA2 was 10.2 barg at sensor 12, compared to 9.2 barg in the experiments also at sensor 12. The flame arrival times were calculated to be 50 and 90 ms at photo transistors F2 and F3, compared to the observed values of 50 and 80 ms. For test IA4, the maximum simulated was 9 barg at sensor 8, compared to around 12 barg in the experiments also at sensor 8. In this case, the flame arrival times at F2 and F3 were calculated to be 35 and 52 ms, compared to observed values of 38 and 49 ms. The maximum pressure in the driver section was also found to compare very well with experimental results for all tests. 2D snapshots of the pressure field at the ground, along with the flame and DPDX for test IA2 at different times with a detailed description of various different stages during the simulation are shown in Fig. 4. The pressure is seen to rise very quickly as the hot flame jet shoots out into the lane, creating a lot of turbulence and mixing of hot products with the unburnt mixture. The hot products act as ignition sources, and a 3

4 Figure 3. Comparison of simulated pressure traces (left) for selected sensors with experimental data (right) for test IA2. Similar agreement was seen for other monitor points large amount of the unburnt mixture is simultaneously ignited. In the shear layer near the wall, still higher turbulence levels and reflections are seen, with very high pressures and maximum likelihood of DDT. The shock wave is seen to sustain a pressure of 20 barg before it decays as seen in the last picture in Fig. 4. A more pertinent parameter for this work is the parameter DPDX, shown in the bottom part of each snapshot (a value 10 indicates a strong likelihood of DDT if dimension of high DPDX region is significant compared to detonation cell size). For test IA2, the maximum value of DPDX (maximum likelihood of DDT) was seen at the first set of pipes. DDT could also occur before, but with lesser probability. This agrees with the experimental observation of DDT at the left pipe. For test IA4, DDT was predicted to occur at or near the ground next to the sidewalls, and no special likelihood was seen at the pipes. This was also consistent with the experimental result. The simulations also indicated a similar, but somewhat lower possibility of DDT for test IA1 compared to test IA4, as the H 2 concentrations in this test were actually higher than those in test IA2. The values and dimensions of the simulated highly tumultuous region for test IA5 were much smaller, and thus indicated a small chance of DDT. A comparison of the geometrical dimensions with the detonation cell size was also carried out, but that was found 4

5 IChemE SYMPOSIUM SERIES NO. 153 Figure 4. 2D snapshots of simulation results (test IA2): P (top), flame (middle), DDT indication parameter DPDX (bottom) to be much larger than the minimum required for possible propagation of detonation waves for all tests. The maximum flame speed was seen to be 1208 m/s in test IA2 and 1374 m/s in test IA 4 (compared to 1651 m/s and 1740 m/s in the experiments). These are somewhat lower than those observed in the experiments but the development of a shock ignition model is ongoing which is expected to resolve this difference. However, our calculations also indicated the possibility of DDT in test IA1, which was not seen in the experiments. But as mentioned above, DDT is a very complex phenomenon, and is extremely difficult to predict accurately. Also, the absence of a detonation model leads to the decay of the shock front, even after DDT is expected to happen. In general, the modeling results are able to capture the experimental observations, including pressure traces and locations of DDT, reasonably well. We hope that the current model, when coupled with the additional features currently under development, can be used by the process industry to get a fair idea of the danger of DDT. CONCLUSIONS Large-scale experiments carried out at Fh-ICT have been simulated using the CFD tool FLACS. In general, the modeling results are able to capture the experimental observations, including maximum pressures, arrival times, and locations of DDT, reasonably well. However, some discrepancies are seen, which may be attributed to experimental uncertainties and the very difficult nature of the simulations. The flame speeds of the detonation front are somewhat lower than those observed in the experiments 5

6 but the development of a shock ignition model is ongoing which is expected to resolve this difference. Also, the absence of a detonation model leads to the decay of the shock front, even after DDT is expected to happen. The support of Norwegian Research Council for this work is acknowledged. REFERENCES 1. Arntzen, B.A., Modeling of turbulence and combustion for simulation of gas explosions in complex geometries, PhD Thesis, NTNU, Trondheim, Norway. 2. Breitung, W., et al., Flame Acceleration and Deflagration to Detonation Transition in Nuclear Safety. State-of-the-Art Report, OECD Nuclear Energy Agency, Ref. NEA/CSNI/R/2000/7. 3. Hansen, O.R., Renoult, J., Sherman, M.P., and Tieszen, S.R., 2005, Validation of FLACS-Hydrogen CFD Consequence Prediction Model Against Large Scale H 2 Explosion Experiments in the FLAME Facility, Proceedings of International Conference on Hydrogen Safety, Pisa, Italy, September Hjertager, B.H., 1985, Computer simulation of turbulent reactive gas dynamics. J. Model. Identification Control, 5: Hjertager, B., Fuhre, K., Bjorkhaug, M., 1988, Gas explosion experiments in 1:33 and 1:5 scale offshore separator and compressor modules using stoichiometric homogeneous fuel/air clouds, J. Loss Prevention Proc. Ind., 1: Knystautas, R., Lee, J. H., and Wagner, H. G., 1979, Direct initiation of spherical detonation by a hot turbulent gas jet. Proc. Comb. Inst., 17: Middha, P, Hansen, O. R., and Storvik, I. E., Prediction of deflagration to detonation transition in hydrogen explosions. Proceedings of the AIChE Spring National Meeting and 40 th Annual Loss Prevention Symposium, Orlando, FL, April 23 27, Peraldi, O., Knystautas, R., and Lee, J. H., 1986, Criteria for transition to detonation in tubes. Proc. Comb. Inst., 21: Pförtner, H., Schneider, H., Tests with Jet Ignition of Partially Confined Hydrogen Air Mixtures in View of the Scaling of the Transition from Deflagration to Detonation, Final Report for Interatom GmbH, Bergisch Gladbach, Germany, Oct. 1984, Fraunhofer ICT Internal Report. 10. Schneider, H., 2005, Deflagration and deflagration to detonation transition within a partial confinement similar to a lane Proceedings of International Conference on Hydrogen Safety, Pisa, Italy, September

MODELLING OF HYDROGEN JET FIRES USING CFD

MODELLING OF HYDROGEN JET FIRES USING CFD MODELLING OF HYDROGEN JET FIRES USING CFD Deiveegan Muthusamy 1, Olav R. Hansen 1 *, Prankul Middha 1, Mark Royle 2 and Deborah Willoughby 2 1 GexCon AS, P.O. Box 6015, NO 5892 Bergen, Norway 2 HSL/HSE,

More information

Use of CFD in the Performance-Based Design for Fire Safety in the Oil and Gas Sector

Use of CFD in the Performance-Based Design for Fire Safety in the Oil and Gas Sector Use of CFD in the Performance-Based Design for Fire Safety in the Oil and Gas Sector Camille Azzi* and Lars Rogstadkjenet camille.azzi@gexcon.com GexCon AS Bergen, Norway ABSTRACT This paper addresses

More information

Computer Models For Fire and Smoke

Computer Models For Fire and Smoke Computer Models For Fire and Smoke Model Name: KAMELEON FIREEX KFX Version: KAMELEON FIREEX KFX 2010 Date: August 6 th, 2013 Classification: Very Short Description: Field model KAMELEON FIREEX KFX is an

More information

ABS TECHNICAL PAPERS 2007

ABS TECHNICAL PAPERS 2007 Fire Risk Assessment of Gas Turbine Propulsion System for LNG Carriers *Kiho Moon 1, Seok-Ryong Song 1, Jorge Ballesio 2, Gary Fitzgerald 3, Gregory Knight 3 ( 1 Hyundai Heavy Industries, 2 American Bureau

More information

3D Risk Management for Hydrogen Installations ENERGIX

3D Risk Management for Hydrogen Installations ENERGIX 3D Risk Management for Hydrogen Installations ENERGIX Presentert av Trygve Skjold, Prosjektleder, Gexcon AS, FoU-sjef Konferansen Transportforskning 17. mars 2016 Background The future may entail widespread

More information

Validation studies of CFD codes on hydrogen combustion

Validation studies of CFD codes on hydrogen combustion Validation studies of CFD codes on hydrogen combustion Sudarat Worapittayaporn, Luciana Rudolph, Harald Dimmelmeier AREVA NP GmbH ERMSAR 2012, Cologne, March 21 23, 2012 Content Introduction Validation

More information

rpsea.org Scott Davis GexCon US

rpsea.org Scott Davis GexCon US Development of Advanced CFD Tools for Enhanced Prediction of Explosion Pressure Development in Early Project Phase and Deflagration to Detonation Transition Risk on US GOM Drilling and Production Facilities

More information

Kinetics of AlH 3 decomposition and subsequent Al oxidation / Hydrogen Jetfires

Kinetics of AlH 3 decomposition and subsequent Al oxidation / Hydrogen Jetfires Kinetics of AlH 3 decomposition and subsequent Al oxidation / Hydrogen Jetfires Eisenreich N., Keßler A., Deimling, L. Energetic Systems, ES Fraunhofer ICT IA Hysafe Research Priorities Workshop BAM, Berlin,

More information

CFD SIMULATION OF HEAVY GAS DISPERSION IN VENTILATED ROOMS AND VALIDATION BY TRACING EXPERIMENTS

CFD SIMULATION OF HEAVY GAS DISPERSION IN VENTILATED ROOMS AND VALIDATION BY TRACING EXPERIMENTS CFD SIMULATION OF HEAVY GAS DISPERSION IN VENTILATED ROOMS AND VALIDATION BY TRACING EXPERIMENTS L. Ricciardi, C. Prévost, L. Bouilloux, R. Sestier-Carlin Institut de Radioprotection et de Sûreté Nucléaire,

More information

Strategies and Intervention tactics - FC stationary installations

Strategies and Intervention tactics - FC stationary installations 3 rd Pilot Training Session, 06-10 June 2016, ENSOSP, Aix-en-Provence, France Strategies and Intervention tactics - FC stationary installations Franck Verbecke, AREVA Energy Storage Agenda Hydrogen behavior

More information

Numerical Prediction of Turbulent Combustion Flows for 1700 C Class Gas Turbine Combustor

Numerical Prediction of Turbulent Combustion Flows for 1700 C Class Gas Turbine Combustor Chapter 3 Epoch Making Simulation Numerical Prediction of Turbulent Combustion Flows for 1700 C Class Gas Turbine Combustor Project Representative Nobuyuki Oshima Author Nobuyuki Oshima Division of Mechanical

More information

FLAME AERODYNAMICS COMBUSTION AND FUELS

FLAME AERODYNAMICS COMBUSTION AND FUELS FLAME AERODYNAMICS IMPORTANCE OF AERODYNAMICS IN COMBUSTION Fuel Heat Combustion chamber, furnace Flue gas Air Heat Flow reactor Oxidizer: Fuel: Flue gas: MEDIA - air: primary, secondary sometimes tetriary

More information

23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN APRL 2007

23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN APRL 2007 23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN 16-20 APRL 2007 ON THE ROLE OF INTERMEDIATE LAYER LOCATION IN PREVENTION OF SYMPATHETIC DOTONATION BETWEEN REACTIVE ARMOR SANDWICHWES S. Chanukaev

More information

Abstract. Nomenclature. A Porosity function for momentum equations L Latent heat of melting (J/Kg) c Specific heat (J/kg-K) s Liquid fraction

Abstract. Nomenclature. A Porosity function for momentum equations L Latent heat of melting (J/Kg) c Specific heat (J/kg-K) s Liquid fraction Enthalpy Porosity Method for CFD Simulation of Natural Convection Phenomenon for Phase Change Problems in the Molten Pool and its Importance during Melting of Solids Abstract Priyanshu Goyal, Anu Dutta,

More information

MINUTES OF MEETING FLACS USER GROUP (FLUG)

MINUTES OF MEETING FLACS USER GROUP (FLUG) MINUTES OF MEETING FLACS USER GROUP (FLUG) Venue: Pau, France, hosted by Total Meeting: 30-31 October 2012 Issued: 29. November 2012 Prepared by: Lars Pesch Checked by: Trygve Skjold Approved by: Prankul

More information

Prediction of Pollutant Emissions from Industrial Furnaces Using Large Eddy Simulation

Prediction of Pollutant Emissions from Industrial Furnaces Using Large Eddy Simulation Paper # B03 Topic: Turbulent Flames 5 th US Combustion Meeting Organized by the Western States Section of the Combustion Institute and Hosted by the University of California at San Diego March 25-28, 2007.

More information

Agenda. Background Validation studies. 3D application. Co-simulation. Summary. Espedal stratified flow. StatOil wavy-slug flow.

Agenda. Background Validation studies. 3D application. Co-simulation. Summary. Espedal stratified flow. StatOil wavy-slug flow. www.cd-adapco.com Computational Flow Assurance Recent progress in modelling of multiphase flows in long pipelines Simon Lo, Abderrahmane Fiala (presented by Demetris Clerides) Subsea Asia 2010 Agenda Background

More information

Environmental Testing of an Advanced Flare Tip for a Low-Profile Flare Burning Ethylene

Environmental Testing of an Advanced Flare Tip for a Low-Profile Flare Burning Ethylene American-Japanese Flame Research Committee Joint International Symposium Advances in CombustionTechnology: Improving the Environment and Energy Efficiency Marriott Waikoloa, Hawaii October 22-24, 2007

More information

Numerical simulation of upward flame spread over vertical combustible surface

Numerical simulation of upward flame spread over vertical combustible surface Numerical simulation of upward flame spread over vertical combustible surface E. S. Kokovina 1, E. A. Kuznetsov, A. Yu. Snegirev Saint Petersburg Peter the Great Polytechnic University, St. Petersburg,

More information

ANSYS Combustion Analysis Solutions - Overview and Update

ANSYS Combustion Analysis Solutions - Overview and Update ANSYS Combustion Analysis Solutions - Overview and Update Gilles Eggenspieler ANSYS, Inc. 1 Agenda Overview of Combustion Analysis Solution Reduced Order Models Finite Rate Models Pollutant Models Examples

More information

Flow Induced Vibration A Review of Current Assessment Methods

Flow Induced Vibration A Review of Current Assessment Methods Flow Induced Vibration A Review of Current Assessment Methods David Fielding, Matt Straw (Norton Straw Consultants) Alex Graham, Phil Shorter (CD-adapco) Introduction Presenting a joint study into flow-induced

More information

GASFLOW Analysis of Hydrogen Recombination in a Konvoi Type PWR Containment under Hypothetical Small Break and Large Break LOCA Conditions

GASFLOW Analysis of Hydrogen Recombination in a Konvoi Type PWR Containment under Hypothetical Small Break and Large Break LOCA Conditions Paper submitted to Jahrestagung Kerntechnik, Bonn, May 3-5, GASFLOW Analysis of Hydrogen Recombination in a Konvoi Type PWR Containment under Hypothetical Small Break and Large Break LOCA Conditions P.

More information

Online Cleaning with Shock Pulse Generators Current Experience

Online Cleaning with Shock Pulse Generators Current Experience Online Cleaning with Shock Pulse Generators Current Experience Page 1 of 7 Online Cleaning with Shock Pulse Generators Current Experience Dr. sc. techn. Christian Steiner, Dipl. Ing. Kaspar Ninck Explosion

More information

Mathematical Modeling of Impulsive Forming Processes Using Various Energy Sources and Transmitting Medium

Mathematical Modeling of Impulsive Forming Processes Using Various Energy Sources and Transmitting Medium Mathematical Modeling of Impulsive Forming Processes Using Various Energy Sources and Transmitting Medium A. Vovk 1, V. Vovk 1, V. Sabelkin 2, V. Taran 1 1 IFQ, Otto-Von-Guericke University, Universitaetsplatz

More information

Lateral Outflow from Supercritical Channels

Lateral Outflow from Supercritical Channels Lateral Outflow from Supercritical Channels J. Coonrod 1, J. Ho 2 and N. Bernardo 3 1 Associate Professor, Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131; PH (505) 277-3233;

More information

Comparison between 2D and 3D Hydraulic Modelling Approaches for Simulation of Vertical Slot Fishways

Comparison between 2D and 3D Hydraulic Modelling Approaches for Simulation of Vertical Slot Fishways 5 th International Symposium on Hydraulic Structures Brisbane, Australia, 25-27 June 2014 Hydraulic Structures and Society: Engineering Challenges and Extremes ISBN 9781742721156 - DOI: 10.14264/uql.2014.49

More information

Fire Risk Assessment for Ammonia Onshore Export Terminal

Fire Risk Assessment for Ammonia Onshore Export Terminal 4B-2 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea Fire Risk Assessment for Ammonia Onshore Export Terminal Yu. N. Shebeko, I. A. Bolodian, V. P. Molchanov,

More information

Comparison Between PIV Measurements and CFD Simulation on a Model of GT Annular Burner

Comparison Between PIV Measurements and CFD Simulation on a Model of GT Annular Burner Comparison Between PIV Measurements and CFD Simulation on a Model of GT Annular Burner D. Giordano, S. Giammartini, M. Rufoloni, G. Calchetti, F. Manfredi, E. Giacomazzi ENEA - C. R. Casaccia Sec. ENE-IMP

More information

Quenching steels with gas jet arrays

Quenching steels with gas jet arrays Quenching steels with gas jet arrays PAUL F STRATTON ANDREW P RICHARDSON BOC Rother Valley Way, Holbrook, Sheffield UNITED KINGDOM Paul.stratton@boc.com http://www.catweb.boc.com Abstract: - Single components

More information

LNG Facilities Changing Regulations

LNG Facilities Changing Regulations LNG Facilities Changing Regulations Alfonso Ibarreta, Ph.D., PE, CFEI, Delmar Trey Morrison, Ph.D., PE, CFEI, Ryan Hart, Ph.D., PE, CFEI, and Harri Kytomaa, Ph.D., PE, CFEI Exponent, Inc. aibarreta@exponent.com

More information

German Experimental Activities for Advanced Modelling and Validation Relating to Containment Thermal Hydraulics and Source Term

German Experimental Activities for Advanced Modelling and Validation Relating to Containment Thermal Hydraulics and Source Term German Experimental Activities for Advanced Modelling and Validation Relating to Containment Thermal Hydraulics and Source Term H.-J. Allelein 1,2, S. Gupta 3, G. Poss 3, E.-A. Reinecke 2, F. Funke 4 1

More information

The Suitability of Fire-Field Modelling for Enclosure Fires involving Complex Solid Fuel Loads. STIFF Meeting Sept 2006 Stuart Winter

The Suitability of Fire-Field Modelling for Enclosure Fires involving Complex Solid Fuel Loads. STIFF Meeting Sept 2006 Stuart Winter The Suitability of Fire-Field Modelling for Enclosure Fires involving Complex Solid Fuel Loads STIFF Meeting Sept 2006 Stuart Winter Introduction Two types of solid fuel source: Cars and Wooden Cribs.

More information

Theory Comparison between Propane and Methane Combustion inside the Furnace

Theory Comparison between Propane and Methane Combustion inside the Furnace International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Theory

More information

Design Explosion Load Specification for large floating facilities L. Paris, A. Dubois Process & Technologies Division, Technip France

Design Explosion Load Specification for large floating facilities L. Paris, A. Dubois Process & Technologies Division, Technip France Design Explosion Load Specification for large floating facilities L. Paris, A. Dubois Process & Technologies Division, Technip France Contents 1. Introduction 2. Derivation of effective DELs from «raw»

More information

Hydrogen behaviour when released in confined atmospheres: experimental study and numerical simulations

Hydrogen behaviour when released in confined atmospheres: experimental study and numerical simulations Hydrogen behaviour when released in confined atmospheres: experimental study and numerical simulations H. Paillère, E. Studer, I. Tkatschenko, J. Brinster, S. Gupta CEA France, L. Perrette, Y. Dagba INERIS,

More information

Passive Cooling of Power Electronics: Heat in the Box

Passive Cooling of Power Electronics: Heat in the Box Passive Cooling of Power Electronics: Heat in the Box Michael Berger 1, Winfried Schernus 1 1 West Coast University of Applied Sciences, Heide, Germany Abstract: Results presented are a contribution to

More information

Transient and Succession-of-Steady-States Pipeline Flow Models

Transient and Succession-of-Steady-States Pipeline Flow Models Transient and Succession-of-Steady-States Pipeline Flow Models Jerry L. Modisette, PhD, Consultant Jason P. Modisette, PhD, Energy Solutions International This paper is copyrighted to the Pipeline Simulation

More information

Explosion-induced damage to oilwell perforating gun carriers

Explosion-induced damage to oilwell perforating gun carriers Structures Under Shock and Impact IX 165 Explosion-induced damage to oilwell perforating gun carriers B. Grove, A. Werner & C. Han Schlumberger Oilfield Services Abstract We present an overview of damage

More information

Development of hydraulic tanks by multi-phase CFD simulation

Development of hydraulic tanks by multi-phase CFD simulation Group M - Hydraulic Components Paper M-4 619 Development of hydraulic tanks by multi-phase CFD simulation Dipl.-Ing. Thees Vollmer Institute for Mobile Machines and Commercial Vehicles (IMN), Technische

More information

Controlled management of a severe accident

Controlled management of a severe accident July 2015 Considerations concerning the strategy of corium retention in the reactor vessel Foreword Third-generation nuclear reactors are characterised by consideration during design of core meltdown accidents.

More information

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas Chun Hsiang Yang, Cheng Chia Lee and Chiun Hsun Chen Abstract In this study, the effects of biogas s on the performance

More information

NOWIcob A tool for reducing the maintenance costs of offshore wind farms

NOWIcob A tool for reducing the maintenance costs of offshore wind farms Available online at www.sciencedirect.com ScienceDirect Energy Procedia 35 (2013 ) 177 186 DeepWind'2013, 24-25 January, Trondheim, Norway NOWIcob A tool for reducing the maintenance costs of offshore

More information

Blast Protection of Buildings Design Criteria and Loads

Blast Protection of Buildings Design Criteria and Loads Authors: Jon A. Schmidt, PE, SECB, BSCP, M.ASCE, Burns & McDonnell Paul F. Mlakar, PhD, PE, F.ASCE, U.S. Army Engineer Research and Development Center Presented at: Structures Congress 2009 Date: May 2,

More information

Detached Eddy Simulation of High Turbulent Swirling Reacting Flow in a Premixed Model Burner

Detached Eddy Simulation of High Turbulent Swirling Reacting Flow in a Premixed Model Burner 25 th ICDERS August 2 7, 2015 Leeds, UK Detached Eddy Simulation of High Turbulent Swirling Reacting Flow in a Premixed Model Burner 1,2 Mansouri Zakaria, 1 Aouissi Mokhtar, 2 Abdallah Elorf, 2 Boushaki

More information

ON THE KINETICS OF ALH3 DECOMPOSITION AND THE SUBSEQUENT AL OXIDATION

ON THE KINETICS OF ALH3 DECOMPOSITION AND THE SUBSEQUENT AL OXIDATION Fraunhofer ICT: ES - Energetic Systems ON THE KINETICS OF LH DECOMPOSITION ND THE SUBSEQUENT L OXIDTION Eisenreich N., Keßler., Koleczko., Weiser V. Fraunhofer-Institut fuer Chemische Technologie (ICT),

More information

QUANTITATIVE RISK MAPPING OF URBAN GAS PIPELINE NETWORKS USING GIS

QUANTITATIVE RISK MAPPING OF URBAN GAS PIPELINE NETWORKS USING GIS QUANTITATIVE RISK MAPPING OF URBAN GAS PIPELINE NETWORKS USING GIS P. Azari a *, M. Karimi a a Faculty of Geodesy and Geomatics Engineering, K.N.- Toosi University of Technology, Tehran, Iran (peymanazari1993@gmail.com;

More information

CFD/FEM Based Analysis Framework for Wind Effects on Tall Buildings in Urban Areas

CFD/FEM Based Analysis Framework for Wind Effects on Tall Buildings in Urban Areas 2017 2nd International Conference on Industrial Aerodynamics (ICIA 2017) ISBN: 978-1-60595-481-3 CFD/FEM Based Analysis Framework for Wind Effects on Tall Buildings in Urban Areas Qiao Yan, Dalong Li,

More information

D DAVID PUBLISHING. 1. Introduction. Corrado Grassi 1, Achim Schröter 2, Yves-Simon Gloy 2 and Thomas Gries 2

D DAVID PUBLISHING. 1. Introduction. Corrado Grassi 1, Achim Schröter 2, Yves-Simon Gloy 2 and Thomas Gries 2 Journal of Environmental Science and Engineering B 5 (2016) 26-34 doi:10.17265/2162-5263/2016.01.004 D DAVID PUBLISHING Increasing the Energy Efficiency of Air Jet Weaving Based on a Novel Method to Exploit

More information

CHAPTER 6 : GAS SAMPLING SYSTEMS

CHAPTER 6 : GAS SAMPLING SYSTEMS CHAPTER 6 : GAS SAMPLING SYSTEMS 1 Scope : 1.1 This Chapter describes two types of gas sampling systems in paragraphs 2.1 and 2.2 meeting the requirements specified in para 4.2 of Chapter 3 of this Part.

More information

PREDICTING THE EFFECTS OF BAGASSE DEPITHING OPERATIONS ON BOILER COMBUSTION PERFORMANCE A P MANN 1, I M O HARA 1.

PREDICTING THE EFFECTS OF BAGASSE DEPITHING OPERATIONS ON BOILER COMBUSTION PERFORMANCE A P MANN 1, I M O HARA 1. PREDICTING THE EFFECTS OF BAGASSE DEPITHING OPERATIONS ON BOILER COMBUSTION PERFORMANCE By A P MANN 1, I M O HARA 1 1 Queensland University of Technology a.mann@qut.edu.au KEYWORDS: Bagasse, Boiler, CFD,

More information

Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components

Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components T. Tryland SINTEF Raufoss Manufacturing, Raufoss, Norway 1 Background It is often useful to have a physical model

More information

MODELLING THE URBAN MICROCLIMATE AND ITS INFLUENCE ON BUILDING ENERGY DEMANDS OF AN URBAN NEIGHBOURHOOD

MODELLING THE URBAN MICROCLIMATE AND ITS INFLUENCE ON BUILDING ENERGY DEMANDS OF AN URBAN NEIGHBOURHOOD MODELLING THE URBAN MICROCLIMATE AND ITS INFLUENCE ON BUILDING ENERGY DEMANDS OF AN URBAN NEIGHBOURHOOD J. Allegrini 1,2 ; J. Kämpf 3 ; V. Dorer 1 ; J. Carmeliet 1,2 1: Empa, Laboratory for Building Science

More information

Experimental Evaluation of LPG Release and Dispersion in the Enclosed Car Parks

Experimental Evaluation of LPG Release and Dispersion in the Enclosed Car Parks 253 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 48, 2016 Guest Editors: Eddy de Rademaeker, Peter Schmelzer Copyright 2016, AIDIC Servizi S.r.l., ISBN 978-88-95608-39-6; ISSN 2283-9216 The

More information

Impellers of low specific speed centrifugal pump based on the draughting technology

Impellers of low specific speed centrifugal pump based on the draughting technology IOP Conference Series: Earth and Environmental Science Impellers of low specific speed centrifugal pump based on the draughting technology To cite this article: C Hongxun et al 2010 IOP Conf. Ser.: Earth

More information

BLAST PERFORMANCE OF NON-CAPTURED STRUCTURALLY GLAZED INSULATED GLASS UNITS SAMUEL POND, P.E. + JAMES CASPER, S.E., P.E.

BLAST PERFORMANCE OF NON-CAPTURED STRUCTURALLY GLAZED INSULATED GLASS UNITS SAMUEL POND, P.E. + JAMES CASPER, S.E., P.E. BLAST PERFORMANCE OF NON-CAPTURED STRUCTURALLY GLAZED INSULATED GLASS UNITS SAMUEL POND, P.E. + JAMES CASPER, S.E., P.E., LEED [BD + C] A captured glazing system relies on a pressure cap or cover to mechanically

More information

The Role of Solid Fuel Conversion in Future Power Generation

The Role of Solid Fuel Conversion in Future Power Generation The Role of Solid Fuel Conversion in Future Power Generation Hartmut Spliethoff FINNISH-SWEDISH FLAME DAYS 2013 Focus on Combustion and Gasification Research Jyväskylä, April, 17th and 18th 2013 Content

More information

Session A4: Healthy-Polis Workshop on Climate Change and Urban Health II

Session A4: Healthy-Polis Workshop on Climate Change and Urban Health II Session A4: Healthy-Polis Workshop on Climate Change and Urban Health II Experimental Campaign in a Heavily Trafficked Roundabout in Madrid for the Assessment of Air Quality Monitoring Station Representativeness

More information

NUMERICAL OPTIMIZATION OF AIR FLOW IN THE PLENUM CHAMBER OF AN INDUSTRIAL CFB BOILER

NUMERICAL OPTIMIZATION OF AIR FLOW IN THE PLENUM CHAMBER OF AN INDUSTRIAL CFB BOILER TASK QUARTERLY 12 No 3, 237 244 NUMERICAL OPTIMIZATION OF AIR FLOW IN THE PLENUM CHAMBER OF AN INDUSTRIAL CFB BOILER PAWEŁMIREK 1,JANUSZJABŁOŃSKI 2 ANDWOJCIECHNOWAK 1 1 CzestochowaUniversityofTechnology,

More information

Explosion Hazard Evaluation and Determination of the Explosion Parameters for Selected Hydrocarbons C6 C8

Explosion Hazard Evaluation and Determination of the Explosion Parameters for Selected Hydrocarbons C6 C8 Explosion Hazard Evaluation and Determination of the Explosion Parameters... 399 Central European Journal of Energetic Materials, 2012, 9(4), 399-409 ISSN 1733-7178 Explosion Hazard Evaluation and Determination

More information

Pressure Pulsations and Vibration Measurements in Francis Turbines with and without Freely Rotating Runner Cone Extension

Pressure Pulsations and Vibration Measurements in Francis Turbines with and without Freely Rotating Runner Cone Extension Proceedings of the International Symposium on Current Research in Hydraulic Turbines CRHT VI March 14, 2016, Turbine Testing Lab, Kathmandu University, Dhulikhel, Nepal Paper no. CRHT2016-15 Pressure Pulsations

More information

Experiments of the LACOMECO Project at KIT

Experiments of the LACOMECO Project at KIT Experiments of the LACOMECO Project at KIT A. MIASSOEDOV 1, M. KUZNETSOV 1, M. STEINBRÜCK 1, S. KUDRIAKOV 2 Z. HÓZER 3, I. KLJENAK 4, R. MEIGNEN 5, J.M. SEILER 6, A. TEODORCZYK 7 1 KIT, Karlsruhe (DE)

More information

5.2. Phenomena liable to result in early containment failure

5.2. Phenomena liable to result in early containment failure 146 Nuclear Power Reactor Core Melt Accidents 5.2. Phenomena liable to result in early containment failure 5.2.1. Direct containment heating 5.2.1.1. Introduction The phenomenon of direct containment heating

More information

Experimental and Numerical Studies of Liquid Dispersal from a Soft Projectile Impacting a Wall

Experimental and Numerical Studies of Liquid Dispersal from a Soft Projectile Impacting a Wall Experimental and Numerical Studies of Liquid Dispersal from a Soft Projectile Impacting a Wall Ari Silde 1), Simo Hostikka 1), Ari Kankkunen 2), Juhani Hyvärinen 3) and Ilkka Hakola 1) 1) Technical Research

More information

Stowage of Explosives on Vessels and issues noted with Small Ships

Stowage of Explosives on Vessels and issues noted with Small Ships Information Sheet (relevant until the 1st of January 2012 only) Stowage of Explosives on Vessels and issues noted with Small Ships INTRODUCTION The purpose of this Information Sheet is to advise all ship

More information

ENGINE TESTING OF BUS FUELLED WITH LNG

ENGINE TESTING OF BUS FUELLED WITH LNG Journal of KONES Powertrain and Transport, Vol. 20, No. 4 2013 ENGINE TESTING OF BUS FUELLED WITH LNG Wojciech Gis, Andrzej ó towski, S awomir Taubert, Paulina Luiza Grzelak Motor Transport Institute Environmental

More information

Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater

Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater Supplementary Materials For: Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater Wen Pin Chou 1, Ping Hei Chen 1, Jr Ming Miao 2, Long Sheng Kuo 1, Shiou Hwei

More information

Microfluidic Systems for Cell Growth and Cell Migration Studies

Microfluidic Systems for Cell Growth and Cell Migration Studies Microfluidic Systems for Cell Growth and Cell Migration Studies Maria Dimaki 1, Pranjul Shah 1, Dorota Kwasny 1, Jacob Moresco 2 and Winnie E. Svendsen 1 1 DTU Nanotech Department of Micro- and Nanotechnology,

More information

Investigation of ignition behavior of dimethyl and ethyl isomers of cycloalkanes and furans

Investigation of ignition behavior of dimethyl and ethyl isomers of cycloalkanes and furans 25 th ICDERS August 2 7, 2015 Leeds, UK Investigation of ignition behavior of dimethyl and ethyl isomers of cycloalkanes and furans Mazen A. Eldeeb, Ben Akih-Kumgeh Department of Mechanical and Aerospace

More information

COMBIMASS Thermal Gas Flow

COMBIMASS Thermal Gas Flow COMBIMASS Thermal Gas Flow The COMBIMASS series enables gas flow measurement for various applications in all industry sectors. COMBIMASS works according to the principle of thermal dispersion and determines

More information

Concept and manufacture of a hollow crankshaft forming tool

Concept and manufacture of a hollow crankshaft forming tool Concept and manufacture of a hollow crankshaft forming tool Sara Tavares Luzia Melo Gamboa Department of Mechanical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 149-1, Lisbon, Portugal, 214.

More information

Experiment and Numerical Simulation of Explosive Safety

Experiment and Numerical Simulation of Explosive Safety Experiment and Numerical Simulation of Explosive Safety CHEN Lang, WANG Chen,MA Xin,WANG Fei State Key Laboratory Explosion Science and Technology, Beijing Institute of Technology, Beijing100081, China

More information

IFRF Combustion Journal Article Number , June 2000 ISSN X

IFRF Combustion Journal Article Number , June 2000 ISSN X IFRF Combustion Journal Article Number 200005, June 2000 ISSN 1562-479X SCALING OF LOW NO X FLAMES OF NATURAL GAS S. Orsino and R. Weber Corresponding Author: Stefano Orsino IFRF Research Station B.V.

More information

Experimental Study of Bulk Storage Ignition by Hot Points

Experimental Study of Bulk Storage Ignition by Hot Points 919 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 31, 2013 Guest Editors: Eddy De Rademaeker, Bruno Fabiano, Simberto Senni Buratti Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-22-8;

More information

Heat transfer modelling of slot jet impinging on an inclined plate

Heat transfer modelling of slot jet impinging on an inclined plate Heat transfer modelling of slot jet impinging on an inclined plate A. Ramezanpour 1, H. Shirvani 1 & I. Mirzaee 2 1 School of Design and Communication Systems, APU University, UK 2 CFD Research Centre,

More information

An experimental investigation of a passive chilled beam system in subtropical

An experimental investigation of a passive chilled beam system in subtropical An experimental inestigation of a passie chilled beam system in subtropical conditions Alex Hole 1, Risto Kosonen 2 1 Arup, Sydney - Australia 2 Halton, Kausala - Finland Corresponding email: alex.hole@arup.com.au

More information

Evaluation of AP1000 Containment Hydrogen Control Strategies for Post- Fukushima Lessons Learned

Evaluation of AP1000 Containment Hydrogen Control Strategies for Post- Fukushima Lessons Learned Evaluation of AP1000 Containment Hydrogen Control Strategies for Post- Fukushima Lessons Learned James H. Scobel and Hong Xu Westinghouse Electric Company, EEC 1000 Westinghouse Dr. Cranberry Township,

More information

Wind loads at solar and photovoltaic modules for large plants

Wind loads at solar and photovoltaic modules for large plants Ruscheweyh Consult GmbH Aachen Veröffentlichung Wind loads at solar and photovoltaic modules for large plants Hans Ruscheweyh, Reiner Windhövel Ruscheweyh Consult GmbH, Teichstr. 8, Aachen, Germany, info@ruscheweyh.de

More information

Brazed aluminium heat exchangers (BAHXs), also referred to

Brazed aluminium heat exchangers (BAHXs), also referred to Brazed aluminium heat exchangers (BAHXs), also referred to as plate fin heat exchangers, are at the heart of many of the processes used for the liquefaction of natural gas. They are deployed across the

More information

Combustion of Polymers in a Fluidised Bed Reactor

Combustion of Polymers in a Fluidised Bed Reactor Archivum Combustionis Vol. 30 (2010) no. 4 Combustion of Polymers in a Fluidised Bed Reactor J. Połomska *, W. Żukowski **, J. Zabagło ** * Faculty of Environmental Engineering, **Faculty of Chemical Engineering

More information

Large Scale Outdoor Flammable & Toxic Gas Dispersion Modelling in Industrial Environments.

Large Scale Outdoor Flammable & Toxic Gas Dispersion Modelling in Industrial Environments. Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Large Scale Outdoor Flammable & Toxic Gas Dispersion Modelling in Industrial Environments. A. Hallgarth* 1, A. Zayer 1, A. Gatward 2 and

More information

Optimization of abrasive waterjet nozzle design for precision and reduced wear using compressible multiphase CFD modelling

Optimization of abrasive waterjet nozzle design for precision and reduced wear using compressible multiphase CFD modelling Optimization of abrasive waterjet nozzle design for precision and reduced wear using compressible multiphase CFD modelling C. Narayanan, D. Caviezel, D. Lakehal ASCOMP AG Technoparkstrasse 1, 8005 Zurich,

More information

CFD Analysis of a Low Head Propeller Turbine with Comparison to Experimental Data By: Artem Ivashchenko, Mechanical Solutions, Inc.

CFD Analysis of a Low Head Propeller Turbine with Comparison to Experimental Data By: Artem Ivashchenko, Mechanical Solutions, Inc. CFD Analysis of a Low Head Propeller Turbine with Comparison to Experimental Data By: Artem Ivashchenko, Mechanical Solutions, Inc. Edward Bennett, Mechanical Solutions, Inc. CFD Analysis of a Low Head

More information

A MODEL FOR RESIDUAL STRESS AND PART WARPAGE PREDICTION IN MATERIAL EXTRUSION WITH APPLICATION TO POLYPROPYLENE. Atlanta, GA 30332

A MODEL FOR RESIDUAL STRESS AND PART WARPAGE PREDICTION IN MATERIAL EXTRUSION WITH APPLICATION TO POLYPROPYLENE. Atlanta, GA 30332 Solid Freeform Fabrication 2016: Proceedings of the 26th 27th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference A MODEL FOR RESIDUAL STRESS AND PART WARPAGE

More information

Structure in Scientific Writing

Structure in Scientific Writing Structure in Scientific Writing These slides, which are used in graduate and undergraduate engineering courses at Virginia Tech, come from Chapters 2 and 3 in The Craft of Scientific Writing (3rd ed.,

More information

The Influence of Chemical Inhibitor Addition on Reverse-Jet Flame Stabilization

The Influence of Chemical Inhibitor Addition on Reverse-Jet Flame Stabilization 68 -GT-39 The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society or of its Divisions or Sections, or printed in its publications.

More information

Manfred J. Wilms, Forschungszentrum Jülich President, Intern l Association for Hydrogen Safety - HySafe

Manfred J. Wilms, Forschungszentrum Jülich President, Intern l Association for Hydrogen Safety - HySafe Manfred J. Wilms, Forschungszentrum Jülich President, Intern l Association for Hydrogen Safety - HySafe 1 The European FP6 Network of Excellence became the International Association HySafe, a not-for-profit

More information

DEEPA TM Stimulation of Natural Fracture Networks in Austin Chalk

DEEPA TM Stimulation of Natural Fracture Networks in Austin Chalk DEEPA TM Stimulation of Natural Fracture Networks in Austin Chalk Contents 1. Background 2. Laboratory Tests 3. Field Test - Vertical Well 4. Field Test - Horizontal Well Summary DEEPA TM in-situ acidizing

More information

Available Active Power Estimation for the Provision of Control Reserve by Wind Turbines Summary Keywords: 1. Introduction 2.

Available Active Power Estimation for the Provision of Control Reserve by Wind Turbines Summary Keywords: 1. Introduction 2. Available Active Power Estimation for the Provision of Control Reserve by Wind Turbines Dominik Schneider, Kristie Kaminski Küster, Malte Siefert, Markus Speckmann Fraunhofer IWES, Kassel, Germany Koenigstor

More information

Smoke Dispersion from Stacks on Pitched-Roof Buildings: Model Calculations Using MISKAM in Comparison with Wind Tunnel Results

Smoke Dispersion from Stacks on Pitched-Roof Buildings: Model Calculations Using MISKAM in Comparison with Wind Tunnel Results Smoke Dispersion from Stacks on Pitched-Roof Buildings: Model Calculations Using MISKAM in Comparison with Wind Tunnel Results Konstantinos E. Kakosimos 1 Marc J. Assael 1 Matthias Ketzel 2 Helge Rørdam

More information

Using STAR-CCM+ for Research and Teaching at the Chair of Chemical & Process Engineering

Using STAR-CCM+ for Research and Teaching at the Chair of Chemical & Process Engineering Using STAR-CCM+ for Research and Teaching at the PROF. DR.-ING. M. KRAUME, G. WEHINGER, T. EPPINGER Technische Universität Berlin (March 17-19), Vienna Content 1. Introducing the chair of chemical & process

More information

Ten Year Retrospective Look at HRSG FAC Assessment and Incidence. Peter S. Jackson, PhD, PE, David S. Moelling, PE, Mark Taylor, Mech. Eng.

Ten Year Retrospective Look at HRSG FAC Assessment and Incidence. Peter S. Jackson, PhD, PE, David S. Moelling, PE, Mark Taylor, Mech. Eng. Ten Year Retrospective Look at HRSG FAC Assessment and Incidence Peter S. Jackson, PhD, PE, David S. Moelling, PE, Mark Taylor, Mech. Eng. Ten years after we first reported at the 1999 EPRI Maintenance

More information

Three-Dimensional Numerical Simulation of a Model Wind Turbine

Three-Dimensional Numerical Simulation of a Model Wind Turbine Three-Dimensional Numerical Simulation of a Model Wind Turbine N. Tabatabaei 1, M.J. Cervantes 1,2, C. Trivedi 2, J-O Aidanpää 1 1 Luleå University of Technology, Sweden 2 Norwegian University of Science

More information

NUMERICAL MODELING OF EXPLOSIVES AND PROPELLANTS CD-ROM CONTENTS Version

NUMERICAL MODELING OF EXPLOSIVES AND PROPELLANTS CD-ROM CONTENTS Version BASIC PROGRAMS NUMERICAL MODELING OF EXPLOSIVES AND PROPELLANTS CD-ROM CONTENTS - 2006 Version COMPUTER CODES for MODELING EXPLOSIVES and PROPELLANTS on PERSONAL COMPUTERS BKW Code for computing detonation

More information

Dust Recovery Collector Systems. University of Iowa Iowa City, IA. Considerations for NAAQS & NFPA Compliance

Dust Recovery Collector Systems. University of Iowa Iowa City, IA. Considerations for NAAQS & NFPA Compliance Prepared by: Sebesta Blomberg Contact: Mike Svensk, PE 2381 Rosegate St. Paul, MN 55113 Main: 651-634-0775 Fax: 651-634-7400 email: msvensk@sebesta.com Dust Recovery Collector Systems Considerations for

More information

Optimization Of Pattern Factor Of The Annular Gas Turbine Combustor For Better Turbine Life

Optimization Of Pattern Factor Of The Annular Gas Turbine Combustor For Better Turbine Life Optimization Of Pattern Factor Of he Annular Gas urbine Combustor For Better urbine Life 1 Ambrish babu D, 2 K.K.Arun, 3 Anandanarayanan R 1, 2 (Mechanical Engineering, Kumaraguru College of echnology/anna

More information

CFD Analysis of Pelton Runner

CFD Analysis of Pelton Runner International Journal of Scientific and Research Publications, Volume 4, Issue 8, August 2014 1 CFD Analysis of Pelton Runner Amod Panthee *, Hari Prasad Neopane **, Bhola Thapa ** * Turbine Testing Lab,

More information